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Abstract

I introduce a new algorithm for parameter estimation with multidimensional data.
While a general method, I develop it on the problem of estimating multiple astro-
physical parameters (APs) from spectra. ILIUM iteratively interpolates over a training
grid of labelled spectra to derive successively better estimates of the APs which are
therefore not limited by the grid resolution. This interpolation uses nonlinear forward
models to uniquely predict the spectra given the APs. ILIUM uses estimates of the sen-
sitivity of the flux to the APs to weight the contribution of each flux band to the AP.
Particular attention is paid to the fact that some APs are much “weaker” than others, in
the sense that they are responsible for much less variance in the spectra and are there-
fore typically much harder to estimate. I demonstrate ILTUM on a grid of BP/RP stellar
spectra showing variance in T.¢ and log g. Applied to G=15 synthetic data, the mean
absolute errors in log g and log (T.g) are 0.065 dex and 0.0010 dex respectively (RMS
errors of 0.093 dex and 0.0014 dex) which are 7 and 5 times smaller (respectively)
than that achieved with the nearest neighbours algorithm applied to noise-free data.
At G=18.5 the ILIUM errors are 0.35 dex in log g and 0.0057 in log (Tegt) (equivalent
to 1.3% in Tex). The algorithm also estimates individual AP errors and provides a
goodness-of-fit for each spectrum. Extension of the algorithm to more APs is forseen,
and a simple extension should also allow it to identify AP degeneracies and so provide
multiple solutions.
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1 Introduction

The problem is to estimate the astrophysical parameters (APs, ¢) of an object given a measure-
ment of its spectrum (p). As there are mutiple APs and multiple dimensions in the spectrum,
this is sometimes referred to as a multidimensional multiple regression problem. A common
approach is to use nearest neighbours. It gives low bias estimates, but often with large variance
because its accuracy is limited by the AP resolution of the grid. Moreover, it suffers from the
curse of dimensionality as the number of APs grows: the number of training points must grow
exponentially in order to retain the same accuracy, with consequent penalties on the amount of
data needed and run time.

For these reasons, one often resorts to fitting a regression model directly to a grid of labelled
data to yield estimates q% = h(p; a), where « are the parameters of the fitted function. Machine
learning methods such a neural networks (e.g. Re Fiorentin et al. 2007) and support vector
machines (e.g. Tsalmantza et al. 2007, Bailer-Jones et al. 2008) can be employed when the
dimensionality is high, which is the case for Gaia where there are several APs and the number
of flux bands in the spectrum is of order 100.

One of the major limitations of this direct fitting approach is that the function A is not unique.
Indeed, we know for stars that the APs are not single-valued functions of the fluxes — peek
ahead to Fig. /| (although multiple bands may result in this degeneracy being broken). For this
reason, the “brute force” inverse fitting approach we usually adopt may actually be theoretically
flawed, even though in practice it often provides good estimates. Furthermore, machine learning
methods are often unable to produce AP uncertainty estimates or goodness-of-fit measures (at
least not easily; see Tiede 2008 section 5.2), and it is often hard to understand in individual
cases how the data were used to arrive at the AP estimates.

Most of these problems with these inverse methods arise from the absence of a forward model,
a model which predicts the flux given the APs. Unlike h, the forward model is unique and can
in principle be fitted easily using the training data. Here I introduce a new method which uses
the forward model explicitly in AP estimation. For each new spectrum presented to classify, it
interpolates the grid locally around the nearest neighbour estimate in an iterative fashion until
some convergence is reached.

This technical note is organized as follows. In section 2] introduce the algorithm as well as
some practical modifications necessary for working on real data. Section [3| demonstrates it
using Gaia BP/RP data. I summarize and discuss the results in section 4] and conclude with
ideas for future work in section [5] Table [I|summarizes my notation.

Technical Note 5
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TABLE 1: Notation

a scalar

a; scalar with index

a vector (bold face). Compare vector ¢ with scalar ¢
A matrix (upper case). I denotes its transpose

a the hat indicates an estimated quantity

1 counter over band (spectrum pixel), 7 =1...1

Di photon counts (flux) in band ¢ (p is a spectrum)

J counterover AP, j =1...J

?; AP j

%, ¢ “strong” and “weak” AP respectively

k.l counters over the strong and weak APs respectively
Sij sensitivity of band 7 to AP j, g%;

S sensitivity matrix, / x J matrix with elements s;;
fi(¢p)  forward model for band i

n iteration; e.g. ¢(n) is the AP at iteration n

t column vectors in matrix equations

2  Algorithm

2.1 Forward modelling

Let us call the true relationship between the APs and the flux in a band he generative function,
g:(¢). This encapsulates the underlying stellar physics, radiative transfer, instrument model etc.
(There is a separate function for each band, but for simplicity I will refer to it in the singular.)
We do not know the generative function: all we have for doing AP estimation is the grid, which
is a sample of points selected from the generative function (typically via model atmospheres
and synthetic spectra). Instead we approximate the generative function using a forward model,
which is a (nonlinear) parametrized fit to the grid points. With this we can predict the flux
in a band at arbitrary values of the APs, i.e. off the grid. (A separate forward model is fit
independently for each band.) As the forward models are continuous functions, we can also use
them to calculate the sensitivities, which by definition are the gradients of the flux with respect
to each AP. The forward model fitting is done just once for a given grid and is kept fixed when
predicting APs, i.e. it is a training procedure.

