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Abstract

This report summarizes the current status of the Discretiec8dClassifier (DSC), part
of the CU8 Apsis system. Various issues surrounding the oudesign performance
are discussed, as well as plans for developments in the uieae f

Gaia DPAC Document



Gaia

PAC CU8-MPIA

DSC status report
GAIA-C8-TN-MPIA-KS-019-01

Document History

] Issue\ Revision\ Date \ Author \ Comment
1 0 27-06-2011| KS First draft
1 0 28-07-2011| KS Document issued

Gaia DPAC Document




DSC status report

Gaia

PAC Ccus-MPIA GAIA-C8-TN-MPIA-KS-019-01
Contents
0.1 Acronyms used inthisdocument . . . . . . ... .. .. ... ... ... 6
1 Introduction| 6
2 Overall classifier design: modular approach 8
2.1 Someissues diSCUSSEA . . « . v v oo 9
201 ZErovValUBS . . . o o 9
2.1.2  Overall most probable object not most probable in abglassifier . . . 11
3 The individual subclassifiers 11
3.1 Position-GMag SUbCIasSIfier . . . . . . 11
3.2 Astrometric SUBCIASSIFIEr . . .« o o o e 14
3.2.1 Models for the Astrometric Classifier . . . .. ... ... ...... 14
3.2.2 Application . . . .. 15
3.3 Photometric Classifier . . . . . . o v v 15
331 DESIGN .« o v ot e 15
3.3.2 The SVMalgorithms . . . . o v oo e e e 16
3321 TUNING .+« o v oo e 17
3.3.3 Dealing with different magnitudes ................... 17
4 Results 19
4.1 Analysis of particular libraries . . . . . .. ... e 21
4.2 ClassfraCtions . . . . . v v v v e 25

Gaia DPAC Document 4



Gaia DSC status report

PAC Ccus-MPIA GAIA-C8-TN-MPIA-KS-019-01

4.3 Teston high radial velocity stars . . . . . . . . . . .. ... .. ... ... 29

4.3.1 Results of radial velocity St . o o e 29

4.4 Overlapping stellar libraries . . . . . . . .. . .. ... .. ... ... 31
4401 OVEIVIEW . . o o oo 31
442 Thelloraries . ... .. ... ... .. 31

4.4.3 Results of the overlaptest . ... ... . ... .. .. ... ... 31

5 Comparison of different subclassifiers 37

5.0.4 Results breakdown and diScussion . . . . . . ... 42

6 Robustness against damaged data 42
6.1 DataSelS . « o o o 3 4
B.1.1 HOLPIXEIS . . o v v e e e e 44
6.1.2 Cool pIXels . . . . . 48

6.1.3  Fluxcalibration . . . . . . . oo 51

6.1.4  Wavelength calibration . . . . . . . . . i 55

6.1.5 Summary of the robustness St © o o 55

7 Summary, conclusions and future work 59

8 References 60

Gaia DPAC Document 5



Gaia

DSC status report

PAC CU8-MPIA GAIA-C8-TN-MPIA-KS-019-01

0.1 Acronyms used in this document

The following table has been generated from the on-line @aianym list:

Acronym | Description

AC Astrometric Classifier

BP Blue Photometer

BR Brightness Ratio

CuU Coordination Unit

DPAC Data Processing and Analysis Consortium
DSC Discrete Source Classification Classifier
IMF Initial Mass Function

KDE Kernel Density Estimator

MPIA Max Planck Institute for Astronomy (Heidelberg)
OCA Object Clustering Analysis

PDF Probability density function

QSO Quasi-stellar object

RA Right Ascension

RP Red Photometer

SDD Software Design Document

STR Software Test Report

SVM Support Vector Machine

UCD Ultra-cool dwarf

WD White Dwarf

WP Work Package

WR Wolf-Rayet star

1 Introduction

Gaia will observe around0? individual sources, the overwhelming majority of which Mik
stars or binaries. Some small number will fall into otherssks such as quasars, point like
galaxies or white dwarfs. The task of coordination unit 8 (¢Id&o classify all the Gaia sources
and find astrophysical parameters for them, according io ¢teess. The CUS8 software system,
called Apsis, contains two main work packages with respittgi for classification. One of
these is the Discrete Source Classifier (DSC), which sortsdhecss into broad astrophysical
classes on the basis of supervised classification techsmidue other work package, the object
clustering analysis package, or OCA, uses unsuperviseduteth search for clusters of objects

in the Gaia data space. The astrophysical classes used byi23iSted in Table|1.
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TABLE 2: The classes currently used by DSC.

STAR Stars, including emission line stars and other unuypails.

WD White dwarfs

PHYSBINARY Physical (i.e. bound) binary stars

NONPHYSBINARY Chance alignments

QUASAR Quasars

GALAXY Point-like galaxies

UNKNOWN Objects identified by an outlier detector as being mifnown type
UNDEFINED Objects with indeterminate probabilities

UNCLASSIFIED Objects for which no classification was possittle to a lack of data

The source classifications will form part of the final dataha@nd are used to trigger various pa-
rameterizing algorithms further down the Apsis chain (@)ﬂ [The available input information
from the satellite consists of low-resolution spectra fribie Gaia photometers, sky position and
apparent magnitude, proper motion and parallax measutsppassible variability information
and, for the bright sources, high resolution spectra in #ugon 8470-874A. Not all of this
information is currently used, some may be used in the futamd some may not be used in the
final package.

The high ratio of stellar objects to other types in the inpatagposes a significant class imbalance
problem for any classifier. Furthermore, amongst the stassat least, there will be a small
admixture of unusual stellar objects alongside the usuah mequence or giant branch stars.
These must also be recognized in order to obtain corredifitzgions.

Since the classification scheme must deal with severakdiiteypes of input data, we have used
a modular approach. Several different subclassifiers, &d&ihg a different type of input data,
classify probabilistically and the outputs are then coratin

Specific problems facing the DSC include the imbalance incthss fractions, with the vast
majority of the sources being single or multiple stars andhalsminority falling into classes
such as QSOs or Galaxies. The classifier must deal with a \aiuigerof noise characteristics
and also be robust against missing or damaged data.

In this document, we will first describe the overall desigrhef package. We will then provide
a detailed description of the subclassifiers that are ctiyreperational. In Section!/4 we give

the results for the main test data sets, and in Section 4.1nalyse these and comment on
some systematic effects and ongoing problems. In Sectidhard Section 4|4 we describe
some more specific test cases, and in Section 6 we presenttesta®f the sensitivity of the

classifier to problematic data. Section 7 summarizes thdtseand outlines several planned
future developments.
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2 Overall classifier design: modular approach

The DSC consists of a number of subclassifiers, each workithgayparticular Gaia data product
or a small set of data products, and each producing a pasttaigs probability vector. These
posterior probabilities then have to be combined into the batput probabilities. 11D, are indi-
vidual data products;' is the class of interest anfd(C'|H) is the prior, including the model and
training data used, and any assumptions which go into tlesi@ler — in fact, all the information
available before the classification begins, we can write

P(D;...Dy|C,H)P(C|H)

P(C|Dy,.....,Dy, H) = P(Dy. . DulH) , 1)

which is just Bayes’ Theorem for all the data products. Howesiace the data products; are
conditioned on the same informatiaf H, they are conditionally independent and we can write

P(Dy,...,Dy|C,H) = P(Dy|C,H) x P(D,|C,H) x ... x P(Dy|C, H), 2)
and for each of thé’(D;|C, H)

P(C|Di, H)P(D;|H)

P(D,|C, H) = Ttk

. 3)

Putting Equations|2 and 3 into Equation 1 we obtain

=Y P(D;|H) L= P(C| Dy, H)
P(Dy,..Dy|H) P(C|H)N-1
=Y P(C|Ds, H)
P(CIH)N!

P(C|Dy,... Dy, H) =

(4)

where we use to denote the normalization factor arising from the ratithaf (unknown) proba-
bilities of the individual data?(D;| H) and the joint probability of all the dat&( Dy, ....Dx|H).
Equation 4 is derived with more discussion ﬁn [2] and varisugrounding issues are treated at
length in that document. One particularly important pootealize is that the equation holds
provided that the likelihoods are conditioned on the sandedying assumptions. The back-
ground information/ can of course be replaced with another classifier in the gh@iducing
the posteriorP(C|H) and the prior would then b2(C). In other words,H can be treated just
as any of theD; in equation 4.

At present, DSC consists of three working subclassifierse akes as input the BPRP photo-
metric data and is referred to as tRAeotometric Classifier. The proper motions and parallaxes
are used as the input to thetrometric Classifier. The RA, Dec and G magnitude are used by
the Position-GMag Classifier. At present, this last component includes information fritve

expected class fractions of the various sources, i.e. ittetliat stars are more common than
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guasars or galaxies. In the future, it is planned to sepdhnatelass fraction probability into
a separate prior and use the Position-Gmag classifier to utentpe relative probabilities for
different classes as a function of position and G magnitude.

