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Abstract
We analyse the performance of the Gaia Discrete Source Classifier (DSC) to identify
clean samples of quasars, as is necessary for defining the Gaia astrometric reference
frame. We present overall classification performance and the trade-off between sam-
ple completeness and contamination. We further develop a method for modifying the
priors of an arbitrary classifier in order to reflect different expected relative frequen-
cies of objects, in particular the rareness of quasars compared to stars. This enables
us to estimate posterior class probabilities based on an appropriate prior and not, for
example, one implicity defined by the relative frequency of objects in the training data
set. We apply this to a simulated situation in which quasars are 1000 times rarer than
stars. At G=18.5, we can use DSC to build a quasar sample with a completeness of
51% which has a contamination of less than 0.01%, with classifications based on sim-
ulated end-of-mission BP/RP data only. Including astrometry (parallax and 1D proper
motion) does not significantly alter this. At G=20 (without astrometry) this degrades
to a completeness of 41% at the same upper limit on the contamination. Including
astrometry only raises this to 43%. We discuss the relevance of the prior modifi-
cation approach and the interpretation of the posterior probabilities for a probability
threshold-selected sample. In an appendix we query the SDSS database to estimate
the relative frequencies of stars to quasars as a function of G magnitude and Galactic
latitude. At b > 60◦ and g = 18–19, the quasar/star ratio has an upper limit of 0.02. A
definitive value is precluded by stellar incompleteness in SDSS.
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1 Introduction

The Discrete Source Classifier (DSC) is the algorithm which classifies Gaia objects into broad
astrophysical categories, “single star”, “galaxy”, “quasar”, “physical binary star” etc. It cur-
rently uses epoch-combined BP/RP data, supplemented with astrometry where available and, in
common with the Gaia onboard detection strategy, only operates on point-sources (i.e. makes
no use of morphological information).

One of the objectives of DSC is to identify a “clean” quasar sample which will be the basis
of the Gaia astrometric reference frame. Quasars cannot, of course, be identified with 100%
accuracy: there is an inevitable trade-off between achieveing completeness (maximizing the
number true positives) and reducing contamination (minimizing the number of false positives).
This technical note analyses the results of the application of the current DSC implementation
to quantify the trade-off between these two factors. As DSC assigns class probabilities to each
object observed, we can build different samples of quasars by varying the threshold for inclusion
in the sample and thereby control the completeness and contamination.

It is important to realise that the probabilities (and thus assigned classes) of any classifier depend
not only on the evidence in the data, but also on the prior probabilities. In this context, the
prior is the class probabilities before one looks at the data. Priors are always present (we will
have some idea of the relative frequencies of stars and quasars at G=20, for example), but
sometimes just implicitly and sometimes it is difficult to know exactly what these priors are.
This is a problem, because if the model priors are inappropriate (e.g. equal probability of star
and quasar) this could bias our posterior probabilities and hence our class assignments. In
particular, the relative frequency of classes in the training data set may influence the priors.
This is sometimes called the “class imbalance problem” in the machine learning literature. We
present a method for calculating these priors and for modifying the posterior probabilities to
reflect different priors, e.g. for the case when quasars would be much rarer than stars. This
enables us to vary priors and to build, post hoc, different classification models without having
to modify the training data sets and to retrain the models. Using this we calculate the quasar
sample completeness and contamination for a realistic quasar/star population. This approach is
preferred to modifying the relative frequencies of classes in the data sets because, as we will
demonstrate, these frequencies generally do not reflect the prior.

2 The classification model

2.1 Classification algorithm

DSC is currently implemented as a multi-class Support Vector Machine (SVM). It is a super-
vised learning algorithm which assigns, to each presented object, the probability that the object

Technical Note 8
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is of class “single star”, “physical binary star”, “galaxy” or “quasar”. 1 The classes are exclusive
and exhaustive, so the probabilities sum to unity for each source. The algorithm is described in
the CU8 cycle 3 software release documents (KS-003, KS-004, KS-005). Compared to those
documents, the DSC code used here has been restructured, but the underlying SVM is still the
same external library (libsvm, wrapped and implemented by C. Tiede). DSC has also been re-
trained using cycle 3 data (during cycle 4), although the SVM parameters (C and γ) were kept
the same (no new “tuning”).

2.2 The train and test data

The input data for the classification are either BP/RP or BP/RP+astrometry (two separate mod-
els). The model is trained on 2000 objects of each of the four classes (equal class fractions).
The test data set has the same size and frequencies, but different objects. Both train and test data
were drawn at random from the cycle 3 simulations (CBJ-029, RS-002) using a program written
by C. Elting. We use the non-oversampled end-of-mission BP/RP spectra, which have a total
of 120 pixels (Figs. 1 and 2). This includes about 20 “edge pixels” which contain essentially
no signal. Indeed, classifications made excluding these are somewhat better than the results
presented here.2 When included, astrometry is presented as two additional input variables, the
parallax and the proper motion (in the latter case the RMS of the two components).

All data, both in the training and testing sets, are noisy, using the photometric and astrometric
noise models implemented in GOG. Extragalactic astrometry is just zero with noise added.
The stellar parallaxes were assigned to be consistent with the physical parameters and apparent
magnitude (CBJ-029, RS-002), and the proper motion is assigned using a simple stochastic
model (see section 2.4 of CBJ-029 – a better model is described in CBJ-037). The astrometry
in the test sample is shown in Fig. 3 (zoomed in Fig. 4) and the densities of each parameter
are shown in Fig. 5. The parallax and especially the proper motion distribution for physical
binaries is significantly different from that of single stars, with the former generally having
much larger values (mode of the proper motion differs by a factor of about forty!). This is
partly due to the different distributions over physical parameters in the two libraries: the single
stars contain a relatively large number of OB stars, whereas the physical binaries are limited to
the range 4000–8000 K effective temperature. Yet, the difference is so large that it may be an
unintentional error. However, as our main purpose is to analyse the classification of quasars,
this should not be a source of error.

1The cycle 3 DSC actually uses more classes, but we limit it to four for the sake of this experiment.
2The leading diagonals in the contingency tables for nominal results at G=20 BP/RP (Table 4) increase by up

to 10% and the overall classifcation accuracy increases by 8%.
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Figure 1: Random selection of five stars (blue) and five quasars (red) (G=18.5, noise included)

Technical Note 10



CU8
Quasar classification
GAIA-C8-TN-MPIA-CBJ-036

0 20 40 60 80 100 120

0
10

20
30

40
50

60

pixel

flu
x

Figure 2: Median spectrum (solid line) and upper and lower quartile spectra (dashed lines)
of stars (blue) and quasars (red). The upper quartile spectrum is that which defines where
25% of spectra lie above this line; below the lower quartile spectrum lies another 25% of the
spectra. Equivalently, half of all spectra lie between the two quartiles. They are essentially
robust versions of the µ±σ (mean plus/minus one standard deviation) spectra but allow for the
fact that the flux distribution is asymmetric (e.g. cannot be negative). Spectra are for G=18.5,
noise included.
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Figure 3: Proper motion and parallaxes of the 8000 objects in the test data at G=18.5 (noise
included). Blue=star, green=physical binary, red=quasar, black=galaxy.
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Figure 4: Zoom of Fig. 3
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Figure 5: Distribution of the astrometry shown in Fig. 3. Note that the axis in the proper motion
plot (right) is on a log scale. Blue=star, green=physical binary, red=quasar, black=galaxy.