“Band” is the term I used for a measured flux in the spectrum. It may be a photometric band, a pixel in the
spectrum, or the sum over several pixels in a spectrum.

Technical Note 6
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2.2 Core algorithm

The ILTUM parameter estimation algorithm in outline as follows. For a given measured spec-
trum, we find its nearest neighbour in the grid and calculate the residuals in all bands, dp. We
then calculate the sensitivities, {Op;/0¢; }, at the nearest neighbour and together with the resid-
uals use a first order Taylor expansion of the forward model to determine the offset to apply to
the current AP estimate. This provides a new AP estimate which we use in the forward model
to predict the flux in each band. We then iterate the procedure.

flux, p 4

pl

pO

p2

FIGURE 1: Sketch of the local iterative interpolation principle for one band (/=1) and one AP
(J=1). The dashed blue line is the (unknown) generative function, and the solid curved blue
line is the forward model (our approximation to the generative function) formed by fitting a
function to the templates (grid points). The red line shows the local linear approximation of
the forward model used to calculate the AP step. (In the case show the forward model could
be inverted. But this is not generally the case, not even in one dimension if it has a turning
point.)

In detail, the algorithm is as follows. We initially consider the situation with just one AP and
one band. We first fit the forward model to the grid, p = f(¢). This remains fixed. Let p(0) be
the measured band for which we want to estimate the APs. The procedure (see also Fig.[I)) is as
follows (n is the iteration number)

1. Initialize: find nearest grid neighbour to p(0). Call this [p(1), ¢(1)]. ¢(1) is the
initial AP estimate.

2. Use the forward model to calculate the local sensitivities, g_f;’ at the current AP
estimate.

3. Calculate the discrepancy (residual) between the predicted flux and the measured
flux, op(n) = p(n) — p(n — 1). (This is equal to p(1) — p(0) for the first iteration.)

Technical Note 7
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4. Estimate the AP offset as d¢p(n) = <g—ﬁ> . X 0p(n), i.e. a Taylor expansion
d(n

truncated to the linear term. (Note that the partial derivative is the reciprocal sen-
sitivity.) This is the offset between the true AP value and the current estimate in a
local linear approximation.

5. Make a step in AP space, ¢p(n + 1) = ¢(n) — d¢(n). (Note the sign, which steps
toward the better estimate.) This is the new AP prediction.

6. Use the forward model to predict the corresponding (off-grid) flux, p(n + 1)

7. Iterate steps 2—7 until convergence is achieved or a stop is imposed.

At each iteration we obtain an estimate of the APs (step 5) and the corresponding spectrum (step
6). The algorithm alternates between estimating the APs and calculating an update to apply to
the current estimate. Convergence could be defined in several ways, e.g. when changes in the
spectrum or the APs (or their rate of change) drop below some threshold. Alternatively we
could simply stop after some fixed number of iterations.

If the generative function were locally linear, and if the forward model were exact (and the data
were noise free), then step 5 would yield the exact APs in the first iteration and the algorithm
would converge (as dp would be zero in the next iteration). As neither the generative function
nor its approximation, the forward model, is linear, there is no guarantee of convergence. For
example, if the AP steps were sufficiently large to move to a part of the function with a sensitiv-
ity of the opposite sign, then the model could diverge or get stuck in a limit cycle. For this, and
other reasons, the algorithm in practice has some additional features (discussed in section [2.7)).

2.3 Generalization to multiple APs and multiple bands

In general we have several bands and several APs.

For multiple bands (/ > 1) and one AP we have [ independent forward models and must replace
p with p. The estimated AP residual in step 5 is then the sum over all bands (I now drop the
iteration index)

0
56 = Y (8;‘;);5%

%

Ip; -
Z((%) op; (1)

i ¢

As we still have just one AP, we can simply use the inverse of the sensitivities in the above
equation. This is not the case for multiple APs, because in general d¢;/dp; # (Op;/0¢;)~".
Without a forward model we also could not calculate the {0p;/J¢;} from the grid, because

Technical Note 8
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in general there is no function ¢;(p) (as Fig. [7| demonstrates). This is one of the motivations
behind ILIUM.

For multiple APs (J > 1) as well as multiple bands, we write the flux perturbation in band ¢
due to small changes in the APs as

m=§ngw )

J

For I bands we write this in matrix form as

op = Sd¢ 3)

where S is the I x J sensitivity matrix with elements s;; = Jp; / O0¢;. We assume that I > J. If
we now multiply equation [3|on the left by (S7'S)~1S7 we get

§¢p = (S79)"1STsp 4)
The AP update equation (step 5 in the algorithm) is then
p(n+1) = ¢(n) — (S'5)"'5"dp(n) (5)

The basic procedure is otherwise unchanged. Of course, the / forward models are now functions
of J variables, and this turns out to be a critical matter.