The design of the DSC is described in the documents [3], thievae design document for
CU8 algorithms, anor[4], which discusses primarily the highnacal design of the photometric
subclassifier.

2.1 Some issues discussed

Below, we show some examples of probability combinatiorstiating various potential prob-
lems, or results which are (perhaps) non-intuitive.

2.1.1 Zero values

The use of equation 4 introduces a problem if some of €| D;) are zero, since this will lead
to zero probability for that class in the final probabilitycter regardless of the results from the
other subclassifiers. Zero values could occur for two ressehich are very different from one
another. First, a classifier could produce probabilitied #re vanishingly small and are rounded
to zero. Second, a subclassifier may not be trained to ¢fasbthe classes handled by the other
subclassifiers. The secondcase should be avoided if at sdilge. If not avoidable, the zero
values should be probably be replaced with a prior. In thé dase, it would still be advanta-
geous to prevent zero values being included in the prolyalidimbination. For this reason, we
introduce a type of softening parametgito the probabilities from each subclassifier separately.
This parameter is set independently for each subclassfierjs added to each class probabil-
ity in the output probability vector except for the probéi@k corresponding to UNKNOWN,
UNDEFINED and UNCLASSIFIED. The probabilities are then ramalized.

Below, we show some simpified examples with four classes aadtlclassifiers;

P(C;) = [0.25,0.25,0.25,0.25]
P(Ci|Dy) = [0.9,0.0,0.05,0.05]
P(Ci|Dy) = [0.0,0.9,0.05,0.05]

P(Ci|Dy, Ds) = a x [0.0,0.0,0.0025,0.0025] /P(C;)
= ax[0.0,0.0,0.01,0.01]
= 10.,0.,0.5,0.5]

Classes 1 and 2 are both very likely, but because there is aregnmed for each from one
subclassifier, they are disregarded in the output prolgbibuppose we introduced a small
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probability offset from zero, so that the missing classesaw forced to be returned with low but
non-zero probabilities. [Note that in this example, we heivgply introduced a small probability
of 0.01 for the two probabilities that were previously zexnd lowered the probabilities for class
3 and 4 to maintain the normalization. This is for convengoialy and does not reflect the action
of a proposed algorithm].

P(C;) = [0.25,0.25,0.25,0.25]
P(Ci|D1) = [0.9,0.01,0.045,0.045]
P(C;|Ds) = [0.01,0.9,0.045,0.045]

P(Cy|Dy, Dy) = a x [0.009,0.009,0.002025,0.002025)/P(C;)
— a x [0.036,0.036,0.0081, 0.0081]
= [0.408,0.408,0.092, 0.092]

With a minimum probability enforced, the two missing classee now restored as the most
likely results.

If the class is missing from only one subclassifier

P(C;) = [0.25,0.25,0.25,0.25]
P(Ci|Dy) = [0.89,0.01,0.05,0.05]
P(Ci|Dy) = [0.4,0.4,0.05,0.05]

P(Cy|Dy,Dy) = a x [0.36,0.004,0.0025,0.0025]/P(C;)
— ax [1.44,0.016,0.01,0.01]
— [0.976,0.011, 0.007, 0.007]

replacing with a minimum value for class 2 strongly suppesgbe eventual probability for that
class in the output vector, although it has still producedodability greater than that for classes
3 and 4. This could distort the eventual class probabilitesit is best if all subclassifiers are
capable of classifying all classes of interest.
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2.1.2 Overall most probable object not most probable in anysbclassifier

It is possible for the most likely eventual class to be onechatsen by any subclassifier individ-
ually. For example;

P(C;) = [0.25,0.25,0.25,0.25]
P(C;|Dy) = [0.45,0.5,0.025,0.025]
P(C;|Ds) = [0.45,0.025,0.5,0.025]
P(Ci|D3) = [0.45,0.025,0.025,0.5]

P(Ci|D;) = a x [0.09,0.0003,0.0003,0.0003]/P(C;)
= a % [0.36,0.0012,0.0012,0.0012]

= [0.99,0.0033,0.0033,0.0033]

This will be seen to occur in Section 5, although it is rare. WHemonstrated in the example
above, it is clear that this outcome is not anomalous.

3 The individual subclassifiers

We describe each individual subclassifier in detail.

3.1 Position-GMag Subclassifier

The position-G Mag subclassifier assigns probabilitiegtas the position of an object on the
sky and its brightness in the G band.

In the version of DSC used for the cycle 10 tests the classifieked on the principle of a Kernel
density estimator (KDE). Training objects were used todaimodel PDF for the various source
classes evaluated at regular grid points on the sky and immualg space. The model is stored
as a look up table of RA, Dec, G magnitude and probability. énahplication phase, the nearest
grid point to the input source is found and the probabiliissigned accordingly.

For the results we present here, we have replaced the KD&gd lwdassifier with one based on a
simple analytical model. This choice has been made due tathkeof satisfactory training data
for the KDE method. The probabilities returned currentigliide the class fraction probability,
i.e. the fact that stars and binaries are 100-1000 times coonenon on the sky than quasars and
galaxies, depending on the position on the sky and the madmitin the future, it is planned to
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TABLE 3: Values of parameters in the Position-Gmag classifier model

W, 0.01
Wy 0.05
Wes 0.04
B 2.2
(o)} 60°
Op 20°
y 10°

separate this probability from the Position-GMag classdigput and introduce it explicitly as a
prior, with the position-Gmag classifier reporting relatprobabilities as a function of position
and magnitude.

The model is a crude approximation of the expected galattictsire seen by Gaia. If this
approach replaces the KDE-based approach for the pos#ioragnitude classifier, the model
will be developed and calibrated more accurately againstvkinclass fractions as a function of
G, [ andb.

The G-magnitude dependence is modeled as a sigmoid funatidch modulates also tHeandb
dependence. Thedependence is a Gaussian with= 20°. Thel dependence is also a Gaussian
centred on the Galactic centre with= 60°, modulated by a Gaussian in latitude with= 10°.

P(Extragalactic) = [VV; x e V7 x em(1-180% 0 | Wy(1 — 6_b2/0’?) + Wg] X

( 1+ e—ﬁc (G- 15)) (5)

P(Quasar) = P(Extragalactic)/2.
P(Galaxy) = P(Extragalactic)/2.
P(Star) = 1 — P(Extragalactic)

wherel, b are galactic longitude and latitude respectively, éhi the G band magnitude. The
values of the parameters currently used are given in Tahle 3.

W, W, and W control the weights of the effects &f b and G respectively. 5 controls the
scale length of the sigmoid function governing the respdoske magnitudes; ando, control
the width of the Gaussian models of the galactic disk andaheff in stellar populations from
the galactic centre towards the anticentre. Figure 1 shbe/® (star) as a function of the main
variables.
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FIGURE 1: The probabilityP(Star) given by the Position-GMag subclassifier for the Phoenix
R grid, which has uniform random distribution of RA, Dec and G magnitude: P(Star) as a
function of/ andb for stars withG > 15. only. Bottom: P(Star) as a function of G magnitude
for all stars.
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3.2 Astrometric Subclassifier

The Astrometric classifier (AC) classifies sources on thesbafsine proper motions and paral-
laxes, and the uncertainities on these quantities. The AGsnvan the principle of a Gaussian
Mixture model. The data space is the set of parallax and proyions in RAx cosd and
Declination, which are considered separately.

3.2.1 Models for the Astrometric Classifier

Each separate class of objectis represented by a MixtureMadollection of three-dimensional
Gaussians which is intended to model the noise-free PDFedfitribution of objects. The num-
ber of Gaussians in each model is unconstrained. The eguatithree dimensional Gaussians

Is
A 1

flzi) = R eXP(—§(%‘ — i) TS (i — ) (6)

whereA is the weight of the componeri, is the covariance matrix;; is the datay; is the mean
vector,()” denotes transpose.

The number of components is chosen before training by the (dee mixture is fitted using
a representative training set with an EM algorithm. The nhaded here was trained for stars
using the Phoenix random data. For the Quasar and Galaxylsp@ddelta function = 0)
was used.

