
A Nelder-Mead Tuner for Svm

prepared by: Kester Smith
approved by:
reference: GAIA-C8-TN-MPIA-KS-016
issue: 1
revision: 0
date: 2009-03-13
status: Draft

Abstract

Read at your own risk, as this is a working document and has notyet been checked!

CU8
Svm Tuner
GAIA-C8-TN-MPIA-KS-016

Document History

Issue Revision Date Author Comment

D 0 2009-02-18 KS Document created

Contents

1 Introduction 4

2 Outline of the algorithm 4

3 Application to the problem of Svm tuning for Gaia algorithms 7

3.1 Minimum bounds . 7

4 Convergence 8

5 Code description 8

6 Controlling the algorithm 8

7 Some outstanding problems 10

7.1 Poor starting values .. . 10

7.2 Local maximum . 10

7.3 Overfitting . 10

8 A basic test 10

9 Future development 15

Technical Note 2

CU8
Svm Tuner
GAIA-C8-TN-MPIA-KS-016

10 Summary 15

Technical Note 3

CU8
Svm Tuner
GAIA-C8-TN-MPIA-KS-016

1 Introduction

Many of the classifiers and parameterizers in use by the MPIA group are based on Support
Vector Machines (SVM)1. This algorithm is used in three different versions: for multiclass
classification, parameterization and in one-class mode to detect outliers. Each version requires a
number of parameters to be set. The classification algorithmrequires a ’penalty term’, C, which
governs the amount of regularization of the model, the one-class version requires a similar
parameter, nu, which basically governs the fraction of a training set allowed to be classed as
outlying. The parameterization version takes a value, epsilon, which specifies the width of the
regression ’hypertube’ within which points are consideredwell fitted and therefore ignored (the
regression takes as support vectors only points which lie beyond a certain tolerance threshold
from the regression line, just as the classifier considers only points on the maximum margin
of the hyperplane). In addition, all versions used by MPIA currently take the Radial Basis
Function Kernel (RBF), which requires the setting of a kernel parameter, gamma, which sets
the scale of the kernel function (exp−γ‖|xi − xj‖|

2).

The performance of the Svm is at times critically dependent on the choice of these parameters,
and finding the optimum combination of values can be time consuming. The standard way of
doing this is to scan the parameter plane, or, for the parameterizer, cube, in steps of factors of
two, and then to home-in on the optimum value with a finer search. This method can be tiresome
because it typically requires a level of human supervision,making it unsuitable for repeated
automated tuning of many models. Simple automation algorithms could be implemented, and
some are available in the R package used by the group for testing. For the Java implementation,
the tuning algorithm had to be written from scratch. We therefore decided to implement a
Nelder Mead (or Amoeba-simplex) type algorithm, instead ofthe straightforward grid search.

This document acts as a combined software design document, user manual, and testing de-
scription for the Nelder Mead tuner. It concludes with a critique of the currently implemented
version and some suggestions for future improvement.

2 Outline of the algorithm

The Nelder Mead algorithm is one of the most well known and widely used algorithms for
optimization. A good description is available in the Numerical Recipes (Press et al.) and one
can also search online in Wikipedia or simply with a Google search to obtain a description, if
the following overview is not sufficient.

The algorithm at first initializes a simplex in the parametersearch space. ForN parameters,
this simplex hasN + 1 elements. An initial set of parameters is chosen, and this choice is used

1We use the libSvm implementation with a Java wrapper, See Chih-Chung Chang and Chih-Jen Lin, LIBSVM
: a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm

Technical Note 4

CU8
Svm Tuner
GAIA-C8-TN-MPIA-KS-016

as one of the elements. The otherN elements are created by offsetting each of the parameters
by a certain amount (typically 50% of their value, but the choice is entirely at the discretion of
the user). This is easy to draw in 2d, and in fact the classification Svm has two parameters, so
for this case the illustration is not even a simplification. Having set up the simplex, we evaluate

FIGURE 1: The initialisation of the simplex for two parameters, x and y. The simplex has
vertices (elements) at(x, y) and at points displaced from these along lines parallel to the axes,
(x + dx, y) and(x, y + dy).

the model for each element and find the element with the worst performance. This element is
eliminated and replaced with its reflection in the centroid of the other elements. (Figure 2). This
is the basic move of the algorithm. In this way, the simplex will eventually ’walk’ towards a

FIGURE 2: The worst point of the original simplex, here shown as an open circle, is reflected
in the centroid of the other points.(xworst, yworst) → (xbest + xmid − xworst, ybest + ymid −
yworst) The new point is shown as a filled symbol. Note that the axes of this plot represent the
values of the parameters, and not the quality of the models.