2.4 The forward model

The basic algorithm described so far can make use of any forward model, on the condition that
we can calculate the function values and its first derivatives for arbitrary values of the APs.

The most obvious forward model would be a multidimensional, nonlinear regression of the
form p = f(¢), which in principle works for any number of APs. However, I found that it was
very hard to get a model which simultaneously fit both T.g, a strong AP, and log g, a weak AP:
The former could be fit well, but the latter not. Strong here means that it explains much of the
variance in the flux data, i.e. is a strong predictor of the flux. Weak is a relative term, indicating
that the AP explains much less of the variance. The reason for the poor fit over the weak AP
was that the model had to be fit by minimizing a single objective function, namely the error in
reproducing the flux. As the weak AP has very little impact on the flux, its influence has little
impact on the error, so the model optimization does little to produce a good fit over this AP. I
experimented extensively with many models and with ways of improving the sensitivity of an
error function to the weak APs, but to little avail.

To overcome this problem, I use a two-component forward model, which currently is only
defined for two APs. The first component fits a single 1D nonlinear function to the strong AP,

Technical Note 9
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FIGURE 2: Schematic of a two-component forward model. Note the much stronger variation
in the flux in the direction of the strong AP. For Teg and log g the relative variation with respect
to Teg is much larger than that shown here for most, if not all, bands.

marginalizing over the weak AP. This fits most of the flux variation. Then, for each discrete
value of the strong AP in the grid, I separately fit the residual flux as a function of the weak
AP; these are the second components (also 1D). They provide a flux increment dependent on
the weak AP, which is added to the flux predicted given the strong AP. A schematic illustration
of such a two-component forward model is illustrated in Fig.

The two-component model is fit as follows. Let ¢° denote a strong AP, ¢V a weak AP and
fi(¢°,¢") the complete (2D) forward model for band i. Let subscripts k and [ denote specific
values in the grid of the strong and weak APs respectively (see Fig.[3). We model the flux at
some abritrary AP value as

fi(@%,0") = fE (%) + fL (6" 0% = ¢7) (6)

where both £ and fV are 1D functions. f7(¢) is the single strong component, which fits
the flux variation with respect to the strong AP, marginalizing over all ¢". f!} is the k"" weak
component, which is a fit of the flux variation with respect to the weak AP with the strong AP
fixed at the nearest value of ¢°, i.e. ¢¢. To fit this we therefore use those points in the grid

Technical Note 10
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FIGURE 3: Schematic of the grid of AP values, ¥ = 1...20,7 = 1...7. The red points

denote those used to fit the weak component of the forward model for one value of the strong
AP.

at fixed ¢° and variable ¢" (e.g. the red points in Fig. . Clearly, this requires us to have a
“semi-regular” grid, one consisting of spectra with a range of values of the weak AP for each
value of the strong AP. (This requirement is easily fulfilled when using synthetic-based data.)
The two components are illustrated in Fig. 4, The number of weak components is equal to the
number of values of ¢°, which is 20 in this schematic case.

f2(#°) is a fit to the whole grid of flux values, {p;}. As this fit marginalizes over ¢" it is
implicitly a fit at the average value of ¢"" at each ¢°. For this reason, each weak component is
fit to the grid flux data minus the average flux at that value of ¢°, i.e. to the set of values

{p(¢” = ¢}) —p(¢° =97}

Currently both the strong and weak components of the forward model are fit using smoothing
splines, with the number of degrees-of-freedom (DoF) set according to the grid (see section[3.2)).

Applying the forward model is easy. Given (¢°, ¢") we

1. evaluate f7, the strong component
2. find the nearest value, ¢, in the grid to ¢°, i.e. identify the closest weak component
3. evaluate i‘%, the increment from the weak component

4. sum the two components, f7 + XZ, to give the foward model prediction.

Technical Note 11
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FIGURE 4: Schematic illustration of the two components of the forward model. Left: the fit
over the strong APs. Right: one of the fits over the weak APs (the red points in the left panel
at k=14).

2.5 Performance statistics

Model performance is assessed primarily via the AP residuals on a test data set. In addition to

examining these as a function of the APs, I report three statistics : (1) the RMS, 6752 which

we abbreviate with o, (2) the mean absolite residual, M (which is less sensitive to outliers
than the RMS) and (3) the mean residual, d¢ (a measure of the systematic error).

2.6 Uncertainty estimates

We can estimate the uncertainties on the AP estimates of unlabelled data using the same for-
mulation for estimating the APs. Specifically, |0¢| is the AP uncertainty estimate, where d¢ is
given by equation[d] S is evalulated at the estimated AP value, and dp is the difference between
the forward model predicted flux at this estimate and the measured flux. This is essentially the
final step not made, but would be just what we want if the model gets stuck in a limit cycle.

We can also calculate a goodness-of-fit (GoF) for unlabelled data, because ILTUM predicts the
spectrum from the estimated APs using the forward model. We use the reduced-y?

