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Geological record:  climate

variations on 
10-100 Myr 
timescales

with evidence for widespread cooling and/or indirect or
equivocal evidence for permanent ice represent cool Earth
states. An important distinction between the cool and cold
Earth states is that the cool intervals have no unequivocal
evidence for permanent ice. Many original literature sourc-
es were incorporated in this analysis, but the compilations
of Frakes et al. (1992), Eyles (1993), Crowell (1999), Price
(1999), and Isbell et al. (2003) proved most valuable. All
CO2 and climate records were calibrated to the timescale
of Gradstein et al. (2004); chronostratigraphic nomencla-
ture also follows Gradstein et al. (2004). Formal statistical
analyses are not presented here: a comparison between
CO2 from proxies and geochemical models was presented
by Royer et al. (2004) but cannot be updated here owing
to the uneven time-steps of the revised data (see Fig. 1 cap-
tion). Statistical comparisons between CO2 and tempera-
ture are also not possible because the temperature data
presented here are largely derived from regional studies,
and so cannot be directly equated to global mean
temperatures.

3. Results and discussion

3.1. Fidelity of Phanerozoic CO2 record

All 490 CO2 proxy records and their attendant errors are
plotted in Fig. 1B, sorted by method; Fig. 1C plots the data
as a time series without error bars. When viewed at the
scale of the Phanerozoic (Fig. 1B and C), the overarching
pattern is of high CO2 (4000+ ppm) during the early Paleo-
zoic, a decline to present-day levels by the Pennsylvanian
(!320 Ma), a rise to high values (1000–3000 ppm) during
the Mesozoic, then a decline to the present-day. These
broad patterns are discernible even when the errors of indi-
vidual data points (Fig. 1B) are taken into account.

When the CO2 proxy record is compared to the range of
reasonable CO2 predictions from the GEOCARB III mod-
el (gray shaded region in Fig. 1C), it is clear that the vast
majority of proxy data fall within this uncertainty enve-
lope. This provides support for the fidelity of the proxy re-
cord. To explore this comparison further, Fig. 1D plots the
‘best-guess’ predictions of GEOCARB III against a locally
weighted regression (LOESS) of the proxy data, where the
LOESS is fitted to match the time-step of GEOCARB III.
Again, a positive correlation is evident between these two
independent records, and is consistent with previous anal-
yses (Crowley and Berner, 2001; Royer et al., 2004). We
can say with growing confidence that the broad, multi-mil-
lion-year patterns of CO2 during much of the Phanerozoic
are known.

If the GEOCARB and proxy CO2 records are used to
calculate radiative forcing (see Fig. 2 caption for details),
the same general patterns remain: radiative forcing is the
same or weaker than pre-industrial conditions only during
the two intervals of widespread, long-lived glaciation, the
Permo-carboniferous and late Cenozoic (Fig. 2). The main
difference between the radiative forcing (Fig. 2) and CO2

(Fig. 1D) records is that radiative forcing is comparatively
low during the early Paleozoic owing to a weaker solar con-
stant at that time.

3.2. Correlating CO2 to temperature: Late Ordovician
glaciation (Hirnantian; 445.6 – 443.7 Ma)

There is unequivocal evidence for a widespread but brief
Gondwanan glaciation during the end-Ordovician (Hir-
nantian Stage; 445.6–443.7 Ma). Several reports argue for
a longer interval of ice centered on the Ordovician–Silurian
boundary (e.g., 58 my in Frakes et al., 1992), and alpine
glaciers may have indeed persisted in Brazil and Bolivia
into the early Silurian (Crowell, 1999), but most recent
studies demonstrate that the dominant glacial phase was
restricted to the Hirnantian (Brenchley et al., 1994, 2003;
Paris et al., 1995; Crowell, 1999; Sutcliffe et al., 2000).

There is one CO2 data point available that is close in age
to this glaciation, and it suggests very high CO2 levels
(5600 ppm; see Fig. 3A; Yapp and Poths, 1992, 1996);
moreover, GEOCARB III predicts high CO2 levels at this
time (!4200 ppm; see Fig. 1D). Apparently, this event pre-
sents a critical test for the CO2-temperature paradigm (e.g.,
Van Houten, 1985; Crowley and Baum, 1991). However, it
is unclear what CO2 levels were during this event. The
single proxy record is Ashgillian in age, which spans the
Hirnantian but also most of the preceding Stage
(450–443.7 Ma); if the CO2 data point dates to the pre-Hir-
nantian Ashgillian, then this is consistent with a well-de-
scribed mid-Ashgillian global warm event (Boucot et al.,
2003; Fortey and Cocks, 2005). As for the insensitivity of
GEOCARB III to the glaciation, this is unsurprising given
the brief duration of the event. Kump et al. (1999)
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Fig. 2. Radiative forcing through the Phanerozoic. Radiative forcing is
derived following the protocol of Crowley (2000a) and the radiative
transform expression for CO2 of Myhre et al. (1998). For the calculation,
the CO2 records from Fig. 1D are used and solar luminosity is assumed to
linearly increase starting at 94.5% present-day values. Values are expressed
relative to pre-industrial conditions (CO2 = 280 ppm; solar luminosi-
ty = 342 W/m2); a reference line of zero is given for clarity. The dark
shaded bands correspond to periods with strong evidence for geograph-
ically widespread ice (see Section 2 for details).
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• 20-400 kyr periodicity (Milankovitch cycles)

