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1 Introduction

Many of the classifiers and parameterizers in use by the MRbAm are based on Support
Vector Machines (SVI\ﬂl This algorithm is used in three different versions: for tinlhss
classification, parameterization and in one-class modetextioutliers. Each version requires a
number of parameters to be set. The classification algoréguires a 'penalty term’, C, which
governs the amount of regularization of the model, the dasscversion requires a similar
parameter, nu, which basically governs the fraction of eniing set allowed to be classed as
outlying. The parameterization version takes a value |@psivhich specifies the width of the
regression 'hypertube’ within which points are considesed fitted and therefore ignored (the
regression takes as support vectors only points which e a certain tolerance threshold
from the regression line, just as the classifier considehg points on the maximum margin
of the hyperplane). In addition, all versions used by MPIArently take the Radial Basis
Function Kernel (RBF), which requires the setting of a kepaameter, gamma, which sets
the scale of the kernel functioaxp —v|||z; — ;| |?).

The performance of the Svm is at times critically dependerthe choice of these parameters,
and finding the optimum combination of values can be time gonsg. The standard way of
doing this is to scan the parameter plane, or, for the paenizet, cube, in steps of factors of
two, and then to home-in on the optimum value with a finer $earbis method can be tiresome
because it typically requires a level of human supervisioaking it unsuitable for repeated
automated tuning of many models. Simple automation algmstcould be implemented, and
some are available in the R package used by the group fanges$tor the Java implementation,
the tuning algorithm had to be written from scratch. We tfegee decided to implement a
Nelder Mead (or Amoeba-simplex) type algorithm, insteathefstraightforward grid search.

This document acts as a combined software design documssit,uanual, and testing de-
scription for the Nelder Mead tuner. It concludes with aigué of the currently implemented
version and some suggestions for future improvement.

2 Outline of the algorithm

The Nelder Mead algorithm is one of the most well known andelyidused algorithms for
optimization. A good description is available in the NuroatiRecipes (Press et al.) and one
can also search online in Wikipedia or simply with a Googlarsle to obtain a description, if
the following overview is not sufficient.

The algorithm at first initializes a simplex in the parametearch space. Fa¥ parameters,
this simplex hasV + 1 elements. An initial set of parameters is chosen, and tlugetis used

Iwe use the libSvm implementation with a Java wrapper, SeB-Chiuing Chang and Chih-Jen Lin, LIBSVM
: a library for support vector machines, 2001. Softwarelate at http://www.csie.ntu.edu.tw/ cjlin/libsvm

Technical Note 4



Gaia Svm Tuner

“DPAC cus GAIA-C8-TN-MPIA-KS-016

as one of the elements. The othérelements are created by offsetting each of the parameters
by a certain amount (typically 50% of their value, but theickas entirely at the discretion of
the user). This is easy to draw in 2d, and in fact the classificssvm has two parameters, so
for this case the illustration is not even a simplificatioravihg set up the simplex, we evaluate

yO+dy [

yo0 9

0

FIGURE 1: The initialisation of the simplex for two parameters, xdan The simplex has
vertices (elements) &t;, y) and at points displaced from these along lines paralleld@ies,
(z +dz,y) and(z, y + dy).

the model for each element and find the element with the wersbpnance. This element is
eliminated and replaced with its reflection in the centrdithe other elements. (Figuié 2). This
is the basic move of the algorithm. In this way, the simplel ewentually 'walk’ towards a

FIGURE 2: The worst point of the original simplex, here shown as aenagircle, is reflected
in the centroid of the other pOintSTworsta yworst) - (vrbest + ZTmid — Tworsts Yvest T Ymid —
Yworst) The new point is shown as a filled symbol. Note that the axeRSisfiot represent the
values of the parameters, and not the quality of the models.

minimum or maximum (hence the name 'amoeba’, sometimeseapip). A few modifications
to this basic idea are however either necessary or desir&bigly, it can be easily seen that
there is a problem if the new point created during the stepligte worst point. In this case,
it is simply reflected back again and the algorithm entersiafidite loop. To prevent this, a
second move is applied, that we refer to here as 'contractloworks as follows; the newly
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reflected point is evaluated and, if it is determined that &till the worst point, a new point is
created by shortening the reflection vector (Fidure 3). We have three candidate points, the