3 Building samples and assessing completeness and contam-
ination

DSC assigns to every source spectrum, xn, a probability, P(quasar), that it is a quasar, and
likewise for the other three classes.3 The classifier is of course not perfect, so generally
P(quasar|QUASAR) < 1 and P(quasar|!QUASAR) > 0 (the same being true for the other three
classes).4

How should we use these probabilities? The simplest thing is to assign an object to that class
for which the corresponding DSC output is the largest, “the most probable class”. However, if
all of the DSC output probabilities were similar, with one just sightly larger than the others, this
would not be a very confident classification. It certainly could not be the basis for forming a
“clean” sample of objects.

To select a sample of quasars we should decide on a probability threshold, Pt, such that only

3Strictly – and for consistency with later notation – this quantity is P(quasar|xn,θ), where the class C j =
quasar, xn denotes the data for object n and θ represents the DSC classifier. But for now we drop the stuff to the
right of the “given that” symbol, “|”.

4Lower case class names, e.g. quasar, denote estimated classes, upper case, e.g. QUASAR, true classes. I use
the notation P(quasar|QUASAR) to mean “the DSC-assigned quasar probability given that the source is truely a
quasar”. The exclamation mark means logical “not”. This notation is simply a shorthand to refer to DSC outputs
for objects with known classes (e.g. in a test set). This is not to be confused with the notation P(C j|xn,θ), which
refers to the DSC outputs in the general case.
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sources with P(quasar) > Pt are classified as quasars. If Pt = 0 then everything is classified as
a quasar and contamination is a maximum. In contrast, in the limit as Pt is increased to 1 the
sample contamination is minimized but will include very few true quasars, i.e. the completeness
is minimized. One of the two objectives of this technical note is to quantify how contamination
and completeness vary with Pt and thus identify a threshold for the quasar output which is
somehow “optimal”.

A sample for class class is made by selecting all objects in the test set with DSC output
P(class) > Pt, where Pt is user-defined independently for each class. The completeness of the
sample is defined as the number of objects in the sample which are truely of that class divided
by the total number of objects of that class in the test set. The contamination of the sample is
defined as the number of objects in the sample which are truely of other classes divided by the
total number of objects in the sample. For class = j these are

completeness j =
ni= j, j

Ni

contamination j =
∑i 6= j ni, j

∑i ni, j
(1)

where ni, j is the number of objects of (true) class i in the sample selected for (output) class j, and
Ni is the total number of objects of (true) class i in the test set. We can also use these equations
to predict the completeness and contamination for a new (unlabelled) data set, provided that
this has the same class fractions as the training data (see section 4.2). It is obvious that when
building samples based on thresholds, some objects may be assigned to no sample and thus
remain unclassified.

4 Model-based class priors

4.1 Bayes and priors

The outputs from a trained classifier when presented with data xn are {P(C j|xn,θ)}, the prob-
ability that the data is of class C j given the data and the model, θ . This latter quantity reflects
both the architecture of the model and the training set used to fix its internal parameters. The
classifier outputs are examples of posterior probabilities in the context of Bayesian learning,
and can be written using Bayes’ theorem as

P(C j|xn,θ) =
P(xn|C j,θ)P(C j|θ)

P(xn|θ)
(2)

The first term on the RHS, P(xn|C j,θ) is the likelihood of the data given the class and model. (It
is an explicit function of xn, although in classical likelihood analysis we think of it as a function
of C j.) The second term, P(C j|θ), is the prior probability that, given our model, an object is
of class C j. These are the probabilities we would assign to an object just on the basis of our
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model, before we look at the specific data on the object. This may seem like a curious quantity:
how can we have any idea what the class is before we look at the data? Well, we can and we
do. Imagine that I have a catalogue of all objects in the sky down to G=20 and I select one at
random. I ask you “what is the probability that it is a quasar?”. If you know something about
the universe, you willl probably say something like “1 in 1000”. You answered this without
looking at the data. You probably wouldn’t say “1” (definitely a quasar), so you clearly have
some prior knowledge. If you had a different idea about the universe, or if I now told you my
catalogue was only of the Galactic plane, you might give me a different answer, and for good
reason. You might have no idea what a quasar is and, thinking that the universe consists of just
stars and quasars say “0.5”. Your prior will vary depending on your experience, personal bias,
knowledge of the survey and model you’ve used. It is important to realise that all classification
algorithms have priors. Even so-called non-Bayesian methods have priors; with these it is often
just not explicit what the prior is.5

4.2 What priors are we using and how does the training data influence
them?

We want to know what the assumed prior is, for two reasons. First, we would like to know what
assumption our model is actually making (and not what we think it is making!). Second, we
need to control the prior. We can do this in two ways, either when we train the model or by
modifying the output probabilites from a trained model. We will do the latter in section 5, but
first, we must calculate the priors our model is using.

In some classification algorithms and learning processes the prior is explicit. This is the case for
mixture models used for classification, for example. In others algorithms, the prior is implicit,
and in many of these the prior depends on the relative number of objects of each class in the
training data set (the “class fractions”). Take, for example, a regression model which is trained
by minimizing an error function over the entire training data set. A specific example might be a
neural network trained with the residual sum of squares (RSS) error function. If we trained this
on 1000 stars and just 1 galaxy, then the network will learn to recognise stars much better than
galaxies (because in minimizing the error it hardly has to worry about fitting the lone galaxy).
If we changed the training data (class fractions) then the model would perform differently, i.e.
it would assign different probabilities on a given test set. Given this dependence we refer to
the priors as “model-based priors”, and the notation P(C j|θ) reminds us that the priors depend
specifically on the training data via θ .