1 EL i\
Y= —— (;) (7

I—-1 — Op,

where p; = f;(¢;) is the spectrum predicted by the forward model. The {c,,} are estimates of

Technical Note 12
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the standard deviation of the noise in the measured flux.

2.7 Practical algorithm

The practical realities of working with real (noisy) data mean that the basic algorithm should be
supplemented with a few additional features in order to make it more robust.

2.7.1 Preprocess data

We standardize each band and each AP, i.e. we linearly scale each to have zero mean and unit
standard deviation.

2.7.2 Sensitivity estimation

If the forward model is a simple analytical function, then it may have analytical first derivatives
which can be used to calculate the sensitivities. But in the general case we can use the method

of first differences, i.e.
Op _ f(6+00;) = f(6—b6y) )
0p; 200,
I choose 2d¢; to be 0.1 dex for log g and 0.5% for Teg [0.0022 for log (Teq)], which translate
to 0.03 and 0.0034 in standardized units respectively for the grid used in section 3|

2.7.3 Lower limit on sensitivities

Given that the AP updates depend upon the inverse of the sensitivity matrix (equation [)), it
seems prudent to prevent the sensitivities (calculated in equation [8) from being too small. For
this reason, a lower limit is placed on the absolute value of each sensitivity, s;;, of 0.001 (with
p and ¢ in standardized units). On the data set presented in section [3] no band fell below this
limit in most iterations for most objects, and even when it did it was only for a few bands.
Removing this lower limit actually never resulted in singular matrix and had negligible impact
on the results, so for all practical purposes its existence can be ignored.

2.7.4 AP update contribution clipping

Equation [ can be written
é(n+1) = ¢(n) — M op(n) )

where M = (STS)~1ST is a J x I matrix. The above equation is a set of .J update equations,
where the update for AP j is the dot product of two vectors, the j* row of M, m;, with p(n),

Technical Note 13
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i.e.

¢j(n+1) = ¢;(n) —m;op(n)
= ¢j(n) — Z m;;6pi(n)

= ¢;(n) — Z uij(n) (10)

which defines u;;. The update to AP j is a sum over / individual updates, which we can view
as an update “spectrum”. In section [3] we inspect these updates, and find that on occasion some
are much larger than the others. This is undesirable, as it means that the update is dominated
by just one or a few components (which may be adversely affected by noise, because dp(n) is a
noisy measurement). For this reason, I clip outliers in the spectrum of the / updates. (It is valid
to compare the updates for different bands, because we work with standardized fluxes.) To be
robust, I set an upper (lower) limit which is a multiple c of the median of those points above
(below) the median. Using the notation () to denote median, the limits are

Unpper = O(u;) + c[0(w; > 0(u;)) — 0(u;)]
Uower = O(u;) + c[0(u; < 0(u;)) — 0(u;)] (11)

I somewhat arbitarily set ¢ = 10 so as to be relatively conservative in clipping. In the baseline
example (section , typically several updates are clipped per band/iterationE]

2.7.5 AP update decay

At faint magnitudes (G > 17), I found that the AP updates would sometimes get stuck in
limit cycles, i.e. the updates would oscillate between two values, occasionally with a large
amplitude. To overcome this, I introduce a modification which decreases the magnitude of the
AP updates with increasing iteration. Specifically I use an exponential decay such that the AP
step, 6¢p = {Plogg, ODlogtert }» at iteration n is multiplied by

9—(n—=1)/s
where s is the decay time scale, i.e. the number of iterations over which the nominal AP update

is halved. Convergence (AP updates tending to zero) is thereby enforced. The default is not to
use this decay (and in fact all results shown in this TN are without decay).

2.7.6 Upper limit on AP update step size

The AP steps at each iteration (equation 4)) could in principle be very large. This is undesirable,
because the updates are based on a local linear approximation to the generative function. The
code therefore imposes upper limits on the log g and log (T.¢) AP updates of 2.0 dex and 0.04

Note that it only makes sense to clip if there are more than three bands; in practice many more.

Technical Note 14
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(10%) respectively (which correspond to 1.3 and 0.13 respectively in standardized units). Note
that a larger step size is permitted for the weaker AP, because the initial nearest neighbour offset
can be quite incorrect. In practice these limits are rarely imposed.

2.7.7 Limit AP extrapolation

We do not expect the forward model to make good predictions beyond the AP extremes of the
grid, so I set upper and lower limits on the AP estimates which ILIUM can provide. These are
set as e times the range of each AP, i.e.

upper limit = max ¢; + e(max ¢; — min ¢;)

lower limit = min ¢; — e(max ¢; — min ¢;) (12)

The default is to permit 10% extrapolation, i.e. ¢ = 0.1.

2.7.8 Stopping criterion

The algorithm is simply run for a fixed number of iterations. As we see good natural con-
vergence after about 20 iterations, a more sophisticated stopping criterion is not necessary at
present.