FIGURE 3: If the new point is still the worst, a 'contracted’ reflextiis attempted.

original worst point, the reflected point, and the new pdieit is the result of the 'contracted’
reflection. We choose the best of these three as the new dlerfi¢his 'best-of-the-worst’

element is either the original point or the reflected poird,verform another move, which we
call here ’shrinking’ (Figurél4). This shrinking helps pesx the infinite loop occurring. It

FIGURE 4: If the orignal point, or the reflected point, but NOT thent@cted’ point is re-
tained, the simplex is shrunk towards the best point, astitited.

also allows the algorithm to reduce the scale of the searomeSsort of shrinking is anyway
necessary if the algorithm is to eventually home in on thatgmh, and in the situation occuring
here, where the old point, its reflection and the contraatéidation are all worse than the two
other points, it seems that two other points probably lie aidge along which the solution
might well also lie, perhaps approximately between themin®img at this stage is therefore a
reasonable move.

Finally, if the new point generated by the reflection is intfdie new best point, better than the
other original points, we perform a move called an 'expamsidhis is designed to accelerate
the downward (or upward) movement of the simplex in the etreattwe have found a direction

of steep descent (ascent). (see Fidiire 5)
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FIGURE 5: If the newly reflected point is the best, we expand the reéflein a search for an
even better point.

3 Application to the problem of Svm tuning for Gaia algo-
rithms

For the classification, there are two parameters to tunecadbeparameter C and the Kernel
parameter gamma. For the parameterization, we have to adeptilon parameter. The one
class Svm also has two parameters, nu (which is related tonthieclass C) and the Kernel
parameter gamma. The one class Svm is not currently tunegMao, and it is not clear how
this might be approached (the problem is defining a defingeteof outliers for a test). The
approaches for classification and parameterization asmngably the same apart from the extra
parameter in the case of parameterization.

3.1 Minimum bounds

One particular problem with the Svm tuning is that the patanseall have lower bounds. For
the Kernel parameter gamma, and epsilon in the case of psgapation, the values cannot go
to zero or below. The case of C is similar, except that thevibh8nplementetion we use takes
C as an integer, so we need to prevent the value of C fallingnb#l(the tuner deals with C as
a double for computational reasons). We deal with this bdynihtroducing a floor below the
parameters. This floor is set to be half of the lowest valudiat parameter yet tested in the
simplex. If the value of a parameter falls below the lowerrwmhut is reset to the value of the
floor. This allows the algorithm to explore ever lower valuathout breaking the bound. There
is some difficulty when dealing with C, due to the doublesiteger conversion we could end
up dealing with values of C all effectively the same due toititeger rounding. In fact though
this would lead to identical models (at least in the C parametnd so we would then expect
convergence.
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4 Convergence

We consider the algorithm to have converged when a certaimmim spread between the best
and worst models is acheived.

5 Code description

The code consists of two Java classes, Tuner and Tuning&umifthe Tuner sets up the training
set and the initial parameters and controls the moves mazteding to the algorithm. The
TuningSimplex class stores the values of the parameterga@nd and evaluates the models.

6 Controlling the algorithm

For Dsc, the algorithm can be run as part of the training moldleés controlled by setting
properties keys in the ddcaining.properties file. These are as follows;

gai a. cu8. dsc. doTuni ng=f al se

This turns the tuner on and off.

gai a. cu8. dsc. tuner.trai nFrac=0.5

The tuner splits the training data into two parts and usedaniaining models and the other
for testing. This property selects how much of the trainiatads to be used as the rtraining set
for the tuner. The actual set is selected randomly.

gai a. cu8. dsc. tuner. t uner Randonteed=f al se

The random number generator used to select training sooacebe set to be 100 (tunerRan-
domSeed=true) for reproducability.

gai a. cu8. dsc.tuner.startVarC=1.5

This selects the initial variation in the C parameter.
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gai a. cu8. dsc. tuner. start Var Gamma=1. 5

The initial offset to gamma

gai a. cu8. dsc. t uner. expandFact =1. 8

This property controls the additional expansion made wWithéxpand move, described previ-
ously. If the normal reflection in the centroid is thought efaavector in parameter space, the
expandFact is the factor by which this is multiplied to mdie ¢xpanded reflection. The factor
should obviously be greater than 1. and is recommended tefiddss than 2.