We assume normal errors on the measured parallax and pragems Values of sigma for
these quantities should be returned by the data procedsaig.c

If we label one of these three parameterand call;,,.,.. the true value andg,,, the observed
value, then the likelihood for the mod#{ is

P(:uobs|M) = / P(,uobsa p'true|M)d,ut7‘ue
Ktrue
- / P(,uobs |Mtrueu M>P(Mtrue|M)thT1Le
Htrue

- / P(,U/obs |Ntrue ) P(Ntrue ’M> d,ultruea
Htrue

where the integrand is the product of the likelihood of soraki& of 1., given the model
and the likelihood of some observed valug, given the true value and the error model. The
development from line two to line three is possible becabheebise model and the model of the
phenomenon are independent. Since the error model is Gaugsi, o)

P(Nobsmtrm) = N((Nobs - Ntrue)a U) (7)
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and the integral is a convolution of the Gaussian mixture ehadth the Gaussian noise model.
This is easy to achieve in Equationh 6 by making the transfoana

Z’mocl - Emod + Znoise (8)

whereX, .4, Ynoise are the covariance matrices of the model components and respectively
(note: the noise has zero mean). It is therefore straighithat to adapt the noise-free mixture
model to each measured point before applying.

3.2.2 Application

The input mixture model for galactic objects will consisgieneral of several different Gaussians.
The model for extragalactic objects will be a single Gaussiih zero covariance. The gaussians
of the model are first convolved with the Gaussian of the doothe source and the likelihoods
can then be evaluated from Equation 7. The priors are takbe tmiform for all classes, so if
we haveK classes, labeled;, and.J models, labeled/; ;, each corresponding to a particular

classCy,
_ Zl P(Nz,obs|Mk,l) 9)
> rea P(tions| M 1)
wherey; .5 are the three observables (parallax, proper motiondRA, proper motion Dec).

P(:ui,obs|0j)

3.3 Photometric Classifier

The photometric classifier produces a probabilistic cfecsdion based on the low resolution
prism spectra from the BP and RP 'photometers’ (so-called fstohcal reasons). It has a
hierarchical design and is based on Support Vector Macli@ed/s) running in two modes,
multiclass and one-class.

3.3.1 Design

The hierarchical design currently splits the classificagwoblem in two ways. A first stage
classifier searches for stellar versus non-stellar ohjecid a second stage then classifies the
various stellar classes (stars, white dwarfs and binaries)

The first and second stage classifiers are each subdividedia#t we have termed the 'narrow’
and 'broad’ classifiers. The broad classifier is trained dla denerated over a broad range of
parameter space. This means it can recognize unusual ®jdtie mission data. The narrow
classifier is trained on data from more realistic objectsspay taken from an empirical library.
With this classifier, we hope to obtain a good performanceypital objects, without having to
model unusual objects. This strategy mostly makes sendbdatars, for which it is possible
to produce spectra from model stellar atmospheres occgyjparameter volume much larger
than that occupied by actual evolutionary tracks.
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The narrow and broad general classifiers are each frontedregian detector’ algorithm. This
tests for compatibility between the spectrum under comattn and the data space occupied
by the training objects. The region detectors are used ttu@smutlying objects where the
classifiers are not competent to carry out the classification

preprocessor

\ 4

RD-narrow

l

RD-broad

- C-narrow probabilities

- C-broad

probabilities

outliers
probabilites ><#———— C-stellar |«

FIGURE 2: Hierarchical design of DSC photometric subclassifier. The regiorctetaodules
are based on one-class SVMs, whilst the classifiers themselves are mail8aidss. The
training data is split into stellar versus galaxies and quasars, and thenriotasvstellar classes.
The data is also split into the narrow and broad groups — see text for details

The design is shown in Figure 2. After preprocessing (edigpiclg, flux rescaling), an object
requiring classification is first considered by the narrowegal region detector algorithm. This
algorithm is described in more detail below in Section 3.%.1 is found to be compatible with
the narrow classifiers, it is passed on to the narrow genkrssifier for classification, and then
on to the narrow stellar classifiérif it is found not to be compatible with the narrow class#ier
it is passed first to the broad region detector. If it is foumtlé compatible with the broad region
detector training set, it is passed to the broad generaditiexsand then on to the broad stellar
classifier. If it is not found to be compatible with the broaaining set, it is labeled as an outlier
(sourceType=UNKNOWN).

3.3.2 The SVM algorithms

The SVM is a standard algorithm taken from the libSVM librafpe region detector algorithms
are one-class SVM’s (seFe [5] for details). The multiclasssifiers are based on multiclass SVMs
using radial basis functions as kernels. The multiclass 38/ fact a series of two class SVMs
running on pairs of classes. Probabilities are initiallicakated by modeling the distribution of
training sources across the decision boundary, after titbadeof E]. The probabilities from

1Even objects likely to be non-stellar are classified by tledlast classifier, since we need to know the relative
probability between the various stellar classes
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the different two-class SVMs can be combined by using anrdlgo called pairwise coupling
,described inﬁ?].

3.3.2.1 Tuning The multiclass SVM requires two parameters to be set. Onis, the scal-
ing parameter for the radial basis function. The other,eclall, is the cost parameter which
specifies the penalty for misclassifications. This paranatew the SVM to be trained without
overfitting. The best values for these parameters are dsiihfieom the training set using cross
validation and a Nelder-Mead tuning routine, describe@]n [

3.3.3 Dealing with different magnitudes

The classifier has to deal with input sources of arbitrarymtage betweei: = 6 andG = 20.
This is facilitated by training a grid of models at reasoeahlervals, and assigning each input
source to an appropriate set of models in the grid. The sasrcescaled according to the
expected difference in flux based on the G magnitude of thececand the G magnitude of
the training data used to produce the models. Preliminatg tedicated that one magnitude
intervals were sufficient to produce good classifications.

It was initially intended that input sources would be ass@jto the nearest set of models in
magnitude space, however the performance was found to sHawaatic degradation for sources
fainter than the assigned model (see Figure 3). Sourcesoareassigned ot the next faintest
model. There is some evidence (discussed in Section 4) Higasolution might also not be
optimal - the performance may not be optimal even for soundds G magnitude identical to
that of the training data. This is possibly due to coloureti#hces between the training and
testing objects. We are considering introducing a buffethab sources are classified by a set of
models fainter by some minimum amount.
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Qsos with G>16 Qsos with G>16

Qsos with G>16

Frequency
150 200 250
1 1 ]

100
|

50
|

16.5 17.0 175 18.0 185 19.0 19.5 20.0

FIGURE 3: Classification of quasars in development cycle 7 with the photometric sisifca,
choosing the nearest magnitude model from the giidp left: The distribution of quasars
with G > 16.5. Top rightThe correctly classified quasaBottom leftThe correctly classified
quasars (green) and incorrectly classified quasars (red). Thelgrerdetrained with data at
magnitudes 15,16,17,18,19, and 20.
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4 Results

An overview of the latest results is given in the top half oblEa4. In the lower half of this table,
we give the results from development cycle 7. In cycle 7, dhly photometric classifier was
used, and no account was taken of the relative class fractdfe include these results mainly
because they include libraries of several types of objettamailable in cycle 10, in particular
binaries, white dwarfs, and hot stars. The data for cycledéscribed in [9] and the data used
for cycle 10 are described im[10].

The latest results are similar to the results from cycle ¥@ept that here we use the version
of the position-GMag classifier based on Equation 5 whenmeaydle 10 the version based on
a KDE was used. The results of cycles 7 and 10 are discusseftybn the STRs from those

cycles ]).

In the top panel, the rows refer to the input data set. The siaitar libraries in the top set of
results are the two generated from Phoenix models, plusi@SStars, SDSS Qsos and SDSS
Galaxies, which are based on SDSS spectra. The Phoenix ldbaimN) grid contains a broad
range of models and is regularly sampled in parameter spdeeas the 'R’ (Random) grid is
contains stars compatible with stellar evolutionary teacther more unusual objects include
A peculiar stars, ultra-cool dwarfs (UCD) of two types, WBl&yet stars and Fast rotators. The
columns in the table indicate the output class, with theemtrelassification highlighted in bold.
The figures are percentages of the input test set (so the rdomddseach sum to 100). Of
particular interest is the result for SDSS stars. The SVM awdere trained without using any
objects from this library, so the result is obtained usinty eynthetic data for training.

The cycle 7 data includes the MARCS stellar library, plus lilsof hot stars, white dwarfs,
carbon stars, Be stars and binaries. The binary input libne&ry made by combining spectra
from the MARCS and BaSeL cool stars input libraries.

From Table 4, the overall true classification rate for themidraries in cycle 10 is over 90%.
Many of the misclassified sources are put into the unknowsscliius preventing contamination
of other output classes. The contamination in the quasamalaky classes, however, is not
weighted for the relatively higher number of stars compaodtiese groups. The contamination
from common stars (here, Phoenix R and SDSS stars), mustltipliad by a factor of between
100 and 1000 to make it comparable. This means that even Iot&m@onation rates can still be
problematic. High contamination from unusual stellar gygech as A peculiar stars is not so
serious, as these objects are also rare.