2.7.9 Implementation

ILIUM is currently written in R (around 400 lines of code, with little error trapping). No effort
has been made to write it efficiently, so the application phase currently requires around 1 second
per object (with 20 iterations and 137 objects in grid). The forward modelling (training), re-
quires just a few seconds. In comparison, a cross validation nearest neigbour code also written
in R (just a few lines) takes just a second or so for all 274 objects, and even this is dominated
by the file reading. Although ILIUM presently uses nearest neighbours for its initialization, the
grid necessary for this probably does not need to be as dense as a grid for AP estimation via
nearest neighbours. Therefore, ILTUM should not be as exposed to the curse of dimensionality.

The nominal values of the ILIUM model parameters are given in Table 2| Decay is not normally
used, the minimum absolute sensitivity is not needed, ¢ and e are the same for both APs and the
delta for the sensitivity is not fundamental to the method. ILIUM can therefore be considered to
have 6 adjustable parameters.

2.8 Alternative solution

In an earlier version of this algorithm (Bailer-Jones 2008), the matrix (S7.S)~1S7 in equation
was replaced with R = [r;;], the J x I matrix of reciprocal sensitivities (r;; = si_jl). This is

Technical Note 15
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TABLE 2: Model parameters, divided according to subalgorithm in which they are used. Nreg
is the number of unique T values in the grid, Njyge is the number of unique log g values in
the grid at the nearest neighbour temperature (used in the two-part forward model).

Parameter Nominal settings
General (interp.update):
number of iterations 20

logg log(Tes)

Forward model calculation (calc.formod):

DoF in forward model fit 4t Nregg!2
Sensitivity calculation (est.sens):

delta for sensitivity calculation via first differences® 0.03  0.0034

minimum absolute sensitivity* 0.001 0.001
AP updates (step.aps, interp.update):

decay scale”, s - -

update contribution clipping factor, c 10 10
max. step size* 1.3 0.13
AP extrapolation limit factor, e 0.1 0.1

t linear interpolation is used if Nigge < 4
* in units of the standardized variables

A default is not to use decay

Technical Note 16
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obviously not mathematically correct, because d¢;/0p; # (Op;/d¢;)~*, but maybe it was ade-
quate and is potentially faster. I found that this approach yielded reasonable results (competitive
with nearest neighbours), but only if the AP step size was modified (made smaller), and if the
update decay was used. If decay was not used the model sometimes converged anyway, but of-
ten drifted away or (more often) became stuck in limit cycles (sometimes with a superimposed
drift). The best results obtained with this approach on the G=15 data described in section [3]
were of order

| logg log(Tex)

0¢ | —0.15  0.0010

|60 | 050  0.0046

o 0.91 0.0070

3 Application

3.1 The data

3.1.1 The grid
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FIGURE 5: The AP grid used for the experiments. The filled points are the random selection
used for the forward model fitting.

The AP grid is built from the MARCS and BASEL GOG simulations of single stars (cycle 3
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data) using the nominal grid of the main stellar library (Sordo & Vallenari 2007). The strong
AP is T.g and the weak AP is log g. For the main experiments I use just those spectra with
[Fe/H]=0 and Ay=0. This leaves a grid of 274 unique AP combinations, as show in Fig. [3
There are 33 discrete Tt values (Nt = 33) and the number of discrete log g values at each
Teft, Nioge(Ter), varies between 6 and 12. log (Te) rather than T is used internally to ILIUM.

3.1.2 The spectra

The spectra are non-oversampled end-of-mission BP/RP spectra truncated to remove low SNR
pixels (bands). The original cycle 3 BP/RP have 2 x 180 bands, from which we select numbers
1,4,7 etc. in order to remove the factor 3 oversampling. Of this set of 120 bands, we retain bands
12 : 45 and 75 : 108, a total of 68 bands of which 34 bands are in BP covering 338—-634 nm and
34 bands are in RP covering 667—-1035 nm. Some experiments have been done varying the data
range, but not exhaustively and are not reported here. Note that the values in the corresponding
sigma spectra have to be reduced by v/3 in order to consistently remove the oversampling, as
summarized in Smith (2008). (Compared to the pixel range used in Bailer-Jones et al. 2008, we
have now removed three pixels from each end of BP and RP and an additional six pixels from
the red end of BP.)

3.1.3 Train and test data sets

Training data are used to build the forward model and the performance assessed on the test set.
The training set is a random selection of half of the grid, i.e. 137 objects (the filled points in
Fig.[5)), and is noise-free. The test set is the complement (the other 137). For a given experiment
the test set are at a single magnitude with zero mean Gaussian noise added via random sampling
(with the standard deviation given by the sigma spectra).

3.2 The forward model

The 1D forward model over the strong AP, Teg, is a smoothing spline with Npeg/2 = 16.5
degrees-of-freedom (DoF) (I use the R package sreg). Each of the 1D weak forward models
are also smoothing splines. As the maximum number of log g points is 10 (for the training
data), and because the variation with log g is quite smooth, I set the DoF for these fits to be
4. However, many of the T.g values in the training grid have fewer log g points: To avoid
overfitting, if Ny,ge (7o) < 4 then a linear fit is used (R package polreg with degree=1). If
Niogs (Terr) = 1, then no fit is performed and this weak component of the forward model is zero.