This issue of the training data class distribution influencing the model performance is well-
know in the machine learning literature and is somtimes referred to as the problem of “class

5It is sometimes claimed that a “non-informative” prior – e.g. one in which all classes are assigned equal prior
probabilities – is somehow “unbiased”, but this is not true. Just take the quasar example: Can we claim that the 0.5
probability for quasars is unbiased? All priors are, in some sense, a bias. This simply reflects how we do inference:
we use both data and prior knowledge to draw conclusions.
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imbalance” of “imbalanced data sets” (e.g. Shin & Cho 2003, Visa & Ralescu 2005, Weiss
2004).6

But how, exactly, does the training data class distribution affect the classifications and, more
specifically, the model-based priors? We might think that in the above example the ratio of the
prior probabilities for stars to galaxies would be 1000 to 1, but this is not evident.7 In the case
of fitting a linear boundary between two classes to minimize the RMS error, then this may be
the case, because the position of the boundary is strongly dictated by the data — the model
has a very free form. But consider a logistic regression model: the shape of this is much more
constrained. Once we have sufficient data to constrain its form, adding many more examples of
one class will have little impact on the class boundary position and so less impact on the model-
based prior. The take home message is that the model-based prior is not, in general, equal to the
class fractions in the training data.

4.3 Calculating the model-based priors

It turns out that we can estimate the model-based priors, P(C j|θ), directly from the trained
model using a test data set. The model gives an output, P(C j|xn,θ), for all of the N objects
in the test data set for each class C j. These are related to the priors via the marginalization
equation

P(C j|θ) =
n=N

∑
n=1

P(C j|xn,θ)P(xn|θ) (3)

where the sum is taken over all N objects in the test data set. The second term is the probability
that we draw object xn from the test data set. Clearly, this is just 1/N. This sum is therefore just
the average of the outputs for class C j, and this is the model-based prior.8

We apply equation 3 to the three nominal data sets (G=15, 18.5, 20; with astrometry) to obtain
the following estimates of the priors

6There is work in the literature which addresses this problem, typically for the case where we have very little
training data for one class and want to compensate for this in the learning process to ensure that the model learns
to properly recognise the minority class. Class imbalance has been demonstrated to impact neural networks and
SVMs (for both classification and regression problems) and classification trees. However, we have not found any
discussion in the literature of how the class fraction specifically affects the model-based priors.

7If this were the case, we might be tempted to address the class imbalance problem by setting the distribution
of the classes in the training data according to our priors. But this could be problematic for a rare class. For
example, if we wanted 1000 times as many stars as galaxies, but were limited to just 10 000 training vectors, our
training data set would have to have only 10 galaxies, hardly a good basis with which to learn the characteristics
of galaxies.

8In general we do not need a test set to calculate this. Only in the modified case do we need to know the true
classes to calculate P(xn|θ) (see section 5.1).

Technical Note 16



CU8
Quasar classification
GAIA-C8-TN-MPIA-CBJ-036

G star physbin quasar galaxy
P(C j|θ nom) 15 0.2508 0.2492 0.2499 0.2501
P(C j|θ nom) 18.5 0.2545 0.2414 0.2541 0.2500
P(C j|θ nom) 20 0.2598 0.2391 0.2537 0.2474
f nom
i all 0.2500 0.2500 0.2500 0.2500

The bottom row gives, for comparison, the relative sizes of the class populations in the test data,
i.e. the fraction of objects in each true class, i. This is the “nominal” case, i.e. the distribution
on which the model was trained.9 At least for this SVM model with equal class fractions, the
model-based priors are approximately equal to the class fractions.

We will now see how we can modify the priors and thus apply DSC to a situation in which we
expect a different class distribution from the one we trained it on.

5 Modifying the posterior probabilities to account for modi-
fied class fractions or priors

Often we train a classification algorithm on more or less equal proportions of each class, the
idea being that this helps the algorithm to reliably identify the boundaries or fit the data/class
distributions. Yet in the real world the true class fractions may be very different. For exam-
ple, with Gaia we “know” (or rather, our prior is) that quasars are much rarer than stars (see
section A). A DSC trained on equal proportions of classes may make too many false positive
detections of quasars, resulting in a contamination higher than predicted (see section 3). The
problem is that the model-based priors differ from our (desired) priors. We therefore need to
modify the DSC output probabilities to account for modified class fractions, or rather for the
modified priors, to give us the “modified model”, θ mod . From inspection of equation 2 we see
that this could be achieved by modifying the priors directly, i.e. by dividing the posterior by
the original (nominal) prior and then multiplying it by the modified prior. The nominal priors
could be calculated as outlined in section 4. However, this cannot be used to calculate the mod-
ified priors because we don’t yet know the posteriors from the modified model. We therefore
approximate the priors using the class fractions.10

Let Pnom(C j|x,θ nom) be the output (posterior) probability from DSC for object x for output class
j in the case that the nominal class fractions are f nom

i (the fraction of sources in the training set

9These calculations are made using a test data set with the same class distribution as the training data set. We
could use the training data themselves, but it’s better to use a test set to avoid biases from possible overfitting.

10On the basis of the discussion in section 4 we would not expect this always to be a good approximation. But
in some cases it is (as we see for the nominal case, section 4.3) and we can at least use equation 3 to check the
assumption.
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of true class i). The modified probability when the class fractions would be f mod
i is

Pmod(C j|xn,θ
mod) = an Pnom(C j|xn,θ

nom)
f mod
i= j

f nom
i= j

(4)

where an is a normalization factor which is calculated to ensure that ∑ j Pmod(C j|xn,θ
mod) = 1

for each object n. Varying the ratio
f mod
i= j

f nom
i= j

has the expected impact on the posteriors, although
the need to renormalize is important and its impact may be less obvious. It may be tempting
to think of these modified probabilites as those we would have achieved if we had trained the
model on the modified class fractions. But this is generally not true, because what we are doing
in equation 4 is changing the priors and this is not equivalent to changing the training data, as
discussed in section 4.2.

The equations for the completeness and contamination (eqn. 1) of a selected sample depend on
the number of objects correctly and incorrectly classified. They are calculated from the test data
set, which will typically have the same class fraction as the training data set, the nominal class
fractions, f nom

i= j . However, we expct to apply the modified model to a data set with different
class fractions (this was the whole point of modifying it), so the number of objects of each true
class would be different. To predict the the completeness and contamination in that case we
must modify the equations to be

completeness j =

(
f mod
i= j

f nom
i= j

)
ni= j, j(

f mod
i= j

f nom
i= j

)
Ni

=
ni= j, j

Ni

contamination j =
∑i 6= j

(
f mod
i

f nom
i

)
ni, j

∑i

(
f mod
i

f nom
i

)
ni, j

(5)

The quantities n and N still refer to the nominal data set. Note that the class fractions are nor-
malized (i.e. ∑i f nom

i = ∑i f mod
i = 1). Note also that the equation for the completeness remains

unchanged from the nominal case, yet the value of the completeness will generally change be-
cause the posterior probabilities have changed and so will the sample selected by applying a
threshold. Of course, to calculate the completeness and contamination for an actual test set
which really does have the class fractions we want, we would use equation 1.