In Figurel 4 we show a subset of the results in a colour-coleagrdm. The colours are made
by comparing the total fluxes in BP or RP with the reported G fluxe pt the residual in the
colour-colour space relative to a fit to the locus of Phoeaixdom stars. We stress that this
diagram is intended as a broad illustration, since the ifieaton is not done in a colour-colour
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TABLE 4: Results from the two most recent cycles of DSC runs. The top sectovmsstne
most recent results for a selection of data libraries. These are similar tedhksrobtained in
development cycle 10. The lower panel shows results for cycle 7. e refer to the test
sets. The table breaks down the input set into percentages of objesifiethisito each output
category. The column with the correct answer is highlighted in bold. Fde Gy¢he position-G
mag classifier and astrometric classifier were not running, but two exegarées of sources
were available, namely binaries and two types of white dwarfs. The additibwe @strometric
classifier is expected to improve the performance on the white dwarfs inyartic

Grid N star white  binary  quasar galaxy  unknown
dwarf
APec 252 96.03 3.97 0.00 0.00
Fastrot 288  98.26 0.00 0.00 1.74
Phoenix N 45610 95.73 0.02 0.54 3.70
Phoenix R 10000 99.04 0.02 0.34 0.60
Stars SDSS 50000 99.89 0.02 0.08 0.00
UCD Cond N 126 29.37 0.00 0.00 70.64
UCDCond R 10000 78.06 0.00 0.00 21.94
UCD Dust N 62 74.19 0.00 0.00 25.81
UCD Dust R 1000  98.60 0.00 0.00 1.40
WR 43 76.74 0.00 0.00 23.26
Quasar SDSS 70556 0.31 94.74 0.92 4.03
Galaxy SDSS 33670 0.25 0.21 98.73 0.81
Results from cycle 7
MARCS 2000 82.05 2.80 5.75 4.05 1.90 3.45
Basel 4000 80.18 3.23 4.83 3.90 3.30 4.58
O 500 78.80 11.00 0.40 5.80 1.20 2.80
B 500 86.20 5.80 1.00 4.40 0.80 1.80
A 1000 89.10 3.20 0.90 3.60 1.00 2.20
Be 174 82.75 1.72 0.00 10.92 4.59 0.00
C stars 428 89.48 0.23 1.40 7.24 1.63 0.00
Binaries 4000 29.27 1.60 57.40 4.67 2.32 4.72
WDA 4000 18.20 58.42 0.52 16.10 1.95 4.80
WDB 4000 15.67 58.20 0.55 19.37 1.95 4.25
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FIGURE 4: Subsample of three grids plotted in a colour-colour space. The x-attis iBP-
G colour, and gthe y-axis is the residual of the BP-RP colour compareditowoathed value
for the Phoenix random grid. Green points are SDSS stars, blue poin@uaisars and violet
points are Galaxies. The hot stars lie to the left of the sequence and th&tarsao the right.
Misclassified sources are marked with asterisks with the colour of thectdingut) class.
Where sources were wrongly attributed to another class, other thamwnkithe asterisk is
ringed with a coloured circle. The colour of the circle indicates which classtlurce was
wrongly attributed to. Uncircled asterisks represent sources classetkaown.

space but rather in the full 360 dimensional space of therpsigectra (subject to edge clipping).
Nevertheless, this gives some idea of the spectral disimitbof sources and the misclassification
characteristics. The semi-empirical stellar locus is kinto the synthetic Phoenix locus, which
is expected. The Galaxies are clustered toward the right-e@adether with the hotter stars from
Phoenix. The Quasars mostly occupy a region above and teftitd the stellar locus, but scatter
throughout the colour-colour space. For this reason, midsieomisclassified quasars end up in
the UNKNOWN bin.

4.1 Analysis of particular libraries

In Figure' 5 we show some more details of the classificatiothefRhoenix random grid. The
panel in the upper left shows the misclassified sources gsrl@oints in the plane of two pa-
rameters, here magnitude and Teff. To the left and belowlats pf the cumulative distribution

of misclassified sources compared both to the overall Higion and to a uniform sample with
the same size as the misclassified sample. It is clear thatidotassifications are not distributed
uniformly in either parameter. In the case of magnitudes itlear that most misclassifications
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occur for the faint stars, but there are also clumps of mssdli@d sources at the bright end. To
the lower left is shown a running average true classificatae with the source sorted on Teff.
The cooler stars are systematically less well classified.
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FIGURE 5: Performance on Phoenix random grid stars. The plot at upperstighis the dis-
tribution of all input sources in G magnitude and Teff (small dots). The layg#ols show the
misclassified sources. The misclassifications are colour coded, with hlaxtioks represent-
ing unknown output, green representing quasars and blue represgalixies. At upper left
is shown the cumulative distribution with Teff of all sources (blue line), misdi@sl sources
(red line), and also a sample drawn randomly from a uniform distribution wétksdme number
of objects as the set of misclassified sources (black line). At lower righsisnilar plot for

the cumulative distributions in G magnitude. At lower left is shown a moving geecarrect

classification rate (binsize 300) for sources sorted on Teff. Theifitag®n rate holds up well
except for the low temperature stars.

Similar plots are shown for Quasars in Figure 6 and for uwtval dwarfs in Figure 7. For
the quasars, we plot redshift against G magnitude. The idsiibution of redshifts shows
the characteristic pattern of the SDSS quasar sample; @ ftangber of sources with redshifts
in the range 1-2, and a lack of objects at redshifts around RIBclassifications in redshift
occur predominantly for the higher redshifts, possiblysaese these are underrepresented in the
training data. This problem will be addressed in the futuremwwe have access to simulated
training data with uniform redshift sampling.
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In G magnitude, the quasars misclassifications occur indaralind integer values of the magni-
tude. These correspond to the borderline regions betwedelsained at different magnitudes.
Sources with similar magnitude to the training data arenoftassed as outliers because of minor
mismatches in the noise. This problem can perhaps be addrbegsrequiring that a source is
classified by a model trained on data fainter than the sotsel by some margin.
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FIGURE 6: As Figure 5, but showing the Quasars in GMag versus redshift, zclddisified
sources at upper right are coloured red for stars, blue for galdtaek for unknown.

For the ultra-cool dwarfs, we show the effective tempemand logg. The library shows many
misclassifications around the edges of the parameterldison. This may indicate that the
training set did not adequately sample the full parametacsp

In Figure 8 we show a similar plot for APec stars, concentgatin G magnitude and Teff. The
results for APec stars are much sparser than for the prelriasies, but it is still clear from the
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FIGURE 7: As Figure 5 and Figure| 6, but showing the ultra-cool dwarfs in loggue Teff
space. The misclassified sources are almost all classed as unknahargasiustered around
the edges of the parameter distribution. This indicates that the library hasibdersampled
when constructing the models, and this leads to sources being rejecteddnetioass SVM.

panel at lower left that the misclassifications occur peaféally amongst the high temperature
objects. Most misclassifications are into the Quasars.class

Figure 9 shows an analysis of the results from the classdicaf physical binaries in cycle 7.
Physical binaries are an particularly interesting classibse, as the brightness ratio increases,
they essentially blend into the single stars class with rfimitie boundary.

We present the classification as a function of three parasjdtestead of only two as in the
previous cases. These parameters are the brightness B&)o €ffective temperature of the
primary Teffl, and the G magnitude. The top two panels of FEiglishow the distribution of
misclassified sources in GMag-Teffl and GMag-Brightnese sgtace.
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FIGURE 8: As Figures 5 to 7, but showing the Apec stars in Teff versus G magrspate. The
library is more sparse than the preious examples. The misclassified satecgdit between
Unknown and quasars, and are concentrated at the high temperadwktke distribution.

4.2 Class fractions

We have discussed briefly several times the fact that the fiastions encountered by Gaia will
be highly unbalanced. In the version of the code discusses] thee class imbalance is built into
the positon-Gmag classifier. In the future we intend to idelit as a separate prior.

The test sets we have used are composed exclusively of sduoce a single input grid. In this
way ,we can anlyse which grids are better classified, andhtlgfges of objects within each grid
are still problematic. If we want to assess the overall peronce of the classifier, however, we
have to take the class fractions into account, not only inctassification itself, but also in the
importance of various contaminating populations.

when assessing the result, we can definectivapletenesms a particular class as

completeness; = %, (10)

wheren, ; is the number of objects of true clas<lassified as output clagsand JV; is the
total number of input sources of classlinput sources can be lost from the output class due to
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misclassification into another class, or by remaining wsifeed due to an insufficiently high
classification confidence. Thm®ntaminatiorof the output sample can be defined as the number
of falsely classified sources of that class divided by the memof sources classified into that
class, whether correctly or incorrectly,

contamination; = M (11)

D i Mi

The second of these has strong implications for assessnugttiormance of the classifier in the
case of strongly unbalanced class fractions. If we conglueicase of quasars contaminating
stars, quasars are comparatively rare, so if we have equabens of each in the test sets, we
would have to adjust the quasars down by a factor of 100 or eoget the real expected con-
tamination. If we consider normal stars contaminating thipot quasar sample, the opposit is
the case. We would have to multiply the number of contanmigastars up by an appropriate
factor to get the true contamination.