‣ variation in eccentricity of Earth’s orbit

‣ also precession and variations in obliquity  

Petit et al. (1999)
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Geological record:  biodiversity

curve, and used species lists drawn from a large database of
fossil localities to standardize for sampling effort. The revised
Phanerozoic diversity curve seemed to them to be very different
from the Sepkoski curve. Jackson & Johnson (2001) raised a
third issue concerning geographical bias and the poor representa-
tion of high-diversity, low-latitude marine faunas in current
databases. Their recent collections from rocks in a small part of
the Caribbean had shown unexpectedly high levels of diversity
amongst Plio-Pleistocene invertebrates. Because the best-
described regional faunas of this time interval lay outside the
tropics, Jackson & Johnson (2001) concluded that new data were
needed to overcome geographical biases and obtain a true
indication of how marine diversity had changed. Finally, Smith et
al. (2001) provided an empirical case study showing how biases
in habitat representation in the rock record could seriously distort
global marine diversity curves. Since then, a steady stream of
papers have appeared questioning and probing Phanerozoic
marine diversity patterns.
In this review I shall briefly explain the problems that face

palaeontologists wishing to estimate marine diversity through
time, review some of the techniques currently being developed to
overcome these problems, and end by looking at a couple of
aspects of the Phanerozoic marine diversity curve that are now
under intense scrutiny.

What is wrong with the way marine diversity has been
estimated in the past?

Prior to 2001 Phanerozoic diversity curves were constructed from
a simple count of numbers of taxa recorded in any given time
interval (usually the 72–77 stage-level intervals of Sepkoski

(1982) and Benton (1993)). Compilations at any taxonomic level
can be used to construct diversity curves, but Robeck et al. (2000)
demonstrated that using more finely subdivided taxonomic group-
ings produced a more precise view of underlying diversity in the
rocks. Furthermore, although there will always be a certain
amount of error in taxonomic compilations, Sepkoski (1993) and
Adrain & Westrop (2000) both demonstrated that such error was
random and thus did not pose a serious problem to this approach.

The fossil record is of course notoriously incomplete, so to
compensate for this a technique called range interpolation has
been employed. Range interpolation removes some problems of a
patchy fossil record by assuming that a taxon is present in each
time interval between its first and last occurrence, whether or not
it has actually been found in those time intervals. Because the
fossil record is dominated by organisms with mineralized
skeletons, the history of those taxa with hard parts is taken as a
proxy for all marine diversity. The exact ratio of mineralized to
unmineralized taxa is unimportant so long as it has remained
broadly similar throughout the Phanerozoic. By assuming that
sampling is more or less uniform through time, the relative
numbers of taxa described from each time interval (or that cross
boundaries between intervals) can be used as a measure of how
diversity has changed.

This taxon-counting approach is simple to employ and see-
mingly robust to certain potential problems, but makes the
following three critical assumptions: (1) all time intervals are
equally well sampled; (2) preservation potential is uniform over
time; (3) taxonomists partition taxa in a uniform manner. Each
unfortunately is beset with problems.

Sampling of the rock record

There are two aspects of sampling that need to be considered:
geographical bias and variation in sampling intensity.

Geographical bias. Jackson & Johnson (2001) and Johnson
(2003) argued that any diversity curve constructed simply from
cataloguing the numbers of fossils already described was doomed
to failure because well-studied parts of the world that contribute
most to taxonomic compilations were not necessarily representa-
tive of global diversity. Specifically, they found that the Neogene
record of the tropics was woefully undersampled compared with
temperate regions, a view later reinforced by Valentine et al.
(2006).

European and North American data certainly contribute dis-
proportionately to taxonomic compilations, simply because fossil
collecting has been intensely pursued in those regions for much
longer (Kidwell & Holland 2002). However, extreme unbalance
in sampling between, say, Indo-Pacific faunas and those of
temperate North America is no problem if this bias applies
equally to all time intervals through the Phanerozoic.