5.1 Calculating the model-based priors from the modified model

In the previous section we used the modified class fractions, f mod
i , as a proxy for the modified

priors in order to calculate the modified posteriors. But now that we have these posteriors,
we can calculate the model-based priors for the modified model using equation 3 and compare
to f mod

i . With the nominal model P(xn|θ nom) in equation 3 was just 1/N: each object in the
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training set only appeared once. In the modified model we are effectively changing the relative
number of objects of each class, so these probabilities must be modified consistently with this
to give

P(xn|θ mod) =
(

f mod
i

f nom
i

)
1
N

(6)

where xn, being an object in the (labelled) test set, has known true class, i. If a class is ten times
rarer in the modified population, P(xn|θ mod) is reduced by a factor of (approximately) ten: the
prior for that object is (approximately) ten times smaller.11

Applying this to the three modified data sets used in section 6 (without astrometry) we obtain
the following

G star physbin quasar galaxy
P(C j|θ mod) 15 0.3350 0.3320 0.0002579 0.3327
P(C j|θ mod) 18.5 0.3459 0.3207 0.0002837 0.3332
P(C j|θ mod) 20 0.3516 0.3187 0.0002831 0.3295
f mod
i all 0.3332 0.3332 0.0003332 0.3333

The agreement with the modified class fractions (bottom line) is good and implies that the use
of the class fractions in equation 4 to estimate the modified posteriors is valid.

6 Results

Separate DSC models are trained and tested on objects with a common magnitude. Four sets
of results are presented here: G=15 with astrometry; G=18.5 with and without astrometry;
G=20 with astrometry. At G=15 we don’t expect many quasars; this is included because the
noise is very low, i.e. a limiting/ideal case. Results are presented for the “nominal” and “mod-
ified” cases. In the nominal cases, the relative class fractions are equal, i.e. relative fractions
of (1,1,1,1). In the modified case, the DSC output probabilities are modified (in the way de-
scribed in section 5) to accommodate different expected fractions (priors). Specifically, quasars
are made 1000 times rarer, so that the modified class fraction vector is (1,1,0.001,1). This is
the order of the star/quasar ratio we expect for Gaia at G=20 (but see section A). Of course, the
binary and galaxy ratio would also need to be modified for a complete realistic classifier, but
for this first investigation we vary just a single class so as to ease interpretation.

Results are presented in three ways. The first is a contingency table, or confusion matrix. This
shows the correct classifications (on-diagonal values) and misclassification values (off-diagonal

11Putting equations 6 and 4 into equation 3 we see that the factor f mod
i

f nom
i

appears squared. But this is correct,
as the model-based priors depend on the product of two factors, both of which depend on the training data class
distribution.
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values) as percentages. An object is assigned to that class for which the corresponding DSC
output is largest. This is only one way of assigning classes and thus deriving classification
accuracies and is not what we want when trying to get pure samples or when modifying the
priors. Instead we want to assign thresholds (see section 3). We therefore show various his-
tograms of the DSC output probabilities which tell us the confidence with which classes are
assigned. For each of the four data sets and nominal/modified cases we show histograms of:
P(class|CLASS), showing how confident the true positives are (e.g. Fig. 6); P(class|QUASAR),
showing the probabilities assigned to true quasars (e.g. Fig. 7); P(quasar|CLASS), showing the
quasar probabilities assigned to objects of each true class (e.g. Fig. 8); Using the posteriors to
build samples, we then look at how the sample completeness and contamination varies with
the threshold used. In all cases completeness will decrease monotonically from 1 at Pt = 0 (all
objects included in sample) to 0 to Pt = 1 (no objects in sample). The maximum contamination
will occur at Pt = 0 with a value depending on the class fractions. For equal numbers of objects
in N classes it will be 1/N. Contamination will similarly drop to zero at Pt = 1, but a little
thought will convince the reader that it need not decrease monotonically with increasing Pt .

All histograms are density estimates with total area unity. They were created using the truehist
function in the MASS package in R.

6.1 G=15

Table 1: Contingency table. Each row corresponds to a
true class and thus sums to 100%. Nominal priors, G=15

galaxy physbinary quasar star
GALAXY 99.95 0.00 0.00 0.05
PHYSBINARY 0.00 96.85 0.00 3.15
QUASAR 1.05 0.00 97.60 1.35
STAR 0.00 6.90 0.35 92.75
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Figure 6: Histograms of DSC outputs for each class showing how confident DSC is of identify-
ing each class. Nominal priors, G=15
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Figure 7: Histograms of DSC outputs showing the probabilities assigned to sources which are
truely quasars for each output class. Nominal priors, G=15
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Figure 8: Histograms of DSC quasar output showing the distribution of probabilities for objects
of each true class. Nominal priors, G=15
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Figure 9: Completeness (blue/upper line) and contamination (red/lower line) of a sample as
function of the probability threshold. Nominal priors, G=15
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Figure 10: Histograms of DSC outputs for each class showing how confident DSC is of identi-
fying each class. Modified priors, G=15
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Figure 11: Histograms of DSC outputs showing the probabilities assigned to sources which are
truely quasars for each output class. Modified priors, G=15
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Figure 12: Histograms of DSC quasar output showing the distribution of probabilities for ob-
jects of each true class. Modified priors, G=15
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Figure 13: Completeness (blue/upper line) and contamination (red/lower line) of a sample as
function of the probability threshold. Modified priors, G=15
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6.2 G=18.5

Table 2: Contingency table. Each row corresponds to
a true class and thus sums to 100%. Nominal priors,
G=18.5

galaxy physbinary quasar star
GALAXY 96.35 0.05 1.30 2.30
PHYSBINARY 0.25 86.85 0.10 12.80
QUASAR 3.80 0.65 88.25 7.30
STAR 1.65 13.00 6.70 78.65
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Figure 14: Histograms of DSC outputs for each class showing how confident DSC is of identi-
fying each class. Nominal priors, G=18.5
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Figure 15: Histograms of DSC outputs showing the probabilities assigned to sources which are
truely quasars for each output class. Nominal priors, G=18.5
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Figure 16: Histograms of DSC quasar output showing the distribution of probabilities for ob-
jects of each true class. Nominal priors, G=18.5
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Figure 17: Completeness (blue/upper line) and contamination (red/lower line) of a sample as
function of the probability threshold. Nominal priors, G=18.5
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Figure 18: Histograms of DSC outputs for each class showing how confident DSC is of identi-
fying each class. Modified priors, G=18.5
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Figure 19: Histograms of DSC outputs showing the probabilities assigned to sources which are
truely quasars for each output class. Modified priors, G=18.5
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Figure 20: Histograms of DSC quasar output showing the distribution of probabilities for ob-
jects of each true class. Modified priors, G=18.5
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Figure 21: Completeness (blue/upper line) and contamination (red/lower line) of a sample as
function of the probability threshold. Modified priors, G=18.5
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6.3 G=18.5 without astrometry