If we consider the case of SDSS stars in Table 4, we see tha0d8% of the stars are misclas-
sified as quasars. If the stars are 100 times as numerous sarsuaowever, we would expect
the true fraction of contaminants in the output quasar sartpbe of order 8%. The factor of
100 is probably conservative. for the Phoenix random tdstisesituation is worse, with 0.34%
of the input sources being misclassified as quasars, whichdvwanslate to 34% of the output
guasar sample with a ratio of 100:1.

We investigate the effects on the completeness and corditionnof the output quasar sample
caused by varying the assumed class fraction and also thalptity threshold for classification.
For this experiment we use only the photometric classifier.sWdrt with a 1:1 ratio of quasars to
stars and reduce the number of quasars. This has two effexds.the class fraction prior in the
classification is adjusted so that quasarsaapeiori less likely. This effect reduces the posterior
probability of a source being a quasar (left-hand plot oluFégl0). If the posterior probability
for a source falls below the selected threshold, the sounagesdut of the output quasar sample.
A threshold of 0.67 is indicated by the horizontal line in teft-hand plot of Figure 10.

This tends to reduce the completeness (green curves indFigyrright hand side). It also in-
creases the contamination, since the contaminating seais@veighted’ proportionally to their
relative class fraction. However, the increasing prioryaiaility against quasars in the classifi-
cation eventually excludes the contaminating stars, ogusie sharp falls in the contamination
seen in Figure 10. The contamination will tend to fall in tlead term if the contaminating
sources tend t obe less probably quasars than the true guasar
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FIGURE 9: Similar to Figures 5 to 8, but with a slight change in format. These plots illustrate
the performance on hpysical binaries in the cycle 7 results. We investigagegarameters, the
G magntude, the effective temperature of the primary ,Teff1, and the begghtatio, BR, which
is in factlogi9 L1/ L2, the log of the bolometric luminosity ratio. On the top row we show plots
of the Teffl against GMag, and BR against GMag for the input soutdésclassified sources
are plotted with large symbols. Colour coding for misclassified sources k4IANKNOWN,
red=STAR, scarlet=WD, green=QUASAR, blue=GALAXY. The plots in th&ldle row and
the left-hand plot on the lower row show the cumulative distributions of alltispurces (blue)
and misclassified sources (red), as well as the distribution of a unifamplsawith the same
size as the number of misclassified sources (black). At lower right w& ahidstogram of the
classifications distributed by brightness ratio (classification threslitfldass) = 0.5) The red
histogram shows sources classified as binaries, blue indicates stamsndicates Unknown,
green indicates Quasars, and black indicates Galaxies.
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P(C)

log(Fc) Class fraction

FIGURE 10: At left, the result on the output probabilities from the photometric classifie
varying the fraction of the input class (in this case Quasars). The logdfahtion of sources
is shown on the x-axis. The threshold for classification is indicated with iazdrgal line at

P=0.67. probabilities still accepted as quasars are plotted in green actddajegions are plot-
ted in red. On the right is shown the resulting completeness (in green), ardtitamination
(red). Both these are plotted for various classification thresholds betwBend 0.95.
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4.3 Test on high radial velocity stars

The DSC was tested on stellar data with varying Radial veloclthe dataset is the cycle 5
VRAD grid, with 40 objects. The radial velocities for objeatsthis grid ranged from zero to
five hundred km/s. Only the photometric classifier was usethis test.

4.3.1 Results of radial velocity test

Figure/ 11 shows the probabilities from the photometric fagsifier versus the four varying
parameters Teff, logg, Fe/H and Rv. Table 5 shows the numbasroéct and incorrect classifi-
cations broken down by parameter.
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FIGURE 11: Plots of P(Star) versus various parameters for the radial velocityGesckwise
from top left: Teff, logg, Rv and Fe/H.

The results for this are broadly consistent with the redoltshe main stellar libraries of cycle
5 data, which had a correct classification rate of 70% for Bdttics and Basel (Table 4).
The correct classication rate might be skewed by the presehmore low temperature stars
compared to the cycle 7 test sets - the low temperature stakeey badly classified.

The main conclusion is that there is no clear evidence of #fiegteof the varying RV on the
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P>067 P <0.67 % correct
Teff=4000 3 13 18.75
Teff=4500 12 4 75.0
Teff=5000 5 3 62.5
logg=2.5 15 5 75.0
logg=4.5 15 5 75.0
Fe/H=0. 10 14 41.67
Fe/H=-1.5 10 6 62.5
RVv=0. 6 4 60.0
Rv=100 4 6 40.0
RvV=250 5 5 50.0
Rv=500 5 5 50.0
Overall 20 20 50.0

TABLE 5: Correct and incorrect classifications, with a P=0.67 threshold, éovdhious param-
eter values in the radial velocity test.

classification performance.
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4.4 Overlapping stellar libraries
4.4.1 Overview

We test the performance of the DSC on the overlapping regitiie cycle 5 data stellar libraries.
For this test, only the photometric classifier was used.

4.4.2 The libraries

The Basel library in cycle 5 includes stars with00 < Tef f < 15000K. The Marcs library
has4000 < Teff < 8000K, while the A stars library cover8000 < Teff < 15000. Thus
the region froml’ef f = 4000 to T'e f f = 8000 is covered by both Basel and Marcs, whilst the
region fromTef f = 8000 to Tef f = 15,000K is covered by both Basel and A libraries. There
is no overlap between Marcs and A. We prepared data fromraktandom libraries with G=15.

Figurel 12 shows the distributions of stellar parametergHeroverlapping regions only. The
distributions of Teff and A are broadly similar. There are differences between theauiies in
logg and metallicity.

Figure 13 shows the median spectra for the stars in the @ung regions. The Basel and Marcs
median spectra between 4000K and 8000K are almost identicalmain visible difference is a

notch at the top of the RP spectrum. The A stars median spedrapparently somewhat bluer
than the Basel median spectrum between 8000K and 15000Kmiyiseflect differences in the

metallicity distribution.

4.4.3 Results of the overlap test

Figure 14 shows classification results for the objects imtrelapping regions for each library.
These results were obtained with DSC V7.1 with Astrometiassfier and PostionGMag classi-
fier turned off, i.e. photometric classification only.

Tablel 6 shows the numbers of objects correctly classified Ritstar) > 0.5 and P(star) >
0.67 for the overlapping libraries, and also the number of olsjéat which P(star) < 0.5. The
most significant difference seems to be the much lower nusiflaation rate for the A library
compared to the Basel library in the same region.

Figurel 15 shows the cumulative distribution functions f¢gtar) for the three libraries over
their whole range (i.e. the whole range of the BaSeL libraryhe cumulative distribution
for BaSeL simply shows cumulative P(Star) versus number gdotd, with the objects sorted
according to increasing Teff. A steep slope in this graplcatgs generally a good classification
performance, whereas a shallow slope indicates poor peafoce. Dashed lines are plotted for
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FIGURE 12: The distributions of parameters for stars in the overlapping regidms.p@ram-
eters shown are Teff, Av, logg and Fe/H. On the top row are shown tkrébdisons for both
Basel and Marcs in the region betweEaf f = 4000 andT'ef f = 8000K. The Basel distribu-
tion is plotted in black and the Marcs in red. On the bottom row are the distributicBasel
and A stars betweeRef f = 8000K andTef f = 15000K. The Basel distribution is again in
black whilst the A stars distribution is plotted in red.

P(Star)¢,0.67 P(Star)¢,0.5
Basel 4000-8000K 8,205 (93.2%) 8,500 (96.5%) 302 (3.4%)
Marcs 4000-8000K 13,469 (89.9%) 14,231 (94.9%) 759 (5.1%)
Basel 8000-15000K 4,210 (94.4%) 4,392 (98.4%) 70 (1.6%)
A 8000-15000K 9,983 (99.9%) 9,951 (99.6%) 5 (0.05%)

TABLE 6: Numbers and percentages of stars classified correctly at P=0.5 arth&¥Rhresh-
olds, and numbers of objects falling short of P(star)=0.5, for the queirig libraries.
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FIGURE 13: In the top panel, the median spectra for the overlapping region beBaseh and

Marcs (4000K to 8000K). Basel is plotted in black and Marcs in red. Teetsa are almost
identical. In the bottom panel, the median spectra for Basel and A in the ppértaregion

(8000K-15000K). Basel is shown in black and A in blue. Here, the Asstpectrum is bluer
than the Basel.
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FIGURE 14: Classification results. On the left, the results of Basel and Marcsfidatien
between 4000K and 8000K. Marcs results are shown in red and Bab&dk. The y-axis
shows the object density, but the histogram bins are equal so the two mat&rectly com-
parable. The Basel histogram has a higher proportion of objects in thgrabpbility bin and
so the classification is more successful. On the right, the same comparisBadelrand A
stars libraries in the region between 8000K and 15000K. The A stars aiedn The A stars
classification places a greater proportion of objects into the top bin, anchsaréssuccessful
by that measure.

the cases P(star)=0.5 and P(star)=0.67. Also shown onthe @&s are similar curves for Marcs
(red) and A stars (blue). These are shifted so that they ataine same point as the first Basel
star with the minimum temperature of the library - the Marasre starts at the first Basel point
where Teff=4000K, the A star curve starts at the first Basettpoith Teff=8000K. The curves
are also scaled to the same number of objects as there aeeamdhapping section of the Basel
grid. This means they also end at the points of equivaleritofethe Basel curve. Both the x and
y values are scaled by the same factor, so the slopes arédydocemparable.