Unfortunately, continental plates have migrated out of the
tropics over time (Allison & Briggs 1993; Walker et al. 2002;
Fig. 2). Because diversity is highest in the tropics, a long-term
trend of decreasing diversity could be created artificially simply
because the well-studied parts of the world have shifted over time
from equatorial to temperate latitude through plate migration.
Indeed, some palaeontologists are starting to factor out this bias
from their analyses (e.g. Bush & Bambach 2004; Crampton et al.
2006b). On the other hand, the smaller-scale rises and falls in
diversity from stage to stage that have been taken as the
signatures of mass extinction and radiation cannot be explained
by such slow changes in the positions of continental blocks
(Smith 2001).

Fig. 1. Phanerozoic diversity curves derived from counting the number

of taxa present in each stage, with range interpolation. (a) Genus-level

diversity, from Sepkoski (2002). (b) Family-level diversity from Benton

(1995) and Sepkoski (1997).
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Barringer crater,  Arizona
diameter = 1.2 km,  age = 49 ± 3 kyr 



Gravity anomaly map
(red high, blue low)

picture credit: Geological Survey of Canada

Chicxulub crater,  Yucatan
diameter = 170 km
age = 64.98 ± 0.05 Myr



Geological record:  impact cratering

• 180 impact craters (Earth Impact Database, U. New Brunswick)

• 15 m to 300 km diameter

• 63 yr to 2400 Myr old (some with very large uncertainties)
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Example claims of periodicity in geological time series

• Periodogram of impact crater dates (Yabushita 2004) 

• significant period claimed at 37.5 Myr
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Example claims of periodicity in geological time series

• Biodiversity (Rohde & Muller 
2005)

• significant period of 62 ± 3 Myr 
(after detrending) claimed
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It is well known that the diversity of life appears to fluctuate
during the course of the Phanerozoic, the eon during which hard
shells and skeletons left abundant fossils (0–542 million years
ago). Here we show, using Sepkoski’s compendium1 of the first
and last stratigraphic appearances of 36,380 marine genera, a
strong 62 6 3-million-year cycle, which is particularly evident in
the shorter-lived genera. The five great extinctions enumerated
by Raup and Sepkoski2 may be an aspect of this cycle. Because of
the high statistical significance we also consider the contri-
butions of environmental factors, and possible causes.

Sepkoski’s posthumously published Compendium of Fossil
Marine Animal Genera1, and its earlier versions, has frequently
been used in the study of biodiversity and extinction3,4. For our
purposes, diversity is defined as the number of distinct genera alive
at any given time; that is, those whose first occurrence predates
and whose last occurrence postdates that time. Because Sepkoski
references only 295 stratigraphic intervals, the International Com-
mission on Stratigraphy’s 2004 time scale5 is used to translate the
stratigraphic references into a record of diversity versus time; details
are given in the Supplementary Information. Although Sepkoski’s is
the most extensive compilation available, it is known to be subject
to certain systematic limitations due primarily to the varying
availability and quality of geological sections6,7. The implications
of this will be discussed where appropriate.

Figure 1a shows a plot of diversity against time for all 36,380
genera in Sepkoski’s Compendium. In Fig. 1b we show the 17,797
genera that remain when we remove those with uncertain ages
(given only at epoch or period level), and those with only a single
occurrence. The smooth trend curve through the data is the third-
order polynomial that minimizes the variance of the difference

 

Figure 1 Genus diversity. a, The green plot shows the number of known marine animal
genera versus time from Sepkoski’s compendium1, converted to the 2004 Geologic Time

Scale5. b, The black plot shows the same data, with single occurrence and poorly dated
genera removed. The trend line (blue) is a third-order polynomial fitted to the data. c, As b,
with the trend subtracted and a 62-Myr sine wave superimposed. d, The detrended data
after subtraction of the 62-Myr cycle and with a 140-Myr sine wave superimposed.

Dashed vertical lines indicate the times of the five major extinctions2. e, Fourier spectrum
of c. Curves W (in blue) and R (in red) are estimates of spectral background. Conventional

symbols for major stratigraphic periods are shown at the bottom.
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Suggested astronomical mechanisms

Perturbations of Oort
cloud by Galactic tide
and/or passing stars
⇒ comet impacts

Nearby supernovae
⇒ gamma rays

⇒ biological extinction

Star forming regions
⇒ cosmic rays
⇒ cloud formation
(highly questionable!)



Suggested causes of the periodicity

• motion of the Sun in the Galaxy

‣ vertical oscillation through disk 
(periods of 50-75 Myr)

‣ spiral arm crossing (timescale of 
50-100 Myr)

picture credit: Medvedev

Diamonds along the Sun’s track indicate its placement at inter-
vals of 100 Myr. We see that for this assumed pattern speed, the
Sun has passed through only two arms over the last 500 Myr.
However, if we assume a lower but still acceptable pattern speed
of !p ¼ 14:4 km s"1 kpc"1 (shown in Fig. 3 for !# " !p ¼
11:9 km s"1 kpc"1), then the Sun has crossed four spiral arms in
the past 500 Myr and has nearly completed a full rotation ahead
of the spiral pattern. Thus, the choice of the spiral pattern speed
dramatically influences any conclusions about the number and
timing of the Sun’s passages through the spiral arms over this
time interval.