minimum or maximum (hence the name ’amoeba’, sometimes applied it). A few modifications
to this basic idea are however either necessary or desirable. Firstly, it can be easily seen that
there is a problem if the new point created during the step is still the worst point. In this case,
it is simply reflected back again and the algorithm enters andinfinite loop. To prevent this, a
second move is applied, that we refer to here as ’contraction’. It works as follows; the newly

Technical Note 5

CU8
Svm Tuner
GAIA-C8-TN-MPIA-KS-016

reflected point is evaluated and, if it is determined that it is still the worst point, a new point is
created by shortening the reflection vector (Figure 3). We now have three candidate points, the

FIGURE 3: If the new point is still the worst, a ’contracted’ reflection is attempted.

original worst point, the reflected point, and the new point that is the result of the ’contracted’
reflection. We choose the best of these three as the new element. If this ’best-of-the-worst’
element is either the original point or the reflected point, we perform another move, which we
call here ’shrinking’ (Figure 4). This shrinking helps prevent the infinite loop occurring. It

FIGURE 4: If the orignal point, or the reflected point, but NOT the ’contracted’ point is re-
tained, the simplex is shrunk towards the best point, as illustrated.

also allows the algorithm to reduce the scale of the search. Some sort of shrinking is anyway
necessary if the algorithm is to eventually home in on the solution, and in the situation occuring
here, where the old point, its reflection and the contracted reflection are all worse than the two
other points, it seems that two other points probably lie on aridge along which the solution
might well also lie, perhaps approximately between them. Shrinking at this stage is therefore a
reasonable move.

Finally, if the new point generated by the reflection is in fact the new best point, better than the
other original points, we perform a move called an ’expansion’. This is designed to accelerate
the downward (or upward) movement of the simplex in the eventthat we have found a direction
of steep descent (ascent). (see Figure 5)

Technical Note 6

CU8
Svm Tuner
GAIA-C8-TN-MPIA-KS-016

FIGURE 5: If the newly reflected point is the best, we expand the reflection in a search for an
even better point.

3 Application to the problem of Svm tuning for Gaia algo-
rithms

For the classification, there are two parameters to tune, thecost parameter C and the Kernel
parameter gamma. For the parameterization, we have to add the epsilon parameter. The one
class Svm also has two parameters, nu (which is related to themulticlass C) and the Kernel
parameter gamma. The one class Svm is not currently tuned, however, and it is not clear how
this might be approached (the problem is defining a definitiveset of outliers for a test). The
approaches for classification and parameterization are essentially the same apart from the extra
parameter in the case of parameterization.

3.1 Minimum bounds

One particular problem with the Svm tuning is that the parameters all have lower bounds. For
the Kernel parameter gamma, and epsilon in the case of parameterization, the values cannot go
to zero or below. The case of C is similar, except that the libSvm implementetion we use takes
C as an integer, so we need to prevent the value of C falling below 1 (the tuner deals with C as
a double for computational reasons). We deal with this boundby introducing a floor below the
parameters. This floor is set to be half of the lowest value forthat parameter yet tested in the
simplex. If the value of a parameter falls below the lower bound, it is reset to the value of the
floor. This allows the algorithm to explore ever lower valueswithout breaking the bound. There
is some difficulty when dealing with C, due to the double-to-integer conversion we could end
up dealing with values of C all effectively the same due to theinteger rounding. In fact though
this would lead to identical models (at least in the C parameter) and so we would then expect
convergence.

Technical Note 7

CU8
Svm Tuner
GAIA-C8-TN-MPIA-KS-016

4 Convergence

We consider the algorithm to have converged when a certain minimum spread between the best
and worst models is acheived.

5 Code description

The code consists of two Java classes, Tuner and TuningSimplex. The Tuner sets up the training
set and the initial parameters and controls the moves made according to the algorithm. The
TuningSimplex class stores the values of the parameters andtrains and evaluates the models.

6 Controlling the algorithm

For Dsc, the algorithm can be run as part of the training mode.It is controlled by setting
properties keys in the dsctraining.properties file. These are as follows;

gaia.cu8.dsc.doTuning=false

This turns the tuner on and off.

gaia.cu8.dsc.tuner.trainFrac=0.5

The tuner splits the training data into two parts and uses onefor training models and the other
for testing. This property selects how much of the training data is to be used as the rtraining set
for the tuner. The actual set is selected randomly.

gaia.cu8.dsc.tuner.tunerRandomSeed=false

The random number generator used to select training sourcescan be set to be 100 (tunerRan-
domSeed=true) for reproducability.

gaia.cu8.dsc.tuner.startVarC=1.5

This selects the initial variation in the C parameter.