From Figure 15 it can be seen that the Basel grid is quite padalysified between 3000 and
4000K, where the Marcs grid starts. The average P(starj$ibegely over 0.5. The performance
improves after this and is reasonably consistent for thefese temperature domain. The Marcs
slope is slightly shallower than the Basel one and the A stigistly steeper, which supports the
result seen in Figure 14.

Figure! 16 is similar to Figure 15, but shows instead the fatsgative rate, or more accurately
the number of objects for whicR(star) <= 0.5, with the objects sorted by Teff. As before,
the Marcs and A stars curves have been shifted and scaledtsbély occupy the same domain
as the overlapping Basel points. The change in performancBdseel is very clear. Of the
1151 total misclassifications in the Basel library, 778 odousources witti'e f f < 4000K and
989 for sources witlef f < 5000. Only 162 occur for sources withef f > 5000K. The
Marcs misclassifications are also clustered at low temperat with 596 out of a total of 759
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FIGURE 15: The cumulative true positive probabilities (i.e. P(star)) for Basetkdlae) Marcs
(red) and A stars (blue). For the Basel plot, the x-axis indicates the nuohlodjects sorted
on Teff, from lowest to highest. The y-axis is the cumulative P(star). thlwedashed lines
show the rate of increase of cumulative P(star) if all values were 0.5 (ldashed line) or 0.67
(upper dashed line). The Marcs and A stars curves also show cuneubdttar) versus number
of objects in increasing Teff order, but their start points have been dtovibe equivalent point
on the Basel curve (i.e. where Tgff,.; 1=Teffp.s;) and both the x and y values have been
scaled by the ratio of the number of Basel sources in the overlap regioa totdl number of
objects in the Marcs or A star library. This means the segment correspaiodifog example,
Marcs, occupies the same domain as the Basel stars of equivalent tampmesad the slopes
are comparable since baotlr anddy are scaled by the same factor.
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FIGURE 16: The cumulative false negative rate, with objects sorted for incredsifig The
Basel curve is shown as-is, the Marcs (red) and A stars (blue) diredséo that their start point
coincides with the corresponding point in the Basel distribution, and the stthese curves is
multiplied by the ratio of the number of Basel points in the overlapping region touh#er of
Marcs or A stars points, so that these curves occupy the same domainaa&tlagping Teff
region of the Basel curve.
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misclassifications occuring &t f f < 5000K.
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FIGURE 17: Distribution of misclassified sources (false negativéstar) <= 0.5) for Basel,
Marcs (red) and A stars (blue).

Figure 17 shows that the Basel and Marcs misclassificatiamd@minated by low-temperature
sources.

5 Comparison of different subclassifiers

We examine the correlations in the performances of theréifitesubclassifiers.
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FIGURE 18: Distribution of output probabilities for the Phoenix random grid fromiouzs
subclassifiers. Clockwise from top left: combined probability, photometosjtipn-Gmag
and astrometric. The frequencies are plotted on a log scale becausef iti@sbims have few
counts. Where the frequency is zero, the value of log(N) has beéa seto. Note that there
are no negative values of log(N) as there are only integer numbergeuitsin each bin.

Figures 18, 19 and 20 show the histograms of the various pilitlgaoutputs for the Phoenix
random, SDSS stars and SDSS quasars tests respectivelyisibgrams are plotted on a log
scale because of the large contrast between counts closedtoizone and counts in the middle
of the range.

From these plots, one can see that the photometric clagsitieides the strongest positive ev-
idence for the correct classification. The Astrometric sifiger for the phoenix and SDSS stars
has many sources witR ~ 0, which are then misclassifications. This is not true of thasgus,
which have a prominent spike &t~ 0.45 (the probability from the astrometric classifier is split
equally between the quasars and galaxies).
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FIGURE 19: As Figure 18, but for the SDSS stars.

In Tables 7| 8 and 9 we show a breakdown of the subclassifiattsesThese tables are each
subdivided into sixteen cells, to show the correct or inearclassification according to all three
subclassifiers, plus the overall res@t & 16).

The eight cells in the left hand half of each table show thelmemof sources correctly classified
overall, whilst the eight cells in the right half show the ragnincorrectly classified.

The top two rows of the table show the sources correctly ifledsy the photometric classifier,
the lower two rows the misclassified sources. We use a thigesh® (correct) = 0.5 as the deci-
sion boundary. Note that in the DSC full results, the deaisioundary for correct classification

is at P(correct) = 0.67.

The left hand side of each half of the table (i.e. columns 1Znshows the number of sources
correctly classified by the position-G magnitude subcfessi For the purposes of this table,
we have removed the effect of the class fraction prior frompghsition-Gmag probabilities by
dividing through by an estimated prior, replacing with ama&gprior, and then renormalizing.

0.94

0.96
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FIGURE 20: As Figure 18, but for the quasars.

The prior divided out was chosen so that roughly 50% of thesstgere misclassified by the
position G mag classifier. A factor of 25 increase in the qupsar was found to achieve this.
The threshold for correct quasar classification is set t6%,2because the probability for an
extragalactic object is split equally between the quasdrgaaxy classes. Even with the class
fraction prior removed, very few quasars were misclasshiethe position-Gmag classifier. One
reason for this is that the test quasars all h@ve 15, whilst the stars are evenly distributed over
a wide range of magnitudes & G < 20).

Finally, rows 1 and 3 show the number of sources classifiegctly by the astrometric classifier,
and rows 2 and 4 show the number of sources misclassified sth@metric subclassifier. For
the quasars, the threshold is ag&itQso) = 0.25, because the probabilities are split between
guasars and galaxies.

From Tables 7, 8 and 9 we can note particularly the meaningeofdllowing elements;
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Py > 0.5 \ P,y <05 \
Pros > 0.5 Ppos < 0.5 Poos > 0.5 Py <0.5

Pohot > 0.5 | Pac > 0.5 | 3404 3246 0 0
Pic < 0.5 | 2408 724 0 17

Pohot < 0.5 | Pac > 0.5 3 25 0 0
Psc < 0.5 1 0 0 19

TABLE 7: Breakdown of results by subclassifier for Phoenix random test Agirobabil-
ity threshold of 0.5 is used in this classification, in contrast to the main resuttapbe it is
easier to understand. 2516 sources WifUNKNOWN) = 1, P(UNDEFINED) = 1 or
P(UNCLASSIFIED) = 1 for any subclassifier were omitted, leaving 7 484 test sources in the

sample.
P, > 0.5 P, <0.5
P = 025 Ppoy <025 Do > 025 Phow < 0.25
Pohor > 0.5 | Pac > 0.25 | 66480 4 1 0
Pac < 0.25 83 0 1 0
Pohot < 0.5 | Pac > 0.25 216 0 898 0
Pic < 0.25 0 0 1 0

TABLE 8: Breakdown of results by subclassifier for quasars. A probabiligstiold of 0.5 is
used for the overall classification and the photometric classification, brdabalpility thresh-
old of 0.25 is adopted for the position-Gmag and astrometric classifiergjseoathese cases
Quasars and Galaxies are indistinguishable and so the probability tendsspiitdeetween
them (in the case of the astrometric classifier, it is formally impossiblePfd@dso) to rise
above 0.5 because of the split with galaxies). 2872 sources RGINKNOWN) = 1,
P(UNDEFINED) = 1 or P(UNCLASSIFIED) = 1 for any classifier were omitted, leav-
ing 67 684 test sources in the sample.