The duration of a coherent spiral pattern is an open question,
but there is some evidence that long-lived spiral patterns may be
more prevalent in galaxies with a central bar. For example, numer-
ical simulations of the evolution of barred spirals by Rautiainen&
Salo (1999) suggest that spiral patternsmay last several gigayears.
Their work suggests that the shortest timescale for the appearance
or disappearance of a spiral arm is about 1 Gyr. Therefore, it is rea-
sonable to assume that the present day spiral structure has prob-
ably been more or less intact over the last 500 Myr (at least in the
region of the solar circle).

3. DISCUSSION

Shaviv (2003) argues that the Earth has experienced four
large-scale cycles in the CRF over the last 500 Myr (with sim-

ilar cycle times back to 1 Gyr before the present). Shaviv shows
that the CRF exposure ages of iron meteorites indicate a peri-
odicity of 143 $ 10 Myr in the CRF rate. Since the cosmic-ray
production is related to supernovae, and since Type II super-
novae will be more prevalent in the young star-forming regions
of the spiral arms, Shaviv suggests that the periodicity corre-
sponds to the mean time between arm crossings (so that Earth
has made four arm crossings over the last 500 Myr). Shaviv
(2003) and Shaviv & Veizer (2003) show how the epochs of
enhanced CRF are associated with cold periods on Earth. The
geological record of climate-sensitive sedimentary layers (gla-
cial deposits) and the paleolatitudinal distribution of ice-rafted
debris (Frakes et al. 1992; Crowell 1999) indicate that the Earth
has experienced periods of extended cold (‘‘icehouses’’) and hot
temperatures (‘‘greenhouses’’) lasting tens of millions of years
(Frakes et al. 1992). The long periods of cold may be punctuated
by much more rapid episodes of ice age advances and declines
(Imbrie et al. 1992). The climate variations indicated by the geo-
logical evidence of glaciation are confirmed by measurements of
ancient tropical sea temperatures, through oxygen isotope lev-
els in biochemical sediments (Veizer et al. 2000). All of these
studies lead to a generally coherent picture in which four peri-
ods of extended cold have occurred over the last 500 Myr, and
the midpoints of these ice age epochs (IAEs) are summarized
in Table 1 (see Shaviv 2003). The icehouse times according to
Frakes et al. (1992) are indicated by the thick solid line segments
in Figures 1–3.
If these IAEs do correspond to the Sun’s passages through

spiral arms, then it is worthwhile considering which spiral pat-
tern speeds lead to crossing times during ice ages. We calcu-
lated the crossing times for a grid of assumed values of!#" !p

and found the value that minimized the !2
" residuals of the dif-

ferences between the crossing times and IAEs. There are two
major error sources in the estimation of the timing differences.
First, the calculated arm crossing times depend sensitively on the
placement of the spiral arms, and we made a comparison between
the crossing times for our adopted model and that of Russeil
(2003) to estimate the timing error related to uncertainties in the
position of the spiral arms (approximately$8 Myr except in the
case of the crossing of the Scutum-Crux arm on the far side of
the Galaxy, where the difference is%40Myr). Secondly, there are
errors associated with the estimated midtimes of the IAEs, and we
used the scatter between the various estimates in columns (2)–(5)
of Table 1 to set this error (approximately$14Myr). We adopted
the quadratic sum of these two errors in evaluating the!2

" statistic
of each fit. The results of the fitting procedure for various model
and sample assumptions are listed in Table 2.
The first trial fit was made by finding the !2

" minimum that
best matched the crossing times with the IAE midpoints from
Shaviv (2003; given in col. [5] of Table 1 and noted as ‘‘Mid-
point’’ in col. [2] of Table 2). All four arm crossings were
included in the calculation (indicated as 1–4 in col. [3] of

Fig. 3.—Depiction of the Sun’s motion relative to the spiral arm pattern,
in the same format as Fig. 2 but for a smaller spiral pattern speed (!p ¼
14:4 km s"1 kpc"1).

TABLE 1

Midpoints of Ice Age Epochs

Ice Age Epoch

(1)

Crowell (1999)
(Myr BP)

(2)

Frakes et al. (1992)
(Myr BP)

(3)

Veizer et al. (2000)
(Myr BP)

(4)

Shaviv (2003)
(Myr BP)

(5)

Arm Crossing (Fit 2)
(Myr BP)

(6)

1.................................. <22 <28 30 20 80

2.................................. 155 144 180 160 156

3.................................. 319 293 310 310 310
4.................................. 437 440 450 446 446

GIES & HELSEL846 Vol. 626
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Geological record:  impact cratering
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Model the events probabilistically

• age measurement, D, is an estimate of the true age, t

‣ model D as a Gaussian with unknown mean (and standard deviation = 
measurement error)