Table 3: Contingency table. Each row corresponds to
a true class and thus sums to 100%. Nominal priors,
G=18.5 without astrometry

galaxy physbinary quasar star
GALAXY 96.10 0.20 1.35 2.35
PHYSBINARY 0.45 83.75 0.25 15.55
QUASAR 3.95 1.80 87.10 7.15
STAR 1.75 19.40 6.10 72.75
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Figure 22: Histograms of DSC outputs for each class showing how confident DSC is of identi-
fying each class. Nominal priors, G=18.5, without astrometry
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Figure 23: Histograms of DSC outputs showing the probabilities assigned to sources which are
truely quasars for each output class. Nominal priors, G=18.5, without astrometry
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Figure 24: Histograms of DSC quasar output showing the distribution of probabilities for ob-
jects of each true class. Nominal priors, G=18.5, without astrometry
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Figure 25: Completeness (blue/upper line) and contamination (red/lower line) of a sample as
function of the probability threshold. Nominal priors, G=18.5, without astrometry
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Figure 26: Histograms of DSC outputs for each class showing how confident DSC is of identi-
fying each class. Modified priors, G=18.5, without astrometry
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Figure 27: Histograms of DSC outputs showing the probabilities assigned to sources which are
truely quasars for each output class. Modified priors, G=18.5, without astrometry
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Figure 28: Histograms of DSC quasar output showing the distribution of probabilities for ob-
jects of each true class. Modified priors, G=18.5, without astrometry
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Figure 29: Completeness (blue/upper line) and contamination (red/lower line) of a sample as
function of the probability threshold. Modified priors, G=18.5, without astrometry
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6.4 G=20

Table 4: Contingency table. Each row corresponds to a
true class and thus sums to 100%. Nominal priors, G=20

galaxy physbinary quasar star
GALAXY 88.30 1.70 2.85 7.15
PHYSBINARY 3.60 77.15 0.75 18.50
QUASAR 10.00 2.80 75.05 12.15
STAR 10.65 14.50 9.25 65.60

Technical Note 47



CU8
Quasar classification
GAIA-C8-TN-MPIA-CBJ-036

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

P(star|STAR)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

P(physbinary|PHYSBINARY)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

P(quasar|QUASAR)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

P(galaxy|GALAXY)

Figure 30: Histograms of DSC outputs for each class showing how confident DSC is of identi-
fying each class. Nominal priors, G=20

Technical Note 48



CU8
Quasar classification
GAIA-C8-TN-MPIA-CBJ-036

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

P(star|QUASAR)

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

P(physbinary|QUASAR)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

P(quasar|QUASAR)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
12

P(galaxy|QUASAR)

Figure 31: Histograms of DSC outputs showing the probabilities assigned to sources which are
truely quasars for each output class. Nominal priors, G=20
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Figure 32: Histograms of DSC quasar output showing the distribution of probabilities for ob-
jects of each true class. Nominal priors, G=20
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Figure 33: Completeness (blue/upper line) and contamination (red/lower line) of a sample as
function of the probability threshold. Nominal priors, G=20
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Figure 34: Histograms of DSC outputs for each class showing how confident DSC is of identi-
fying each class. Modified priors, G=20
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Figure 35: Histograms of DSC outputs showing the probabilities assigned to sources which are
truely quasars for each output class. Modified priors, G=20
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Figure 36: Histograms of DSC quasar output showing the distribution of probabilities for ob-
jects of each true class. Modified priors, G=20
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Figure 37: Completeness (blue/upper line) and contamination (red/lower line) of a sample as
function of the probability threshold. Modified priors, G=20
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7 Discussion

7.1 The nominal case

The nominal case refers to the unmodified output probabilities. At G=15 we get excellent accu-
racy with high confidence classifications. Highly complete samples of all classes can be formed
with minimal contamination. The biggest confusions is between single stars and physical bi-
naries, as is clear from the plots, but this is still less than 7% (Table 1). Recall that for the
contingency tables objects are classified simply by taking the largest probability. So if the prob-
ability of an object is above 0.5 for some class, it must be classified as that class. Furthermore,
the probability could be almost as low as 0.25 and it still be classified as that class.

At G=18.5 the performance has degraded: some 13% of true stars are misclassified as physical
binaries, and, it so happens, vice versa. The probability histograms show that the confidence
for true stars and physical binaries (Fig. 14) is much worse than at G=15. This is the impact
of noise. Confidence in the extragalactic objects remains good and galaxy classification is little
degraded. There is an increased tendency for quasars to be misclassified as stars (7.3%) and
vice versa (6.7%) (Table 2), apparent also from the histogram of P(star|QUASAR) (Fig. 15).
This results in increased contamination and reduced completeness of stellar samples (compare
the top-left panels of Figs. 9 and 17). Closer inspection of the data reveals that the quasar
contamination drops to zero at Pt = 0.98, at which point the completeness is 52%.

It should be realised that single stars and physical binaries are intrinsically difficult to distin-
guish based only on their spectra. After all, the binaries are simply composite spectra of single
stars and if the brightness ratio is large the secondary will make very little contribution to the
observed spectrum.

If we now leave out astrometry from the classifiers (at G=18.5), the main impact is lower con-
fidence for stars and physical binaries (top two panels of Fig. 22) and increased confusion
between them (Table 3). This is probably because of their very astrometry distributions. We
saw in Fig. 5) that physical binaries typically have larger parallaxes and (especially) proper mo-
tions. Thus the astrometry alone therefore gives some discriminatory power. This is unrealistic
(and ws unintentional in the simulations), but as the performance with the extragalactic classes
is essentially unaffected, it probably does not impact the main study of this paper.

Moving from G=18.5 to G=20 (both with astrometry included) the performance degrades fur-
ther. As we would expect, there is increased confusion between classes. Interesting is the almost
flat distribution over P(star|STAR) in Fig. 30. This results in signifcant confusion between sin-
gle stars and physical binaries and difficulty in getting pure or complete samples. Comparing
to the case at G=18.5 (Fig. 14), at G=20 we see many more lower probabilities amongst the
galaxies, an effect of noise. The quasars, however, are still holding up well. True quasars are
still assigned high quasar probabilities (if it’s a quasar, we are likely to find it) and mostly low
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non-quasar probabilities (Fig. 31), with the main source of “loss” being to the stars (top-left
panel). Fig. 32 shows that the main contaminant among quasars is (single) stars followed by
galaxies. The fact that physical binaries are a less significant contaminant than single stars is a
consequence of larger average astrometry for the former.