P> 0.5 P,y <05
P =05 Po.<05 P =05 Py <05
Do =05 [P~ 05 [ 17282 19797 0 0
Pyo < 0.5] 12038 176 0 17
Pohot < 0.5 | Pyc > 0.5 92 499 2 7
Pac < 0.5 50 2 7 20

TABLE 9: Breakdown of results by subclassifier for SDSS stars. A probabiligstiold of 0.5
is used in this classification. 12 104 sources WifUNKNOWN) = 1, P(UNDEFINED) =
1 or P(UNCLASSIFIED) = 1 for any classifier were omitted, leaving 37 896 test sources in

the sample.
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Row 1 Col I These are the sources classified correctly by all sub@kssiFor all the classes,
many of the objects end up in this bin.

Rows 3 and 4, Cols 1 and Zhese sources are misclassified by the photometric classitie
are correctly classified overall based on the results oteitine astrometric subclassifier or the
position Gmag subclassifier or both.

Row 4 Col 2These sources are incorrectly classified by all the subfitxss yet end up overall

in the correct category. This applies to only one sources Tésult may seem counterintuitive,
but in fact if all the subclassifiers return a moderate prdialess than a half for a particular
class, but can’t agree amongst themselves on an alterméds® one can see that this can occur
(see discussion in section 2.1.2.

Rows 1 and 2, columns 3 and Zhese sources are correctly classified by the photome#assil
fier, yet end up misclassified because of the results of onetbrds the other two subclassifiers.

5.0.4 Results breakdown and discussion

For the Phoenix stars, a large majority of objects are dladsiorrectly. A total of 29 objects are

misclassified by the photometric subclassifier, but 'sabgdhe astrometric and position Gmag
subclassifiers, and a total of 17 objects correctly classiiethe photometric subclassifier are
ultimately misclassified due to the two other subclassifiers

For the quasars, the largest category of objects are cibgifirrectly overall and by all the
subclassifiers. 216 objects are misclassified by the phdtanodassifier but correctly classified
by the position-Gmag nad astrometric classifiers and endupaly classified. A total of two
objects are correctly classified by the photometric classibut end up misclassified due to a
combination of the position Gmag and astrometric classifiend the class fraction prior. 899
objects are misclassified, despite correctly classifiedhbypbsition-Gmag classifier.

The SDSS stars results resemble those of the Phoenix staes.m@jority of the objects are
spread between the three bins at the top left. A total of 448ces are misclassified by the
photometric classifier, but end up correctly classified dubé other subclassifiers and the class
fraction prior. A total of 17 sources are correctly classifiiy the photometric classifier, but are
eventually misclassified due to the other subclassifierglangrior.

6 Robustness against damaged data

A subclassifier is not run if the input data are missing, oral\’6 or saturated values are present.
The performance of the photometric subclassifier was imyegstd in the case of various types of
other damage or imperfection to the BP or RP spectra, or emaheioverall flux or wavelength
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calibration.

6.1 Data sets

The damaged data models are very simple, since the exa@gsiog method is not yet estab-
lished and the likely data problems are not yet known. Westigate four types of compromised
data. They are:

e Hot pixels, caused by cosmic ray hits or possibly other eszent
e Cool pixels. Cause unknown.
e Bad flux calibration, causing the G magnitude to vary fromriig tvalue.

e Bad wavelength calibration, causing a global shift to thespen.

We prepared simple versions of these types of data from ttle &ysimulations, which include
various types of stars, quasars, galaxies, binaries ang \ahiarfs. We selected objects which
were (reasonably) well classified in their unaltered fornmg applied a progressive degradation
to the data, to find out at what level the classification betprize compromised. We carried out
tests for normal stars (MARCS library), galaxies and QSOs.

For each class of objects, one hundred reasonably wellifotmsexamples were first selected.
By 'reasonably well classified’, we mean that the true posipvobability was greater than 0.5
for the undamaged spectrum.

The simulated spectra are provided with 180 resolution efes) corresponding to a factor of
three oversampling with respect to the BPRP pixels. For tlsis tee resampled the spectra to
the approximate pixel sampling of the BPRP chips (60 elemantach of BP and RP), before
clipping the low signal elements at the edges. The modelg wamed on the remaining 86
resolution elements from both BP and RP.

For the 'hot’ and 'cool’ pixel datasets, the data degradetias carried out on each pixel in turn.
Fifty different 'degrees’ of damage were applied for eactepi

For the wavelength calibration and flux calibration tegts,whole spectrum was affected (there
is no pixel-by-pixel test). For the flux calibration, the walof the G magnitude in the calPhot-

Source was altered progressively. For the wavelengthredilim, the entire spectrum was resam-
pled with pixel bins shifted by up to 1 pixel redward and blaegvof the true spectrum centre.

A renormalization was carried out to ensure that the flux veaxserved.
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6.1.1 Hot pixels

A three dimensional grid of data was built for this experitmer one hundred objects by 86
pixels by 50 different hot pixel 'strengths’. Each of the 8&gts, in BP and RP, used by the DSC
cycle 7 models was degraded in turn. The hot pixel is gengtatanultiplying the original flux
by a factor

f=1.+i/10. i=1,..50 (12)
(13)

so there are fifty hot pixels of different 'strengths’ for badfected pixel.

The damaged data grid is run through DSC with the normal nscahailable (see cycle 7 doc-
umentation for DSC). The output probabilities (from the BPRBctassifier) are represented in
Figure 21 for the stellar spectra, Figure 22 for the galaaies Figure 28 for quasars. These are
the average probabilities over 100 objects.

These figures indicate that the classifier performance it qaifongly affected by hot pixels
across the whole range of pixels. for the most sensitivelpixeisclassification can arise for hot
pixels of a factor of order 1.5 in flux. In one or two cases, tireshold is even lower.

In these Figures, misclassifications have been colour cadearding to the class assigned. The
assigned class is the largest probability in the BPRP prabakéctor. It should be borne in
mind that the class assignments are based on the averaggtd,res may not reflect the true
statistical distribution of misclassifications in the data

For the MARCS (stars) data, the presence of blue and red paoiriteeimisclassification area
indicates a tendency for the stellar spectra to be misdiegss binaries or quasars. As the hot
pixels become extreme, there is a greater and greater teynftamthe sources to be classed as
UNKNOWN (black points in the Figure). This is encouraging asdicates that the outlier
detector is excluding strange objects from the classibogtroper.

For the galaxies plot, most misclassifications are into thesgrs class (red). Again, badly dam-
aged spectra are classified as UNKNOWN.

The quasars plot is interesting as it indicates that no emsdications occur into other astro-
physical classes, but rather that all damaged spectra assifidkd as UNKNOWN. We stress
again here that the output classes have been assigned basgdraged probabilities over all
one hundred sample objects, not on the basis of individustlassifications.
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FIGURE 21: The performance of the classifier on stellar spectra damaged by dh®madf
spurious extra flux to one pixel (a hot pixel). The classifications ardieappased on the
average probability over all one hundred sources. The x-axis sti@ysxel number affected.
The combined BP and RP spectra cover 86 pixels, after accountingsimming and edge
clipping. The y-axis is the factor applied to the original flux in the affecte@lpiXhe size of
the plotting symbols represents the probability returned that the object is @vbiiah it is).
Larger symbols represent larger valuesitffstar). Additionally, symbols are colour coded
according to the most probable source type. This would correspond tdabsification in
the event that there is no probability threshold applied. Green symbolsaase red symbols
quasars, blue symbols binaries, grey symbols white dwarfs, pink symieaskaxies and black
symbols are unknown.
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Spike factor

Pixel

FIGURE 22: The performance of the classifier on one hundred galaxy spestragkd by the
addition of spurious extra flux to one pixel. Axes, symbols and coloursianiéar to Figure 21,
except that now the size of the symbols indicates the returned probabilitththaburce is a
Galaxy, rather than a star.
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FIGURE 23: The performance of the classifier on one hundred quasar spect@ged by the
addition of spurious extra flux to one pixel. Axes, symbols and coloursianiéar to Figure 21,
except that now the size of the symbols indicates the returned probabilitththaburce is a

quasar, rather than a star.
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6.1.2 Cool pixels

This is similar to the hot pixels data. All 86 BP and RP pixelstasted in turn with fifty different

levels of flux loss. Pixel fluxes are multiplied by the factor

F=1/1.+01%i);i=1,..50,

to introduce the 'cool’ pixel. The results for one hundrearst one hundred galaxies and one

hundred quasars are plotted in Figures 24 to 26

(14)

These figures show again that, for sensitive elements, ewelesh alterations of the flux value
can cause misclassification of the source. Values of thelifgpdactor’, by which is meant
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FIGURE 24: The performance of the classifier on one hundred star spectragddrbg the
presence of a cool pixel. Axes, symbols and colours as for Figurex2ept now the y-axis is
the index used to generate the 'cooling factor’ in equation 14. Largeisyvalues therefore
represent worse damage to the original spectra.
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FIGURE 25: The performance of the classifier on one hundred galaxy speatmaged by a
cool pixel. Axes, symbols and colours are similar to Figure 24, excephtivathe size of the
symbols indicates the averaged probability that the sources are Galaties,than stars.
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FIGURE 26: The performance of the classifier on one hundred quasar spectaged by the
addition of a cool pixel. Axes, symbols and colours are similar to Figure @&pt that now

the size of the symbols indicates the averaged probability that the souecqaasars, rather
than stars.
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the index: in Equation 14, of about 5 correspond to a pixel with a fact@7dower in flux
than the undamaged spectrum. Factors of approximatelgizgsn the most sensitive pixels are
sufficient to cause misclassification of stellar spectra Atmber of sensitive pixels and the level
of damage needed to cause misclassification is generalllg lower for all three test classes than
it was for the hot pixel data in the previous section. The gtmshow no misclassifications at
all due to cool pixels. The maximum factor by which the pixeds be reduced is 1/6, or 0.167,
so the flux reduction is quite large and it is not clear thatstmbering stronger reduction factors
would be helpful.