• diameter of crater is not used

P(D1|t1) P(D3|t3)

P(D2|t2)

time,  t



Model the time-varying probability of impact

P(D1|t1)

P(t| M)

P(D3|t3)

P(D2|t2)

time,  t

• time series model M with parameters θ

• likelihood for one event:

• likelihood for all events: 

P (D1|θ,M) =

�

t1

P (D1|t1)P (t1|θ,M)dt

P (D|θ,M) =
�

j

�

tj

P (Dj |tj)P (tj |θ,M)dt



Simulated time series: uniform model
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Model parameters: none



Simulated
time series: 

trend model
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Model parameters:
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Simulated
time series: 

periodic model

Sinusoidal function

Model parameters:
period 
phase
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Evidence for a model

• want to know how good model is overall

• evidence is likelihood averaged over the model parameters

‣ formally:  the likelihood marginalized over the parameter prior

• maximum likelihood is not appropriate for model assessment

‣ because it generally favours the more complex model

P (D|M) =

�

θ
P (D|θ,M)P (θ|M)dθ
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Real cratering data 

log likelihood for the 
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Periodogram for the 
periodic model
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Terrestrial impact cratering: conclusions

• no evidence for periodicity in impact crater history over past 
250 Myr (d > 5km)

• strong evidence for increase in apparent rate over past 250 Myr

‣ predominantly from 150-250 Myr before present

‣ even stronger when crater with upper age limits included

‣ plausibly a preservation/discovery bias

‣ conclusions only refer to models tested!
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Issues with some other studies of astroimpacts

• failure to consider plausible alternative hypotheses

• failure to account for different model complexities

• erroneous concentration on single most probable solutions

• incorrect interpretation of p-values

• Consequence:  overestimation of significance of periods



Improving the situation from the astronomical side

• infer the solar environment over the past 500 Myr

‣ Galactic potential

‣ present solar phase space coordinates

‣ Galactic structure (GMCs, spiral arms, ...)

• test the proposed mechanisms, e.g.

‣ frequency and effect of nearby SNe

‣ time variation in comet/asteroid impact intensity

‣ solar and earth orbit variability
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Take-home messages

• terrestrial impact cratering

‣ no evidence for periods

‣ strong evidence for increase in apparent rate. Preservation bias?

• assess a model using the (Bayesian) evidence

‣ likelihood averaged over parameter (prior distribution)

‣ this accounts for the model complexity

‣ maximum likelihood (e.g. periodogram peaks) not appropriate

• for more see  www.astroimpacts.org

http://www.astroimpacts.org
http://www.astroimpacts.org
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Extras
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Table 1. The 59 craters in the Earth Impact Database with diameters greater
than or equal to 5 km and ages or age upper limits below 250 Myr

Name age σ(age) diameter
Myr Myr km

Araguainha 244.4 3.25 40
Avak 49.0 28.0 12
Beyenchime-Salaatin 40 20 8
Bigach 5 3 8
Boltysh 65.17 0.64 24
Bosumtwi 1.07 0.107 10.5
Carswell 115 10 39
Chesapeake Bay 35.3 0.1 90
Chicxulub 64.98 0.05 170
Chiyli 46 7 5.5
Chukcha < 70 6
Cloud Creek 190 30 7
Connolly Basin < 60 9
Deep Bay 99 4 13
Dellen 89 2.7 19
Eagle Butte < 65 10
El’gygytgyn 3.5 0.5 18
Goat Paddock < 50 5.1
Gosses Bluff 142.5 0.8 22
Haughton 39 3.9 23
Jebel Waqf as Suwwan 46.5 5.8 5.5
Kamensk 49 0.2 25
Kara 70.3 2.2 65
Kara-Kul < 5 52
Karla 5 1 10
Kentland < 97 13
Kursk 250 80 6
Lappajrvi 73.3 5.3 23
Logancha 40 20 20
Logoisk 42.3 1.1 15
Manicouagan 214 1 100
Manson 74.1 0.1 35
Maple Creek < 75 6
Marquez 58 2 12.7
Mien 121 2.3 9
Mistastin 36.4 4 28
Mjlnir 142 2.6 40
Montagnais 50.5 0.76 45
Morokweng 145 0.8 70
Oasis < 120 18
Obolon’ 169 7 20
Popigai 35.7 0.2 100
Puchezh-Katunki 167 3 80
Ragozinka 46 3 9
Red Wing 200 25 9
Ries 15.1 0.1 24
Rochechouart 214 8 23
Saint Martin 220 32 40
Sierra Madera < 100 13
Steen River 91 7 25
Tin Bider < 70 6
Tookoonooka 128 5 55
Upheaval Dome < 170 10
Vargeao Dome < 70 12
Vista Alegre < 65 9.5
Wanapitei 37.2 1.2 7.5
Wells Creek 200 100 12
Wetumpka 81 1.5 6.5
Zhamanshin 0.9 0.1 14