Getting a good fit for the forward model is a critical part of the algorithm. Figs. [6|and[7]show its
fit (to the noise-free grid, of course) as a function of log (T.g) and log g. The fits are generally
very good, also showing the degree of smoothness we would expect for these data plus a robust
extrapolation. Smoothness is important for a reliable calculation of the sensitivites via first
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FIGURE 6: Predictions of the full forward model as a function of log (T.g) at constant
log g=4.0 in 12 different bands (with wavelength in nm at the top of each panel). The black
crosses are the (noise-free) grid points, the red stars are the forward model predictions (at ran-
domly selected AP values) and the blue circles the noisy (G=15) grid points. The flux plotted
on the ordinate is in standardized units.

differences. Compare the flux scales between Figs. [6] and [7] and notice how small the flux

variation is as log g varies over its full range compared to T.g: This is what it means to be a
weak AP!

3.3 Results at G=15

I apply ILIUM to the G=15 test data with the nominal ILIUM parameter settings with decay
turned off. Fig. [§shows how the AP estimates evolve, for 5 different stars. The first iteration is
the nearest neighbour estimate; the final is the adopted AP estimate. The red lines show the true
APs. We see a range of convergence behaviours. Sometimes ILIUM very rapidly converges, for
other stars it takes longer, sometimes it is smooth, other times not, and it can be quite different
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FIGURE 7: As Fig.[6] but now showing predictions of the full forward model as a function of
log g at constant T=5000 K.

for the two APs for a given star. This behaviour of course depends not only the APs, but also the
specific measurements (as they are noisy). Sometimes the nearest neighbour estimate for one or
other of the stars is the correct one, and ILIUM may actually iterate away from this and converge
on a different value (although usually quite close). Convergence is almost always achieved, even
though decay is turned off (so there is nothing in the algorithm to enforce convergence). This
is a very encouraging property. Limit cycles in the APs are seen in a handful of cases, but the
oscillation amplitude is very small, say a few hundreths of a dex in log g or a few K in Tg. The
upper limits on the AP estimations as well as the AP updates, although in place, never had to
be enforced for any star by the algorithm.

As described in section [2.7.4] we can calculate the contribution to the update of AP j for each
band i: this is u;; in equation [I0] Fig. 9] and Fig. 10| show the spectrum of these AP updates
at each iteration for one particular star (no. 67). Points which lie outside of the limits (dashed
lines) are clipped. The numbers printed in each panel are the actual update (in standardized
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FIGURE 8: AP evolution for 5 stars in the test data set at G=15 (log g left, T.g right). The true
APs are written at the top of each panel pair and plotted as the red horizontal line. GoF is the
x? goodness-of-fit (equation
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units) calculated from the spectrum, i.e. the sum after the clipping. We can see how the spectrum
of updates evolves with time and how this correlates with the AP evolution in Fig. [§]
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FIGURE 11: AP residuals for the test data at G=15

The residuals are shown in Fig. [IT] The summary statistics are
| logg log(Tem)

d0¢ | —0.0073 1.0e 5

[60] | 0.065  0.0010

o 0.093 0.0014

In comparison, the results below are from a nearest neighbour method which has two advantages
with respect to ILIUM: (1) it uses leave-one-out cross validation, i.e. has almost the complete
grid for each estimation; (2) it is for noise-free test data

ILIUM, G=15
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| logg log(Ter)
0 _ -5
|§_z| O()Oig 3:(;183 4 Nearest neighbour, noise-free
T¢ 0.47 0.0067

ILIUM achieves absolute errors in log g and log (T.¢) which are a factor of 7 and 5 smaller re-
spectively. Thus ILTUM has achieved its main goal of overcoming the grid resolution to perform
significantly better than nearest neighbours.
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FIGURE 12: Estimated AP uncertainties expressed as a ratio of the absolute value of the true
residuals, for G=15

As described in section [2.6] ILIUM can estimate individual AP uncertainties. We examine the
accuracy of these by comparing them to the true residuals on the test set. Fig. [I2]plots the ratio
of the AP uncertainties to the absolute value of the true residuals. This is plotted in the same
way as the AP residuals in Fig. [TT]to show any variation with AP. (We perhaps see a tendency
towards a smaller ratio for log g at low log g.) The plots are limited to ratios below 5: there are
26 cases (from 274) where the uncertainty estimate is more than five times the true residual, in
all cases because the residual is very small rather than the uncertainty estimate unreasonably
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large. Indeed, the largest estimated uncertainties are 0.27 dex in log g and 0.0072 in log ("Teg).
41% of the uncertainty estimates are within a factor of 2 of the true residual, which shows the
uncertainty estimates to be order-of-magnitude correct. (We obviously would not expect the
distribution of the ratios to closely peak around 1, as this would imply a systematic error which
can be accurately predicted and corrected for!)