gai a. cu8. dsc. tuner. contract Fact =0. 8

The factor controlling the scale of the contraction movethk reflection in the centroid is
contracted, this is the factor by which the reflection vetaeduced. It should obviously be
less than 1. and is recommended to be kept greater than 0.5.

gai a. cu8. dsc. tuner. shri nkFact =0. 3

Thye scale of the shrink move. The two (or three) less gooticesrof the simplex are shifted
towards the best point. This factor is the fraction of thermiing vectors along which the
points move. Must be less than 1. and greater tha nzro, ism@emded to be kept less than
0.5.

gai a. cu8. dsc. tuner. conver geSpr ead=0. 02

This is the spread between the best and worst performing Is1¢dé6) accepted for conver-
gence.

gai a. cu8. dsc. t uner. maxSt eps=50

This is the maximum number of iterations attempted befoeeothtimization is abandoned.

The control of the tuner for regression is similar, with tldeliéion of keys to control the epsilon
parameter.
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7 Some outstanding problems

7.1 Poor starting values

If started with very poor values for the parameters, therdlgm sometimes converges imme-
diately (in the case of classification), since the resulteéxh model tend tb/N, whereN is
the number of classes into which the objects are divideds ptoblem is easily avoided with
some common sense in the choice of initial values. If thecbedoes converge with success
rate1/N (for N-class classification) then it is clear that this is @psolution and the process
should be rerun.

7.2 Local maximum

There is always the danger that the algorithm will conveng@ docal maximum (miniumum)
and miss a much better solution elsewhere in the paramesee spSafeguards against this
include choosing large enough values of the parameterd/at@r and startVarGamma (and
startVarEpsilon if needed) that the initial simplex covaraide area of parameter space, and
choosing sufficiently large values of expandFact that tger&ghm has a good chance to break
out of a local maximum, and sufficiently small values of skiact and contractFact that the
algorithm does not too rapidly shrink the simplex towardstunay be a local solution. Other
than this, the main safeguard is to rerun the algorithm aftevergence with a different set of
starting conditions and check that it converges to a sinsibdution. This procedure could be
repeated two or three times.

7.3 Overfitting

The algorithm at present splits the supplied data once intaiaing set and a testing set, and
then repeatedly trains models with different choices ofpaater. With this scheme, there is
a danger that the algorithm will overfit the parameters topéeticular choice of training and
test objects, and that the solution will therefore no lorgeeoptimal when the full training set
is used to train a model for application to a new input data kkgally, the model evaluation
would include a cross validation scheme to minimise the atkhis, but at present this is
not implemented. The user can guard against this eventimglimaking multiple runs of the
algorithm with different random splits in the input datan@gmRandomSeed=false).

8 A basic test

For this test, the Dsc V5.0 was used, together with the diat83sa20Q fortest24class75pctrn.
The parameters for the tuner were as follows;
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gai a. cu8. dsc. doTuni ng=t rue
gai a. cu8. dsc. tuner.trai nFrac=0. 2
gai a. cu8. dsc. tuner. t uner Randonteed=f al se
gai a. cu8. dsc.tuner.startVarC=1.5
gai a. cu8. dsc. tuner. startVar Gamma=1. 5
gai a. cu8. dsc. t uner. expandFact =1. 8
gai a. cu8. dsc. tuner. contract Fact =0. 8
gai a. cu8. dsc. tuner. shri nkFact =0. 3
gai a. cu8. dsc. tuner. conver geSpr ead=0. 02
gai a. cu8. dsc. t uner. maxSt eps=50

The tuner was set up with four different initial values of Glagamma (Tabl€]l1). The results
in terms of the final solution and the number of models congbate shown. This is illustrated
graphically in Figurddé which shows the progress of the tunerach case from the starting
position to the solution.

Initial parameters for tuner test
Initial C Initial gamma Number of models Final C Final gamma vetall completeness

10 107° 51 1169  7.765 x 107* 69.33%
10 0.4 52 29 5.415 x 1073 70.75%
100 0.2 66 373 9.675 x 107 69.56%
2759 0.0486 72 457  8.397 x 107* 70.53%

TABLE 1: Tests of the tuner for the DSC for four different sets oftsig values. The total
number of models computed on the way to the solution is iteit&hat is, all the models
ever included in the simplex, plus any trial contractiorgémsions that were rejected). The
composition of the training sample for each test case isamahd selected from the input
objects and differs between the tests.