a general framework for this problem and offers instead a num-
ber of recipes based on defining some “statistic”. These normally
involve calculating the value for that statistic (e.g. χ2), and compar-
ing it with the value which would be achieved by some “random”
noise model. As has discussed at some length in the literature, many
of these techniques are inconsistent or even simply wrong, even in
the case of just two alternative, simple hypotheses (e.g. Kass &
Raftery 1996, Berger 2003, Christensen 2005, Bailer-Jones 2009;
see also section 6). The Bayesian approach is direct and often turns
out to be quite simple. As we shall see, it inevitably involves a num-
ber of numerical integrals, but there are easily solved on modern
computers. For more background on Bayesian techniques in gen-
eral see Jeffreys (2000), , Jaynes 2003, MacKay (2003) or Gregory
(2005).

To calculate P (M |D) for one particular model M0 we apply
Bayes’ theorem

P (M0|D) =
P (D|M0)P (M0)

P (D)

=
P (D|M0)P (M0)

k=KP
k=0

P (D|Mk)P (Mk)

=
1

1 +
Pk=K

k=1 P (D|Mk)P (Mk)

P (D|M0)P (M0)

(1)

where the summation is over all possible models (k = 0 . . . K). In
the case that there are only two plausible models, M0 and M1, this
simplifies to

P (M0|D) =
1

1 + P (D|M1)P (M1)
P (D|M0)P (M0)

. (2)

This follows because implausible models are – by definition – those
with negligible model prior probabilities, P (M)� 1. P (D|M) is
called the evidence for model M (derived in the next section). If we
assign the two models equal prior probabilities, then the evidence
ratio alone determines the posterior probability, P (M0|D). This
evidence ratio is called the Bayes factor

BF10 =
P (D|M1)
P (D|M0)

. (3)

When BF10 = 1 the posterior probability is 0.5 for both models.
When BF10 � 1 then P (M0|D) � 1/BF , and when BF10 � 1
then P (M0|D) � 1−BF10. If we calculate Bayes factors greater
than 10 or less than 0.1 then we can start to claim “significant”
evidence for one model over the other (e.g. Kass & Raftery 1996).
I shall use Bayes factors throughout this article to compare models.

Given the Bayes factors for all models relative to M0, the pos-
terior probability of this model is then

P (M0|D) =
1

1 +
Pk=K

k=1 BFk0Rk0

(4)

where Rk0 = P (Mk)/P (M0) is the ratio of model prior prob-
abilities. One difficulty of the Bayesian approach is that in order
to calculate this posterior probability one must specify all possible
models (in order to get the correct summation in the denominator to
normalize the probabilities). This is rarely possible (other than for
simple two-way hypotheses), although sometimes we can specify
all plausible models, which is sufficient. Yet even when we cannot
identify all models, Bayes factors remain a valid way of comparing
the relative merits of any number of models.

c� 0000 RAS, MNRAS 000, 000–000 Content is c� C.A.L. Bailer-Jones

4 C.A.L. Bailer-Jones

[h]

Table 1. The 59 craters in the Earth Impact Database with diameters greater
than or equal to 5 km and ages or age upper limits below 250 Myr

Name age ¦ (age) diameter
Myr Myr km

Araguainha 244:4 3:25 40
Avak 49:0 28:0 12
Beyenchime-Salaatin 40 20 8
Bigach 5 3 8
Boltysh 65:17 0:64 24
Bosumtwi 1:07 0:107 10:5
Carswell 115 10 39
Chesapeake Bay 35:3 0:1 90
Chicxulub 64:98 0:05 170
Chiyli 46 7 5:5
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Cloud Creek 190 30 7
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Dellen 89 2:7 19
Eagle Butte < 65 10
El’gygytgyn 3:5 0:5 18
Goat Paddock < 50 5:1
Gosses Bluff 142:5 0:8 22
Haughton 39 3:9 23
Jebel Waqf as Suwwan 46:5 5:8 5:5
Kamensk 49 0:2 25
Kara 70:3 2:2 65
Kara-Kul < 5 52
Karla 5 1 10
Kentland < 97 13
Kursk 250 80 6
Lappajrvi 73:3 5:3 23
Logancha 40 20 20
Logoisk 42:3 1:1 15
Manicouagan 214 1 100
Manson 74:1 0:1 35
Maple Creek < 75 6
Marquez 58 2 12:7
Mien 121 2:3 9
Mistastin 36:4 4 28
Mjlnir 142 2:6 40
Montagnais 50:5 0:76 45
Morokweng 145 0:8 70
Oasis < 120 18
Obolon’ 169 7 20
Popigai 35:7 0:2 100
Puchezh-Katunki 167 3 80
Ragozinka 46 3 9
Red Wing 200 25 9
Ries 15:1 0:1 24
Rochechouart 214 8 23
Saint Martin 220 32 40
Sierra Madera < 100 13
Steen River 91 7 25
Tin Bider < 70 6
Tookoonooka 128 5 55
Upheaval Dome < 170 10
Vargeao Dome < 70 12
Vista Alegre < 65 9:5
Wanapitei 37:2 1:2 7:5
Wells Creek 200 100 12
Wetumpka 81 1:5 6:5
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a general framework for this problem and offers instead a num-
ber of recipes based on defining some “statistic”. These normally
involve calculating the value for that statistic (e.g. χ2), and compar-
ing it with the value which would be achieved by some “random”
noise model. As has discussed at some length in the literature, many
of these techniques are inconsistent or even simply wrong, even in
the case of just two alternative, simple hypotheses (e.g. Kass &
Raftery 1996, Berger 2003, Christensen 2005, Bailer-Jones 2009;
see also section 6). The Bayesian approach is direct and often turns
out to be quite simple. As we shall see, it inevitably involves a num-
ber of numerical integrals, but there are easily solved on modern
computers. For more background on Bayesian techniques in gen-
eral see Jeffreys (2000), , Jaynes 2003, MacKay (2003) or Gregory
(2005).