7.2 The modified case: Quasars 1000 times rarer (G=18.5)

Examining the probabilities, the results agree with what we would expect. Whereas the nominal
model identified quasars with high confidence (output probability), it is now much less confident
and misses many of them (see Fig. 18 and compare with Fig. 14). In the nominal case the
classifier had high confidence for a lot of true quasars, resulting in a large peak in the highest
bin for P(quasar|QUASAR) (0.95–1.00). In the modified case we now see an additional peak in
the other extreme bin, 0.00–0.05. This is simply a result of the probability remapping performed
by the priors modification (equation 4), whereby the impact of the normalization should not be
ignored.

The changed probabilities have a significant effect on the completeness and contamination
curves for quasars: compare Fig. 21 to Fig. 17. The quasar completeness now drops very
rapidly, levelling of at around 0.4 before dropping again only when the sample size itself drops
to zero. The contamiation curve drops equally rapidly, in fact to zero at Pt = 0.05. These reflects
the probability remapping apparent in the histograms. The class fraction modification produces
a more subtle change in the star sample completeness, which now decreases less rapidly with
increasing Pt . This is a consequence of the now higher confidence for true stars (compare
P(star|STAR) in Figs. 14 and 18). In the nominal case a significant number of stars were being
assigned relatively high quasar probabilities (top-left panel of Fig. 16). By making quasars a
priori rarer we will often assign lower quasar probabilities for all objects, and thus higher prob-
abilities to the other classes. Hence the star confidences, P(star|STAR), will increase. The star
sample is also less contaminated by quasars: by comparing the bottom-left panels of Figs. 15
and 19, we see that in the modified case quasars are assigned lower probabilities of being stars.

The shape of the contamination curve is very convenient for selecting a clean quasar sample.
If we take a quasar threshold probability of about 0.1 in Fig. 21, then we will identify about
40% of all quasars with zero contamination. The price we pay for this purity is that it is not
possible (with this SVM model and training data) to achieve a higher completeness: as soon
as we set the completeness much above 50% we get at least 50% contamination in the sample,
which is useless. However, the primary goal is to achieve a clean quasar sample, and a perfect
sample of just under half of all quasars is more than sufficient. We of course cannot say that
the contamination will remain zero with a larger data set. Instead we have an upper limit on the
contamination of 0.5 in 6000 (the number of non-quasars in the test set) which is about 1 in 104.

At first it seems odd that quasars being rarer means that we can achieve a cleaner sample. What’s
happening is that – as already mentioned – the prior is causing the SVM output probabilities
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from the nominal model to be remapped (by equation 4) to allow more discrimination between
objects which, in the nominal case, are all almost assiged an output probability of 1.0.

7.3 How do we interpret posterior probabilities?

The posterior class probability for an object, equation 2, reflects our belief or degree of certainty
that the object is of that class. It is based on both evidence from the data (the likelihood) and
on the prior. Specifically, the posterior is a product of these two numbers, normalized across
the (four) classes (the normalization if provided by the denominator in equation 2). Can we use
these individual posteriors to learn something about the sample as a whole? Consider that we
construct a sample of quasars by setting Pt = 0.3. For a concrete example, consider the G=18.5
data in the modified case (section 6.2). This comprises 872 objects. All posterior probabilities
will be larger than 0.3 (by construction) and in this example the mean probability is 0.973. We
may be tempted to make a statement like “we expect 97.3% of the objects to be true quasars”,
i.e. for a sample of 872 objects, (1−0.973)∗872 = 24 would not be quasars. This is incorrect,
because the posterior probabilities are not statements about the frequency distribution of the
sample.12 First, we have used priors which are very non-uniform, namely class fractions of
(1,1,0.001,1), and posteriors are not frequencies. Second, and more fundamentally, the set of
posterior probabilities are a set of independent degrees of belief on individual objects: A his-
togram of P(quasar)13 is not a probability distribution over some single posterior probability
for the sample.

How can we make probabilistic statements about the sample as a whole? If we had a sample
size of two with P(quasar) = {p1, p2} then the probability that at least one object is a quasar is
1−(1− p1)(1− p2), and we can derive similar (albeit more complex) results for larger samples.
If we take the simpler case in which P(quasar) = p for all objects in a sample of size n, then the
probability that exactly r of them (r ≤ n) are non-quasars is given by the well known formula

P(n,r, p) =
n!

r!(n− r)!
(1− p)r p(n−r) (7)

We could use this to make approximations for the above sample (n = 872) by setting p = 0.973,
the mean posterior probability. With r = 0, we see that the probability that no object in the
sample is a non-quasar is 10−11, i.e. we are almost certain to have at least one contaminant.
The fact that we didn’t is partly because this approximation is poor: 798 of the 872 posterior
probabilities are equal to or greater than 0.999. Using this as an alternative approximation
we have P(n = 872,r = 0, p = 0.999) = 0.42; there is a 0.58 chance we’ll have at least one
contaminant. The left panel of Fig. 38 shows how log10P(n = 872,r, p = 0.973) varies with r.
(In case one is interested it has a maximum of P(n,r, p) = 0.082 at r = 23). Summing equation 7
over ranges of r we can make a more useful statement. For example, summing from r = 0 to

12Incidentally there is not a single contaminant in this sample: Pt was chosen from inspection of Fig. 21 to
ensure this. (Yet this does not imply that the probability that all 872 objects are quasars is unity!)

13This histogram is the sum of the four panels in Fig. 20 for Pt > 0.3.
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r = 24 (with p = 0.973), we deduce that the probability of having 24 contaminants or fewer is
0.56. For 40 or fewer it is 0.9992, i.e. there is a probability of only 0.008 that there are more
than 40 contaminants. The right hand panel of Fig. 38 shows this for variable r: specifcally it
plots

1−
r′=r

∑
r′=0

P(n,r′, p) (8)

with n = 872 and p = 0.973 against r/n. This is the probability that the contamination fraction
of the sample is more than r/n. Thus at least in the case where we approximate the posterior
probabilities to be equal we can make probabilistic inferences about the contamination of the
sample. With a test data set we could compare these with the actual contamination level. 14
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Figure 38: The left panel shows the variation with r of P(n = 872,r, p = 0.973) (equation 7),
the probability that there are exactly r contaminants in the quasar sample of n objects, each
with posterior quasar probability of p. The right hand panel is 1 minus the cumulation of this
(equation 8), and so shows the probability that there will be more than r contaminants (shown
as the contamination fraction r/n).

The take-home message of this discussion is that the DSC posterior probabilities are statements,
whether in the nominal or modified case, about individual objects. To make inferences about
the sample you must be careful to make logically consistent combinations of the individual
probabilities.

14Curiously the curve in Fig. 38 drops to zero at r/n = 0.04, close to the value of Pt at which the contamination
curve drops to zero.
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7.4 Testing the predictions

We saw in section 7.2 how the modified model, with modified class fractions of (1,1,0.0001,1),
resulted in a a dramatic change in the completeness and contamination curves. By choosing an
appropriate threshold the contamination could be greatly reduced, at the cost of also reducing
the completeness.