Technical Note 8

CU8
Svm Tuner
GAIA-C8-TN-MPIA-KS-016

gaia.cu8.dsc.tuner.startVarGamma=1.5

The initial offset to gamma

gaia.cu8.dsc.tuner.expandFact=1.8

This property controls the additional expansion made with the expand move, described previ-
ously. If the normal reflection in the centroid is thought of as a vector in parameter space, the
expandFact is the factor by which this is multiplied to make the expanded reflection. The factor
should obviously be greater than 1. and is recommended to be kept less than 2.

gaia.cu8.dsc.tuner.contractFact=0.8

The factor controlling the scale of the contraction move. Ifthe reflection in the centroid is
contracted, this is the factor by which the reflection vectoris reduced. It should obviously be
less than 1. and is recommended to be kept greater than 0.5.

gaia.cu8.dsc.tuner.shrinkFact=0.3

Thye scale of the shrink move. The two (or three) less good vertices of the simplex are shifted
towards the best point. This factor is the fraction of the connecting vectors along which the
points move. Must be less than 1. and greater tha nzro, is recommended to be kept less than
0.5.

gaia.cu8.dsc.tuner.convergeSpread=0.02

This is the spread between the best and worst performing models (in%) accepted for conver-
gence.

gaia.cu8.dsc.tuner.maxSteps=50

This is the maximum number of iterations attempted before the optimization is abandoned.

The control of the tuner for regression is similar, with the addition of keys to control the epsilon
parameter.

Technical Note 9

CU8
Svm Tuner
GAIA-C8-TN-MPIA-KS-016

7 Some outstanding problems

7.1 Poor starting values

If started with very poor values for the parameters, the algorithm sometimes converges imme-
diately (in the case of classification), since the results for each model tend to1/N , whereN is
the number of classes into which the objects are divided. This problem is easily avoided with
some common sense in the choice of initial values. If the search does converge with success
rate1/N (for N-class classification) then it is clear that this is a poor solution and the process
should be rerun.

7.2 Local maximum

There is always the danger that the algorithm will converge on a local maximum (miniumum)
and miss a much better solution elsewhere in the parameter space. Safeguards against this
include choosing large enough values of the parameters startVarC and startVarGamma (and
startVarEpsilon if needed) that the initial simplex coversa wide area of parameter space, and
choosing sufficiently large values of expandFact that the algorithm has a good chance to break
out of a local maximum, and sufficiently small values of shrinkFact and contractFact that the
algorithm does not too rapidly shrink the simplex towards what may be a local solution. Other
than this, the main safeguard is to rerun the algorithm afterconvergence with a different set of
starting conditions and check that it converges to a similarsolution. This procedure could be
repeated two or three times.

7.3 Overfitting

The algorithm at present splits the supplied data once into atraining set and a testing set, and
then repeatedly trains models with different choices of parameter. With this scheme, there is
a danger that the algorithm will overfit the parameters to theparticular choice of training and
test objects, and that the solution will therefore no longerbe optimal when the full training set
is used to train a model for application to a new input data set. Ideally, the model evaluation
would include a cross validation scheme to minimise the riskof this, but at present this is
not implemented. The user can guard against this eventuality by making multiple runs of the
algorithm with different random splits in the input data (tunerRandomSeed=false).

8 A basic test

For this test, the Dsc V5.0 was used, together with the dataset c3 m200 fortest24class75pc trn.
The parameters for the tuner were as follows;

Technical Note 10

CU8
Svm Tuner
GAIA-C8-TN-MPIA-KS-016

gaia.cu8.dsc.doTuning=true
gaia.cu8.dsc.tuner.trainFrac=0.2
gaia.cu8.dsc.tuner.tunerRandomSeed=false
gaia.cu8.dsc.tuner.startVarC=1.5
gaia.cu8.dsc.tuner.startVarGamma=1.5
gaia.cu8.dsc.tuner.expandFact=1.8
gaia.cu8.dsc.tuner.contractFact=0.8
gaia.cu8.dsc.tuner.shrinkFact=0.3
gaia.cu8.dsc.tuner.convergeSpread=0.02
gaia.cu8.dsc.tuner.maxSteps=50

The tuner was set up with four different initial values of C and gamma (Table 1). The results
in terms of the final solution and the number of models computed are shown. This is illustrated
graphically in Figure 6 which shows the progress of the tunerin each case from the starting
position to the solution.

Initial parameters for tuner test
Initial C Initial gamma Number of models Final C Final gamma Overall completeness
10 10−5 51 1169 7.765 × 10−4 69.33%
10 0.4 52 29 5.415 × 10−3 70.75%
100 0.2 66 373 9.675 × 10−4 69.56%
2759 0.0486 72 457 8.397 × 10−4 70.53%

TABLE 1: Tests of the tuner for the DSC for four different sets of starting values. The total
number of models computed on the way to the solution is indicated (that is, all the models
ever included in the simplex, plus any trial contractions/expansions that were rejected). The
composition of the training sample for each test case is randomly selected from the input
objects and differs between the tests.