Misclassifications of stars tend to be into the quasar clas$misclassifications of galaxies can
be into a variety of other classes, at least including stangyries and quasars.

6.1.3 Flux calibration

The G magnitude is shifted from its original valu&;, by one hundred different values between
-0.5 and 0.5 magnitudes, in steps of 0.01 magnitudes. Tfastafthe normalization applied to
the data, and therefore rescales the whole spectrum whepacethto the SVM models.

As with the hot pixels and cool pixels, one hundred of eachrakiss of sources were classified
and the results averaged to produce the output shown indsd#, 28 and 29. The plots show
the averaged output probability for each main class as ditumof the data degradation.

The plots for stars and galaxies show that the performanisecf dramatically with a scale of
between 0.1 to perhaps 0.3 magnitudes. This fall-off is eaessarily entirely symmetric, and
the performance seems to fall away more steeply on the 'trighe than the 'faint’ side. To
understand this, we review the procedure for dealing witfleidint magnitudes in DSC.

An input spectrum for DSC is assigned to the next fainteshefgreprepared SVM models in

the model grid. The spectrum is then normalised to the magaiof the training data used to

prepare that model. The main source of error in this progeseimal circumstances is that

the input spectrum will have slightly different noise chagaistics to the training data used to
build the model. For input spectra brighter than the tragyrdata, this does not make a crucial
difference. For input spectra fainter than the model, théopmance declines on a scale of about
0.5 to 1 magnitudes (Figure 2 mll]).

If there is an error in the G magnitude, the spectrum will bervgty normalised and will have too
much or too little flux compared to the support vectors in tleglel. The SVM standardization
will not correct for this problem, and we can expect the rssiol rapidly deteriorate. The tests on
the DSC magnitude handling imll] indicate that wrong fluxmalization will cause problems
for discrepancies larger than about 0.1 magnitudes, andshvhat we see in Figures|27/tol 29.
The stars data apparently are misclassified after an off€eido 0.2 magnitudes. The galaxies
are similar to the stars and the quasars are misclassifiedeafactor of 0.2 to 0.4. As with the
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FIGURE 27: Variation of output probabilities with variation of the flux in the CalPhotSeur
table for one hundred MARCS stellar sources. The flux is varied by upgomagnitude in one
hundred 0.01 magnitude steps around its true value. The probabilities fdiffégrent output

classes are colour coded (see key in plot).
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FIGURE 28: Variation of output probabilities with variation of the flux in the CalPhotSeur
table for one hundred Galaxies. The flux is varied by 1 magnitude in ongréd.01 mag-
nitude steps around its true value. The probabilities for the different balasses are colour

coded (see key in plot).
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FIGURE 29: Variation of output probabilities with variation of the flux in the CalPhotSeur
table for one hundred Quasars. The flux is varied by 1 magnitude in argrdul 0.01 mag-
nitude steps around its true value. The probabilities for the different balasses are colour
coded (see key in plot).
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hot and cool pixel data, we must bear in mind that the proliegsilplotted are averages over one
hundred sources, and the performance for individual objentld vary.

From the stars and galaxies plots, it seems that misclassincas a quasar is likely for modest
magnitude offsets (0.1 - 0.3) whilst classification as UNKMR sets in for worse offsets. for
the quasars, misclassifications seem to be overwhelminggythe UNKNOWN category. This
is consistent with the results from the hot pixel data.

6.1.4 Wavelength calibration

The spectrum is shifted from -1. resolution element (bluelsato +1 resolution element (red-
wards) relative to the original. One hundred steps of 0.62Ipiare used. The shift is done
by calculating new pixel fluxes from linear combinations ofymal fluxes from neighbouring
pixels. A flux normalization is performed after the resamglio ensure flux conservation.

The results are shown in Figures| 30, 31 32. These plotsimikar to the flux calibra-
tion plots, and show the output probabilities for each clssaged over all one hundred input
sources as a function of the spectrum shift. In all casesngteffects on the output probabil-
ities from DSC are seen with thesé).1 pixel shifts. The stars classification exhibits a strong
peak with a scale of 0.1 pixels or so. The Quasar and galasgifilzations are both slightly
more robust. Both seem also to be more robust to the positiftesgte, which corresponds to
the spectrum being shifted to the red. This may be due to tttdlat the Galaxy and Quasar
training sets include redshifted objects.

The stars spectra, when shifted bluewards (negative ssiifow a tendency to be misclassified
as quasars. When shifted redwards, there is a tendency ttassifg as white dwarfs. The
galaxies are most likely misclassified as quasars for maqaiest shifts in both directions, and
the quasars are classified as UNKNOWN rather than into any aitephysical class. For large
shifts (order 1 pixel) in either direction, the stars anchgads are also classed as UNKNOWN.

6.1.5 Summary of the robustness test

The tests indicate that the DSC performance can be quitéigerie even relatively small varia-
tions in the pixel-to-pixel response. Variations of 0.1 miaigdes in flux calibration, or shifts of
about 0.1 pixels in the dispersion solution between thaitngidata and the evaluation data, can
also lead to misclassifications. We are working on some waystigate some of these effects.
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FIGURE 30: The performance of the BPRP subclassifier for one hundred stpkatra with
the pixels shifted by between -1 and +1 resolution elements in steps of 0 @2tgis). Green
symbols showP(Star) (the true class), ree> P(Quasar), blue— P(PhysBinary), grey

— P(Whitedwar f), black— P(Unknown), pink — P(Galazy).
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FIGURE 31: The performance of the BPRP subclassifier for one hundredygsieectra with
the pixels shifted by between -1 and +1 pixels in steps of 0.02 (100 step&ur€ have the
same meaning as for Figure 30.
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FIGURE 32: The performance of the BPRP subclassifier for one hundre@ispsctra with
the pixels shifted by between -1 and +1 pixels in steps of 0.02 (100 step&ur€ have the
same meaning as for Figure 30.
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7 Summary, conclusions and future work

The DSC currently consists of three working subclassifiehg photometric subclassifier returns
a probability based on the appearance of the BP and RP speulri, ldased on Support Vector
Machines. The Astrometric Classifier returns a probabil@gdd on the proper motions and
parallax, and is based on a Gaussian mixture model. Theidte§inag classifier returns a
probability based on the sky position and G magnitude of thece, and in the version of the
code presented here, is based on a simple parametric molelprébabilities from all these

subclassifiers are combined to produce a combined protyalictor for all the possible output

classes.

Tests with the current classifier reveal that the completerier most libraries exceeds 90%.
Contamination into incorrect astrophysical classes isvb&®% except for the APec stars, which
have a~ 4% contamination into the quasars class. The ultracool dveartsWR stars libraries

have relatively low completeness. In the case of the ulobdwarfs, this is consistent with a
trend to less accurate classification seen for the main ¢ard 8braries at lower temperatures
(Section 4.4). Tests show that, for the ultracool dwarfsast, there could be a problem with
the sparseness of the training set used. We will investigsitey active learning or a similar
technique to improve the training sets and attempt to imgptbe completeness in these grids.

In previous cycles, classes such as the white dwarfs andybgtars have given results with
significantly worse completeness than the other librariess hoped that the combination of
position-Gmag and, particularly, astrometric informatean improve these results. We will test
this in the next development cycle, when we will once agawelsamulated data covering these
libraries.

In summary, the immediate improvements which will be attegdgor DSC in the coming year
are;

¢ Run tests with a complete set of test cases including Binanié3\¢hite dwarfs

e Run tests with semi-empirical data (from SDSS) tested on tedd&ned on syn-
thetic data (e.g. Phoenix for the stars). In the next datéeoywe will have both
semi-empirical and synthetic libraries for normal statgsars and galaxies.

e Improve the parametric model for the position-Gmag clamsiind calibrate it against
known Quasar and Galaxy populations.

e Investigate using active learning or similar techniquelsttitd the training data sets,
and whether this will help particularly with rare objectsbias rare types of stars.
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