What happens if we repeat this but with a different set of modified class fractions, say (1,1,0.1,1),
i.e. with quasars just ten times rarer? The resulting plot for the G=18.5 with astrometry data is
shown in Fig. 39. Comparing this with the nominal case (Fig. 17) and the original modified case
(Fig. 21), we see that the curves for the quasars in the new case are intermediate, as we would
expect. For example, the contamination now only drops to zero at Pt ≥ 0.83, at which level the
completeness is 52%. So by selecting an appropriate threshold we can achieve the same levels
of completeness and contamination as before.

All of the completeness and contamination curves shown so far for the modified model have
been calculated using the nominal test data set but with the modified equations (equation 5).
They are, therefore, just predictions of how well the modified model would perform if it were
applied to a test data set which really had the modified class fractions. We now test the ac-
curacy of these predictions by using a new test data set which really does have class fractions
(1,1,0.1,1). This test set is built by randomly removing 90% of the quasars from the original
test set. (The output probabilities are calculated with the modified model, equation 4, but the
completeness and contamination must of course be evaluated with equation 1.) This is shown
in Fig. 40. Comparing the quasar curves with those in Fig. 39, we see that the agreement is
very good, especially for the contamination. A better comparison is possible with Fig. 41. The
discrepancy between predicted and actual contamination varies from 0–10%, averaging 5%.

7.5 A final word

Ultimately we would like to know whether the modified model is “better” than the nominal one,
i.e. does the modification of the priors bring advantages. If we ignored the issue of priors and
class fractions, then our predictions of completeness and contamination would be those from the
nominal model (equal class fractions) in section 6, e.g. Fig. 17. Yet the actual completeness and
contamination we would measure in a situation with difference class fractions, say (1,1,0.1,1)
are quite different, namely those shown in Fig. 42. So our conclusions with this approach would
be wrong.

If we are only interested in a clean quasar sample, then it turns out that the predictions from the
nominal model are good. We saw from Fig. 17 that we could form a zero contamination sample
with completeness of about 50%, just by setting a much larger threshold (Pt = 0.98) than with
the modified model. Looking at the results on the test data set with class fractions (1,1,0.1,1)
this threshold also gives zero contamination and a completeness of 55% (Fig. 42). So at least in
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Figure 39: Completeness (blue/upper line) and contamination (red/lower line) of a sample as
function of the probability threshold. Now using modified priors with class fraction (1,1,0.1,1).
G=18.5, with astrometry. As before, we use this to predict C&C.
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Figure 40: Completeness (blue/upper line) and contamination (red/lower line) of a sample
as function of the probability threshold. This uses the modified model with class fractions
(1,1,0.1,1) to determine the C&C in a new test sample which has these actual class fractions.
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Figure 41: Direct comparison of the predicted and measured quasar completeness and contami-
nation. The solid lines are the predictions from Fig. 39. The dashed lines are the measured from
Fig. 40, whereby the contamination is plotted in black rather than red to aid distinction.

this case, the threshold derived from the nominal model is accurate.

We may argue that actually Fig. 42 should be our predictions from the nominal model, i.e. we
just modify the test data set but not the model itself. How then, can we make a comparative test
of the nominal and modified models and decide which to use? Is not yet clear (to us) how we
test the accuracy of a probabilistic model when applying a threshold. We cannot define a single
accuracy figure, because the accuracy (or rather, completeness and contamination) vary with the
threshold chosen to form the sample, and we just saw that we would set different thresholds in
the two cases. It remains to be tested whether the two methods give equally complete samples
for a variable contamination (or vice versa) for different class fractions and sample sizes.15 We
also need to study whether one approach gives more self-consistent posterior probabilities for
the sample, an issue we started to discuss in section 7.3.

8 Summary and Conclusions

• To build a clean sample of quasars we need to use a probabilistic classifier and only
select as quasars objects which have a probability above some threshold. We show
how we can control the sample completeness and contamination by varying this
threshold.

15It may turn out that for building samples it is sufficient to use the nominal model and to calculate the complete-
ness and contamination using the modified class fractions (equation 5) in order to select the appropriate threshold.
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Figure 42: Completeness (blue/upper line) and contamination (red/lower line) of a sample as
function of the probability threshold. This applies the nominal model to a test data set which
has class fractions (1,1,0.1,1).
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• With the present DSC software, trained and tested on synthetic BP/RP data for a
four-class problem, we can achieve a contamination of less than 1 in 104 in the QSO
sample which is 51% complete at G=18.5 or 43% complete at G=20, for the case
that the relative fractions of quasars to stars is 1/1000. Including astrometry in the
input data does not significantly improve this. This upper limit on the contamination
is set by the sample size. We can determine whether it can be decreased by applying
the model to a larger test data set (future work).

• The class priors are often not explicit in a classification model, and sometimes are
implicitly influenced by the training data distribution. We have developed a way of
recalculating the DSC posterior probabilities to reflect a user-defined prior, without
having to change the training data or retrain the model. The prior is our pre-data
estimate of the probability that the object has a certain class. (It might be based
on the Galactic latitude and G magnitude of the object, for example.) Using the
nominal model, i.e. that trained on equal class fractions, we can remap its output
(posterior) probabilities to be relevant to different class fractions (this defines the
modified model). We apply this to a situation in which quasars are 1000 times rarer
than stars (our prior). This flexibilty to set the prior allows us to build a classification
model (the modified model) which is independent of the class frequencies in the
training data.

• We have introduced a simple method for calculating the implicit priors in a clas-
sification model, what we call the model-based priors. We show that these priors
agree with the true class fractions in the training data set in the nominal case and
with the effective training class fractions in the modified case. This ensures a self-
consistency of the method for building the modified model.

• We demonstrated that the predicted completeness and contamination for the modi-
fied model are accurate. Specifically, they agree well with the actual completeness
and contamination calculated from a test data set which has class fractions equal to
those assumed by the model (the model-based priors).

• We show that ignoring priors (as expressed via the class fractions) will lead to wildly
incorrect estimates of sample completeness and contamination if the model is ap-
plied to data with class fractions which are very different from that assumed in the
model.
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A Quasar to star ratio, completeness and contamination in
SDSS

Quasars are rarer than stars, a fact revealed by many surveys. Here we use SDSS DR6 to
quantify this as a function of magnitude and Galactic latitude.

SDSS initially observes the sky in the five ugriz bands. It then makes a selection based on these
colours to identify quasar candidates, some of which are then subject to spectroscopic follow
up (Schneider et al. 2005, Richards et al. 2002, 2006). These spectra are classified to confirm
or refute quasar status. Other objects (in particular stars and galaxies) are also targetted for
spectroscopic follow up.