3.4 Results at G=20

I now apply ILIUM to the G=20 test data again with the nominal ILIUM parameter settings with
decay turned off. Fig.|13|shows how the AP estimates evolve, for the same 5 stars as shown in
Fig. [§]for G=15. Notice how the algorithm gets stuck in limit cycles for some objects. Turning
on update decay would help in these cases. Due to the larger noise, the calculated AP updates
are much less accurate (the noise results in an error in the term Jp in equation [)). This is
probably the reason why the AP extrapolation limits are now enforced at many iterations for
many stars. The upper limit on the AP step sizes were also imposed on a few occasions. The
AP residuals are plotted in Fig.[I4]and the corresponding summary statistics are as follows

| logg log(Ten)

dp | —0.21 0.0045

G| 114 oor9  HUMG=20

o 1.53 0.027

There is now a mild systematic error in log g and the log g errors are very large. However,

Teg can still be estimated to an average uncertainty of 4.3% (the percentage error in Teg is 2.3

times the error in log (Teg)). In comparison, the performance of the nearest neighbour algorithm

using leave-one-out cross validation on the same data (i.e. all points with noise corresponding
to G=20) is

| logg log(Tex)

0p | —0.01 0.002

|6p] | 143 0.035

o 1.80 0.047

Thus even though the nearest neighbour grid is twice as dense (yet noisy), it does slightly worse
than ILIUM in log g and more than 50% worse for log (Teg).

Nearest neighbour, G=20

Fig [I5] shows how the predicted spectrum (in black) varies with the iterations, for star 32,
which has log g=4.5 dex and T.=5750 K. These can be compared to the AP predictions at each
iteration show in Fig. As the predicted spectrum is predicted by the smooth forward model,
it is much smoother than the noisy true spectrum: We see that ILIUM has some power to smooth
over noise spikes in the original spectrum, particularly given that AP contribution clipping is
used. (I did not show a corresponding spectrum prediction plot for G=15, because there the flux
differences can hardly be seen.)

The goodness-of-fit (GoF) values (equation[7)) are shown in Fig. Many values are near unity,
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FIGURE 13: AP evolution for 5 stars in the test data set at G=20 (log g left, Teg right). The
true APs are written at the top of each panel pair and plotted as the red horizontal line. GoF is
the x? goodness-of-fit (equation
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FIGURE 15: Predicted spectrum at each iteration (red) compared to the measured spectrum
(black) for star number 32 (log g=4.5 dex and T.5=5750K). The vertical dashed line marks

the boundary between BP and RP.

Technical Note

29



Gaia ILIUM

’ PAC C U 8 GAIA-C8-TN-MPIA-CBJ-042

indicating that the spectra are fit well by ILIUM, which is also a reflection of the forward model
being a good approximation of the generative function. Large GoF values for unseen data would
indicate that ILTUM has not made a good fit, which in turn would suggest that the object is not
explained by the generative function. This could occur if the forward model (our approximation
of the generative function) is built from stars and ILTUM is then presented with a quasar.
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FIGURE 16: Distribution of the goodness-of-fit (reduced x?) values for the G=20 test data

3.5 Other results

Results at other magnitudes (all with the nominal algorithm parameters and no decay) are as
follows]

3GOG cycle 3 BP/RP data were only provided at G=15, 18.5 and 20.0. To simulate noisy spectra at other
magnitudes I scaled the flux and sigma spectra either from the G=15 data (to achieve G=16.2) or from the G=18.5
data (to achieve G=17.5 and G=19.0) assuming the “background limit”, i.e. SNR o flux. (Given the way the data
are represented, this actually involves scaling the flux spectra and leaving the sigma spectra unchanged: see Mantis
issue 3531.) This underestimates the SNR (is conservative) when scaling to fainter magnitudes (i.e. for G=16.2
and 19.0) and overestimates when scaling to brigher magitudes (i.e. for G=17.5).
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- logg log (Te)
0 | —0.0043 —6.7e°
— ILIUM, G=16.2
06| 0.078 0.0013
o 0.12 0.0018
logg log(Ter)
0¢ | —0.0028 5.3e*
— ILIUM, G=17.5
06| 0.15 0.0025
o 0.218 0.0033
- logg log (Ter)
0¢p | —0.051 9.8¢¢
— ILIUM, G=18.5
06| 0.35 0.0057
op) 0.51 0.0080
| logg log(Ten)
0¢p | —0.032 0.0022
—_ ILIUM, G=19.0
06| 0.55 0.0090
o 0.77 0.013

At G=18.5, extrapolation limits were only imposed for two (of 137) objects. Around 10% of
objects show limit cycles in one or other of the APs but generally of a small amplitude. The
trend with magnitude is as we would expect. We continue to get good results down to G=19.0.

Finally, we now build a new, larger, grid (for training and testing) which additionally shows

variance in [Fe/H]. We do not attempt to estimate it, so it represents a ‘“‘nuisance parameter’”

which will make the estimation of Tt and log g harder. The [Fe/H] values range from —5 dex

to +1 dex in steps of 0.5 dex. The full grid has 4361 stars of which we randomly select 75% for
training and test the performance on the remaining 25%. The performance at G=15 is

| logg log(Tex)

0¢p | —0.037  T.de—4

[6¢] | 053 0.0058

o 0.90 0.0078

The results are, of course, somewhat worse that that achieved when [Fe/H] is fixed at zero,
being similar to what was achieved around G=18.5 or 19 for [Fe/H]. However, at T.>8000 K
or so, the log g residuals are just as small as the fixed [Fe/H] case, because metallicity variations
have hardly any impact on the spectrum of hot stars. Around 10% of objects show limit cycles
(sometimes now with periods of several iterations).