To calculate P (M |D) for one particular model M0 we apply
Bayes’ theorem

P (M0|D) =
P (D|M0)P (M0)

P (D)

=
P (D|M0)P (M0)

k=KP
k=0

P (D|Mk)P (Mk)

=
1

1 +
Pk=K

k=1 P (D|Mk)P (Mk)

P (D|M0)P (M0)

(1)

where the summation is over all possible models (k = 0 . . . K). In
the case that there are only two plausible models, M0 and M1, this
simplifies to

P (M0|D) =
1

1 + P (D|M1)P (M1)
P (D|M0)P (M0)

. (2)

This follows because implausible models are – by definition – those
with negligible model prior probabilities, P (M)� 1. P (D|M) is
called the evidence for model M (derived in the next section). If we
assign the two models equal prior probabilities, then the evidence
ratio alone determines the posterior probability, P (M0|D). This
evidence ratio is called the Bayes factor

BF10 =
P (D|M1)
P (D|M0)

. (3)

When BF10 = 1 the posterior probability is 0.5 for both models.
When BF10 � 1 then P (M0|D) � 1/BF , and when BF10 � 1
then P (M0|D) � 1−BF10. If we calculate Bayes factors greater
than 10 or less than 0.1 then we can start to claim “significant”
evidence for one model over the other (e.g. Kass & Raftery 1996).
I shall use Bayes factors throughout this article to compare models.

Given the Bayes factors for all models relative to M0, the pos-
terior probability of this model is then

P (M0|D) =
1

1 +
Pk=K

k=1 BFk0Rk0

(4)

where Rk0 = P (Mk)/P (M0) is the ratio of model prior prob-
abilities. One difficulty of the Bayesian approach is that in order
to calculate this posterior probability one must specify all possible
models (in order to get the correct summation in the denominator to
normalize the probabilities). This is rarely possible (other than for
simple two-way hypotheses), although sometimes we can specify
all plausible models, which is sufficient. Yet even when we cannot
identify all models, Bayes factors remain a valid way of comparing
the relative merits of any number of models.
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the same analysis. More craters may permit a better distinction be-
tween more complex models.

I will now discuss some aspects of the method, and compare
the present analysis with previous work.

Significance assessment. The significance of a model can only be
assessed relative to the significance of some other model. There
is no absolute. In frequentist statistics one normally selects some
“noise” or “background” model against which to compare a statis-
tic measured on the real data. For example, with the classical peri-
odogram the significance is usually determined from the distribu-
tion of the power achieved by a noise model. This may indicate that
the periodic model is the better of the two, but both might be bad:
there may be a third model which is better still. We saw an example
of this in Fig. 14, where the bottom left-hand panel is the best-fit
truly periodic solution. It was significant relative to UniProb, but
insignificant relative to SigProb:Neg.

Why we should not rely solely on periodogram peaks. As has
already been demonstrated in section 4, reliance on observing a
peak in the periodogram – even when normalized to the true model
– often results in erroneously claiming the periodic model to be a
better explanation than the true one. The reason is that the peri-
odogram has one free parameter (period), and we can sometimes
find a specific value of this parameter which produces a better fit
than the simpler uniform model (which has no free parameters). A
model with even more free parameters may fit better still. But a
model with fitted parameters is a priori less plausible than a model
with no fitted parameters. Unless we have independent information
to assign the model parameters, we cannot fit them and then com-
pare that model on an equal footing with a model which has not
been fit. Instead we must compare models “as a whole” (e.g. over
some period range). We saw an example of this in section 4.2.