The solutions for the case€’, gamma);n;; = (2759, 0.0486) and(C, gamma),;: = (100, 0.2)
are similar. The solution for the cas€, gamma);,;; = (10,107°) has a larger value of C. The
solution for(C, gamma)»;z = (10,0.4) finds a solution at lower C. (C=29). All the solutions
however converge around a completeness-0f0%. Two explanations are possible, either
the model performance is very insensitive to the precisécehaf parameters, or the tuner is
overfitting based on the choice of the training objects. bt,fthe completeness of the models
around the region of all the solutions is similar, around 7804 little less, and so the former
explanation is perhaps more likely than the latter. Newets, this test should be conducted
again with the same training set in each case, to excludeasslplity that the differences are
due to overfitting for particular choices of training obgct

For comparison, we calculated a grid of models with regyheakying values of C and gamma
across the plane searched by Nelder Mead, and we reprodeicedhits in Figur€l7. These
models were all calculated with the same split betweenitrgiand testing objects (20% of hte
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Tuner test

log(gamma)
3

log(C)

FIGURE 6: The progress of the four test cases from Thable 1 towardkiaiso The lines link
the parameter choices in the order they were computed. Tihésgbemselves are scaled in
size according to the completeness achieved by the modalapproximately 45% being the
worst performance and approximately 70% being the bestysae). It can be seen that the
model starting at (2759,0.048) consistently producesltesmound the 70% level, whereas
the other two starting points are initially very much lesscassful. All the points in the
broad region around the three solutions have completerfe&ds¥ or better, suggesting that
the performance is a relatively insensitive function of plaeameters in this region.
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input objects were used for training). The same objects weeel for every model. It can be
seen that the optimum models form a ridge along the middleeptot over a broad range of
values of C. In Figur&l8 we overplot both the Nelder Mead deard the plane grid search
for comparison. It can be seen that the Nelder Mead search fivel optimum ridge quite
successfully in all the test cases, but does not really bedong the ridge to optimize along it.

Plane map
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FIGURE 7: This plot shows the correct classification rate for modelsed with different
values of C and gamma across the same plane searched by ther Nigad tests shown in
Figure[®. Each point is plotted twice, once with an open symbéixed size, and once with
a filled symbol with a size proportional to the completenadseaed, with the same scale as
in Figure[®. The points are also colour coded according teticeess of each model, with the
amount of green in the RGB colour proportional to the succagsbetween 46% and 68% and
the amount of red decreasing in proportion (so red pointgreravorst and green the best).
A second scale kicks in at 68%, where we introduce blue ingmtagn to the success rate
between 68% and 70% and reduce green proportionally . Tiyebest points (68% to 70%)
therefore appear in blue. A ridge of good solutions extertsss the middle of the plane.
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Tuner test
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FIGURE 8: This plot essentially shows a superposition of the datRigures[® andd7. It
can be seen that the Nelder Mead tuner in each case finds theuoptidge of blue points
extending across the middle of the plane. With the testednpeters, it does not progress
further to optimize within the blue ridge. Restarting thedufrom each finishing point did
not substantially change the result in any case.
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9 Future development

| intend to carry out some tests with a search in log valuesew if the algorithm in fact
converges faster. It may also be desirable to experimehtshitinking/contracting/expanding
rates that vary depending on the parameter concerned. Stistivated by the appearance of
the optimum ridge in Figurd 7, which extends over a wide rangebut is always more tightly
constrained in the gamma direction.

10 Summary

| have presented a short overview of a Nelder Mead implenientto find the optimum pa-
rameters for SVM in classification. A similar implementatican also be used to tune the Svm
for parameterization, and is used in GSP-Phot. | gave a bviefview of how the code can be
used. | presented a test case showing that the algorithmriadsnable (although not neces-
sarily globally optimum) solutions in several test caseslok discuss possible strategies for
overcoming the algorithm’s shortcomings, and possiblerutdevelopments of the code.
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