A.1 Object selection and quasar sample properties

We here use two flags in the SDSS catalogue to count the relative numbers of quasars to stars.
These are PhotoPrimary.type, which is a morphogical classification, and SpecObj.specClass,
which is a spectral classification. The relevant values for the former are 3 for galaxy and 6 for
star-like objects (including stars and quasars). For the latter, 1 and 6 denote star, 3 and 4 quasar.

Our stellar sample comprises all star-like objects according to the type flag, but if they have a
spectrum this must be a stellar spectrum. Our quasars are any star or galaxy photometric object
which is spectroscopically confirmed to be a quasar. In this way we include quasars with a
visible galaxy. The SQL queries to achieve these samples are

Quasar selection
select round(PhotoPrimary.l,2) as l, round(PhotoPrimary.b,2) as b,

round(PhotoPrimary.g,3) as g, round(PhotoPrimary.i,3) as i,
PhotoPrimary.type, SpecObj.specClass

into mydb.test18
from PhotoPrimary
left join SpecObj
on PhotoPrimary.specObjID=SpecObj.specObjID
where

PhotoPrimary.i between 0.0 and 22.0
and PhotoPrimary.type in (3,6)
and SpecObj.specClass in (3,4)

Star selection
select round(PhotoPrimary.l,2) as l, round(PhotoPrimary.b,2) as b,

round(PhotoPrimary.g,3) as g, round(PhotoPrimary.i,3) as i,
PhotoPrimary.type, SpecObj.specClass

into mydb.STARl055
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from PhotoPrimary
left join SpecObj
on PhotoPrimary.specObjID=SpecObj.specObjID
where

PhotoPrimary.l between 54 and 56
and PhotoPrimary.b>=0
and PhotoPrimary.i between 0.0 and 22.0
and PhotoPrimary.type=6
and ( (PhotoPrimary.specObjID=0) or
(PhotoPrimary.specObjID!=0 and SpecObj.specClass in (1,6)) )

SpecObjID is used to track the existence of a spectrum. We select stars in four longitude strips
each 2 degrees wide in longitude centered at b = 55,65,195,205. These are chosen because they
extend to the lowest Galactic latitudes (about b = 20).

We then calculate, for each longitude strip and for a fixed latitude range, the number of stars and
the number of quasars in 1-mag. wide magnitude bins. In total we find 87 525 quasars in the
range i = 0,22 in the 9583 sq. deg. in DR6, and 85 438 in the range i = 0,20.2 an average of 8.9
quasars per sq. deg. This compares to 46 420 in the SDSS DR3 quasar catalogue of Schneider
et al. (2005) over 4188 sq. deg. (11.1 per sq. deg.) down to i = 20.2. A better comparison
may be with the sample Richards et al. (2006) used to construct a z =0–5 quasar luminosity
function sample (and is itself derived from the Schneider et al. sample). This gives 15 343 over
an effective area of 1622 sq. deg. (9.5 per sq. deg.) and extends from i = 15 to i = 19.1 for z < 3
and to i = 20.2 for z > 3. Fig. 43 and 44 show the i and g band magnitude distribution for the
QSOs in our sample and Fig. 45 the colour magnitude distribution. The spatial distribution in
Galactic coordinates of course follows the SDSS imaging footprint (Fig. 46).

Figs 49 and 50 plot the quasar/star ratio as a function of magnitude for Galactic latitude bins in
four Galactic longitude strips.

A.2 Sample completeness

There are, of course, various selection biases which differentially affect the quasar and star num-
ber counts, and therefore the derived quasar/star ratio. According to Vanden Berk et al. (2005),
the SDSS QSO survey is surprisingly complete. By taking spectra of all point sources in 233 sq.
deg. region down to a redenning corrected limit of i = 19.1 (the stripe 82 completeness survey),
they find that the completeness of the colour-selected, unresolved quasar sample is about 95%.
Allowing for the fact that extended quasars are less efficiently detected, the combined “end-to-
end” completeness of the SDSS quasar survey is about 89%. 4% of this loss is accounted for
by image defects and blends. In addition, the quasar selection has a lower efficiency at redshifts
between 2.5 and 3.0 because of the degeneracy (locus crossing) in the stellar and quasar SDSS
colours (Richards et al. 2006). The contamination at this level of completeness is 24.7%. This
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Figure 43: QSO SDSS DR6 i-band magnitude function
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Figure 44: QSO SDSS DR6 g-band magnitude function
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Figure 46: QSO distribution in SDSS DR6
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Figure 49: The ratio of QSOs to stars in SDSS as a function of i magntiude (large red dots)
and g magnitude (smaller green dots) for different Galactic longitude, l, strips (columns) and
Galactic latitude, b, ranges (rows). The numbers in red (green) along the top of each panel are
the absolute numbers of quasars in each bin.
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Figure 50: As Fig. 49, but for l=195, 205
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compares to 34% from Richards et al. 2002 (where the quasar spectroscopic target selection
algorithm is defined), although this includes more high-z quasars where the contamination is
higher. At magnitudes fainter than i = 19.1 the completeness is lower, and quasar candidates
fainter than i = 20.2 or brighter than i = 15 are not selected for spectroscopic follow up at
all. Other approaches appear to yield different figures. By training a classifier on photometry
of 22 000 spectroscopically-confirmed quasars, Richards et al. (2004) build a photometrically-
selected sample of 100 000 quasar candidates to g = 21 from DR1. They estimated that the
completeness of unresolved UVX quasars to g = 19.5 in this sample was 94.7%, with a con-
tamination of 5% to g = 21.

The stellar completeness is probably lower (some details from Sebastian Jester, private commu-
niation). First, SDSS has holes in its photometric sky coverage. There are primarily due to high
source density and an inability of the photometric pipeline to deblend sources. These occur pre-
dominantly in areas of high stellar density, so stars are probably missed more than quasars. As
stars are not the main target of SDSS, most stars do not have spectra taken, so some photometric
star classifications may actually be quasars. However, the completeness test of Vanden Berk et
al. (2005) implies that this is a small fraction.

Overall, at higher Galactic latitudes, we expect reasonable completeness for both the quasar and
stellar samples in the range i = 15−19.1 and so the quasar/star ratios to be reasonably reliable.
At lower Galactic latitudes the picture is less clear, but probably more stars are lost than quasars,
leading to the quasar/star ratio being overestimated. Of course, these results have been obtained
in the SDSS filtes. To apply to Gaia, we would need to convert the colours. An approximate
relation based on the Gaia instrument design is shown in Fig. 51.
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Figure 51: Colour transformation between Gaia G filter and SDSS g and i filters. From Jordi
(2007) GAIA-C5-TN-UB-CJ-041-2.
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