Occam factor. The conclusion of the previous discussion is not
that more complex models are always penalized. They are not.
What counts is how the plausibility of the model is changed in light
of the data. This can be understood by the concept of the Occam

factor. If the likelihood function is dominated by a single peak,
then we can approximate the evidence (equation 8) with

P (D|M)| {z }
Evidence

= L(θ̂)|{z}
best fit likelihood

× ∆θposterior

∆θprior| {z }
Occam factor

(13)

where L(θ̂) is the likelihood at the best fit solution, ∆θprior is
the prior parameter range and ∆θposterior is the posterior param-
eter range (the width of the likelihood peak) (see, e.g. MacKay
2003) . The Occam factor (which is always less than or equal to
one) measures the amount by which the plausible parameter vol-
ume shrinks on account of the data. For given L(θ̂), a simple or
general model will fit over a large part of the parameter space, so
∆θprior ∼ ∆θposterior and the Occam factor is not significantly
less than one. We saw an example of this in Fig. 17. In contrast, a
more complex model, or one which has to be more finely tuned to
fit the data, will have a larger shrinkage, so ∆θposterior � ∆θprior.
We saw this for the periodic models at short periods (e.g. Figs. 14
and 15), in which only a very specific period was a good fit to the
data. In this case the Occam factor is small and the evidence is re-
duced. Of course, if the fit is good enough then L(θ̂) will be large,
perhaps large enough to dominate the Occam factor and to give the
model a large evidence. We saw this with the simulated periodic
time series for the SinProb model (Fig. 9).

This concept helps us to understand how the Bayesian ap-
proach accommodates model complexity, something generally
lacking in frequentist approaches. If we assess a model’s evidence
only by looking at the maximum likelihood solution (or the maxi-
mum over one parameter, the period), then we artificially compress
the prior parameter range, increasing the Occam factor.

Parameter prior distributions. As the model evidence is the like-
lihood averaged over the prior parameter range (for uniform priors),
this raises the issue of what this range should be. This is often the
main perceived difficulty with Bayesian model comparison, and for
some people this dependence on prior considerations is undesir-
able. Yet it is both logical and fundamentally unavoidable, because
Bayesian or not, the prior parameter range is an intrinsic part of
the model. Changing the parameter range changes the model, so
will change the evidence. SinProb10:50 is totally different from
SinProb100:150, for example. If we are comfortable with decid-
ing which are the plausible models to test, we must also be willing
to decide what are the plausible parameter ranges to test. We can
normally be guided by the context of the problem and the general
properties of the data or the experiment used to gather the data,
such as the sensitivity limits. For periodic models it seems obvi-
ous that we should use the whole phase range and that we should
not include at “periods” much larger than the duration of observa-
tions (as these are more like trends). For SigProb I have actually
used a rather broad range of its two parameters, even though some
of this parameter space is a priori implausible, e.g. λ = 0 gives a
probability of zero to one side of t0 = 0.

More generally the evidence is the likelihood averaged over
the parameter prior distribution. There are often cases where we
would not want to use a uniform distribution. It can be difficult to
choose the “correct” prior distribution, and this choice may effect
the results. Yet whether we like it or not, interpreting data is a sub-
jective business: Just as we choose which experiments to perform,
which data to ignore, and which models to test, so we must decide
what model parameters are plausible. This seems preferable to ig-
noring prior knowledge or, worse, to pretending we are not using
it.

In general, a probability density function is not invariant with
respect to a nonlinear transformation of its parameters. As already
discussed in section 3.7, I could equally well have used frequency
rather than period to calculate the evidence for periodic models:
there is no “natural” parameter here. This would not change the er-
ror model of the data (eqn. 5), and the value of P (tj |θ, M) at period
T is the same as when calculated at frequency 1/T . So the likeli-
hoods are unchanged. But as the model evidence is the average of
the likelihoods over the prior, then the evidence would change if we
adopted a prior which is uniform in frequency rather than in period.
Thus the issue of parametrization becomes one of choice of prior.
As neither parametrization is more natural than the other – that is,
a prior uniform in frequency does not seem to be more correct than
one uniform in period – this remains a somewhat arbitrary choice.
For this reason I repeated all of the analyses using periodic mod-
els with a prior uniform in frequency. Sometimes the evidence was
slightly higher, sometimes lower, but the significance of the Bayes
factors was not altered. The conclusions are robust to this change
of prior/parameter.

Model priors. I have used Bayes factors to compare pairs of mod-
els. Models are treated equally, so a significant deviation from unity
gives evidence for one model over the other. However, if the mod-
els have different complexities (or rather, different prior plausibili-
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Dating craters

• U-238 fission track counting

• cosmogenic nucleides (< 1Myr)

• palaeomagnetism (< 100 Myr)

• biostratigraphy (fossils)

• gas retention age since last rock melt

‣ K-40 to Ar-40 radioactive decay (t1/2 = 1250Myr)