The solutions for the cases(C, gamma)init = (2759, 0.0486) and(C, gamma)init = (100, 0.2)
are similar. The solution for the case(C, gamma)init = (10, 10−5) has a larger value of C. The
solution for(C, gamma)init = (10, 0.4) finds a solution at lower C. (C=29). All the solutions
however converge around a completeness of∼ 70%. Two explanations are possible, either
the model performance is very insensitive to the precise choice of parameters, or the tuner is
overfitting based on the choice of the training objects. In fact, the completeness of the models
around the region of all the solutions is similar, around 70%or a little less, and so the former
explanation is perhaps more likely than the latter. Nevertheless, this test should be conducted
again with the same training set in each case, to exclude the possibility that the differences are
due to overfitting for particular choices of training objects. .

For comparison, we calculated a grid of models with regularly varying values of C and gamma
across the plane searched by Nelder Mead, and we reproduce the results in Figure 7. These
models were all calculated with the same split between training and testing objects (20% of hte

Technical Note 11

CU8
Svm Tuner
GAIA-C8-TN-MPIA-KS-016

FIGURE 6: The progress of the four test cases from Table 1 towards a solution. The lines link
the parameter choices in the order they were computed. The points themselves are scaled in
size according to the completeness achieved by the model, with approximately 45% being the
worst performance and approximately 70% being the best (seescale). It can be seen that the
model starting at (2759,0.048) consistently produces results around the 70% level, whereas
the other two starting points are initially very much less successful. All the points in the
broad region around the three solutions have completeness of 65% or better, suggesting that
the performance is a relatively insensitive function of theparameters in this region.

Technical Note 12

CU8
Svm Tuner
GAIA-C8-TN-MPIA-KS-016

input objects were used for training). The same objects wereused for every model. It can be
seen that the optimum models form a ridge along the middle of the plot over a broad range of
values of C. In Figure 8 we overplot both the Nelder Mead search and the plane grid search
for comparison. It can be seen that the Nelder Mead search finds the optimum ridge quite
successfully in all the test cases, but does not really search along the ridge to optimize along it.

FIGURE 7: This plot shows the correct classification rate for modelstrained with different
values of C and gamma across the same plane searched by the Nelder Mead tests shown in
Figure 6. Each point is plotted twice, once with an open symbol of fixed size, and once with
a filled symbol with a size proportional to the completeness acheived, with the same scale as
in Figure 6. The points are also colour coded according to thesuccess of each model, with the
amount of green in the RGB colour proportional to the successrate between 46% and 68% and
the amount of red decreasing in proportion (so red points arethe worst and green the best).
A second scale kicks in at 68%, where we introduce blue in proportion to the success rate
between 68% and 70% and reduce green proportionally . The very best points (68% to 70%)
therefore appear in blue. A ridge of good solutions extends across the middle of the plane.

Technical Note 13

CU8
Svm Tuner
GAIA-C8-TN-MPIA-KS-016

FIGURE 8: This plot essentially shows a superposition of the data inFigures 6 and 7. It
can be seen that the Nelder Mead tuner in each case finds the optimum ridge of blue points
extending across the middle of the plane. With the tested parameters, it does not progress
further to optimize within the blue ridge. Restarting the tuner from each finishing point did
not substantially change the result in any case.

Technical Note 14

CU8
Svm Tuner
GAIA-C8-TN-MPIA-KS-016

9 Future development

I intend to carry out some tests with a search in log values, tosee if the algorithm in fact
converges faster. It may also be desirable to experiment with shrinking/contracting/expanding
rates that vary depending on the parameter concerned. This is motivated by the appearance of
the optimum ridge in Figure 7, which extends over a wide rangein C but is always more tightly
constrained in the gamma direction.

10 Summary

I have presented a short overview of a Nelder Mead implementation to find the optimum pa-
rameters for SVM in classification. A similar implementation can also be used to tune the Svm
for parameterization, and is used in GSP-Phot. I gave a briefoverview of how the code can be
used. I presented a test case showing that the algorithm findsreasonable (although not neces-
sarily globally optimum) solutions in several test cases. Ialos discuss possible strategies for
overcoming the algorithm’s shortcomings, and possible future developments of the code.

Technical Note 15

	Introduction
	Outline of the algorithm
	Application to the problem of Svm tuning for Gaia algorithms
	Minimum bounds

	Convergence
	Code description
	Controlling the algorithm
	Some outstanding problems
	Poor starting values
	Local maximum
	Overfitting

	A basic test
	Future development
	Summary