ILIUM, G=15 with wide [Fe/H] variation

Results of ILTUM on T, [Fe/H] estimation at constant log g will be demonstrated in a future
technical note (GAIA-C8-TN-MPIA-CBJ-043).
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4 Summary and discussion

ILIUM produces very good results on end-of-mission non-oversampled G=15 BP/RP spectra:
0.07 dex in log g and 0.2% in T.x (mean absolute errors) for stars with a wide range of T.g
(4000 to 15000K) and log g (—0.5 to 5.0dex). The only reason it hasn’t been extended to
hotter stars is that I have not yet added the OB star library. The results are as reasonable as can
be expected at G=20, with a Tg accuracy of 4%, while log g is quite poor at 1.1 dex. Of course,
these are all “synthetic” errors, in the sense that there is no mismatch between the training grid
and the test data.

The results at G=15 are several times better than nearest neighbours. This demonstrates that
ILTUM can significantly improve upon the AP resolution limit set by the grid, which sets the
lower limit on the accuracy for the nearest neighbours method The results validate the forward
modelling procedure and the iterative approach to local linear interpolation. At G=20 ILIUM
still has superior accuracy, but only around 50% better, presumably because the noise level is
now similar in size to the differences between spectra at neighbouring grid pointsE]

Central to ILIUM is the idea of the forward model, which predicts the photometry given esti-
mates of the APs. This is always a unique function, and can be calculated independently for
each band, so in theory is a simple smoothing problem to fit it. It is complicated in practice,
however, by the presence of strong and weak APs, which have very dissimilar impacts on the
variance in the flux data. This is solved by splitting the forward model into two components.

Implicit in the method is the use of the local sensitivities to weight the contributions of the flux
bands to the AP updates at each iteration. (The sensitivites are the derivatives of the fluxes with
respect to the APs and are local in the sense that they vary with the AP values themselves.)
Bands with low sensitivites automatically make a small contribution to the APs. (In principle,
therefore, we may add any number of bands and ILTUM will down weight the irrelevant ones.)
The two component approach to the forward model is critical here, because it ensures that the
flux variation over the weak AP is smooth and hence that its sensitivities can be estimated
accurately.

Using the forward model we can provide a goodness-of-fit even for unlabelled data, thus permit-
ting detection of outliers which do not fit the model. As the forward model can be extrapolated,
sensible AP estimates and GoF measures can be obtained beyond the limits of the grid. Finally,
the linearization in ILIUM allows us to estimate individual AP uncertainties. Comparison of
these with the true residuals demonstrates these estimates to have the right order of magnitude,

4One could average over k nearest neighbours, thereby reducing the variance, but at the cost of increased bias
in the AP errors (this is the standard bias—variance tradeoff).

SIf the error ellipsoid were large compared to the grid spacing, then we could simply use nearest neighbours
and estimate the APs as the of the neighbours inside the error elipsoid, with the standard deviation providing an
error estimate (although finding them all is time consuming). ILTUM brings the most benefit in the low grid density
/ low noise limit, although it may always be preferable on account of its sensitivity weighting.
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with 40% of the uncertainties lying within a factor 2 of the true residual.

5 Future work

The major limitation of ILIUM at present is that it only works on two APs, currently T.g and
log g, although it could be any two. Extension to Ng strong APs should be simple by extending
the 1D strong forward model to be an Ng-D interpolation. Provided these strong APs (e.g.
Tes and Ay) explain a similar level of variance in the flux data, then a good fit via standard
regression methods should be possible. If we still had just one weak AP, then we need just 1D
weak forward models, but now one at each combination of the strong APs. With Ny, weak APs,
we could presumably replace each of these with a Ny, -D interpolation, which requires that the
set of weak APs explain a similar level of variance as each other (to within a few factors of 10).
The key, then, is to be able to split the APs into strong and weak categories, according to the
variance they explain in the spectra. From previous work and experience, it seems that T and
Ay on the one hand, and log g and [Fe/H] on the other, fit into these two categories. (Ry and
[a/Fe] still need to be examined.) The grid would need to be semi-regular, i.e. show a range of
values of all weak APs for each point in the grid of strong APs. There is no requirement for the
strong APs to be on a regular grid.

As ILIUM shows good convergence properties — even without using decay — it may be able to
identify multiple solutions if initialized at various (random) AP values (rather than the near-
est neighbour). In practice we would want to ensure that the same solution is located more
than once (within some tolerance). This has not yet been tested because I do not expect such
degeneracies with just T and log g.

To go much further with ILIUM - so that it can efficiently handle much larger amounts of data
as well as multiple APs — it will be necessary to convert it into a high level language (Java if
it is to be used for Gaia). The code is quite simple and can make use of standard matrix and
regression libraries. A fast k-D tree implmentation of the nearest neighbours initialization will
also be desirable as the grid grows.
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