Mapping the universe in six dimensions

with Gaia

Coryn A.L. Bailer-Jones

Max-Planck-Institut für Astronomie, Heidelberg

acknowledgements: ESA, the Gaia scientific community and industrial partners

What is astrometry?

- Positions
 - Right Ascension, Declination
- Distances
 - parallaxes
- Kinematics
 - 2D (angular) proper motions
 - combined with parallaxes> 2D transverse velocities

Astrometry gives five components of r, v phase space

What do we learn from astrometry?

Distances

- fundamental problem in astronomy (sky is 2D)
- puts angular measurements on a spatial scale → 3D structure
- converts apparent luminosities to absolute luminosities
- all other distance measures depend on astrometric parallaxes

Kinematics (3D motions)

- identify common motions of widely separated stars (e.g. streams)
- determine orbits (star, planets, asteroids etc.)
- measure gravitational potential (mass distribution)

A brief history of astrometry

125 B.C.	Precession	of the ec	quinoxes	(Hipparchus)
			. <mark>.</mark>	·

1717 First proper motions measured (Halley)

1725 Stellar aberration (Bradley), confirming

→ Earth's motion through space

finite velocity of light

1761/1769 Transits of Venus across the Sun (various)

→ solar parallax

1838/9 First stellar parallaxes (Bessel, Henderson, Struve)

1989-1993 Hipparcos satellite (ESA)

arcseconds and parsecs

$$d/parsec = \frac{1}{\theta/arcseconds}$$

$$1 \text{ pc} = 31 \times 10^{12} \text{ km} = 3.26 \text{ light years}$$

1 micro arcsecond is the angular size of

- a grain of rice seen on the Moon
- a human hair seen in Kabul

Global astrometry from space

- Ground-based astrometry
 - narrow field
 - reference stars share common parallax effect
 - therefore only relative astrometry
 - limited to a few milliarcseconds precision
- Space-based astrometry
 - observe simultaneously in two widely separated fields separated by a fixed basic angle
 - measure relative positions along great circle
 - repeat for many orientations over whole sky

Gaia in a nutshell

spatial distributions, motions, physical properties

Entire sky to V=20

high accuracy astrometry: 10 μ as @ V=15

radial velocities and photometry

ESA mission launch 2011

Key objective: composition, formation and evolution of the Galaxy

Hipparcos vs. Gaia

Hipparcos	Gaia	
12.4	20	
	1000 000 000	
	0.5-1 million	
	1-10 million	
	2-3 μas at V<10	
	5-15 μas at V=15	
	40-200 μas at V=20	
	19 bands	
	1-10 km/s to V=17-18	
	12.4 120 000 none none ~1000 μas 2 bands	

 μ as = 10% distances at 10 kpc

 μ as/yr = 1 km/s at 20 kpc

Sky scanning principle

Continuous three-axis motion:

- axis rotation (P = 6 days)
- fixed sun angle precesion (P = 70 days)
- orbit around sun (P = 1 year)

Traces quasi great circles on sky

5 year mission

Ecliptic co-ordinates

The satellite

Sunshield diameter = 11m Total mass = 1700kg (800kg telescope/instruments)

Payload overview

Astrometric instrument: 1.4m x 0.5m primary mirrors

Astrometric focal plane

SiC optical bench

Spectroscopic instrument: 0.56m x 0.45m primary mirror

Astrometric focal plane

- the two fields-of-view are superimposed on a single CCD focal plane
- 180 CCDs (2000 x 5600 pixels)
- CCDs clocked in "TDI mode"
- real-time detection of objects
- transmission only of "windows" around objects

direction of motion across focal plane

Gaia photometry

- Broad Band Photometric system (BBP)
 - 5 broad bands
 - primarily for chromatic correction
- Medium Band Photometric system (MBP)
 - 14 medium bands
 - object classification
 - determination of stellar parameters and interstellar extinction
- systems optimized specifically for Gaia
- vital for exploiting astrometric data!

Gaia spectroscopy

- Slitless spectrograph
- R = 11 500
- around Call triplet (848–874 nm)
- radial velocities (Doppler effect)
- V_{rad} to 1–10 km/s for V < 17.5
- high SNR spectra for millions of stars with V < 14
 - physical stellar parameters,
 e.g. [α/Fe]

Launch and orbit

C V

basic angle must be stable to $\sim 1 \mu as over 6 hours$

- \Rightarrow 25 μ K thermal stability
- ⇒ high mechanical stability (no moving parts!)

Lissajous' orbit about Earth-Sun L2 point 5 year mission

Phased antenna array:

- 3 Mb/s for 8 hours per day
- single ground station (Perth or Madrid)

Distance and velocity accuracy

Astrometric accuracy = 10 μ as @ V=15

astrometric error:

$$\delta \pi \ \propto \ \frac{1}{\sqrt{N_{photons}}}$$

Distances

1% accuracy at 1 kpc at V=15 20% accuracy at 1 kpc at V=20

<0.1% for 700 000 stars <1% for 21 million stars <10% for 220 million stars

Transverse motions

1 km/s accuracy at 20 kpc at V=15

1 km/s accuracy at 1kpc at V=20

<0.5 km/s for 44 million stars

<1 km/s for 85 million stars

<5 km/s for 300 million stars

Distance accuracy to nearby stars

Galactic structure

- galaxy formation
 - how and when did the galaxy form?
 - structure/origin of bulge, halo, disk, spiral arms
 - substructure in the halo (merger history)
- evolution of stellar populations
 - star formation history and chemical evolution
 - abundance distributions in 6D phase space
- mass and dark matter
 - gravitational potential from 3D stellar motions

Stellar clusters

- ~70 clusters within 500 pc
 - individual distances to 0.5%, <2.5pc at V=15
 - transverse velocities to <1 km/s for all stars down to M dwarfs out to 200pc
- stellar structure and evolution
 - calibration of luminosity—mass relation
 - ages from Main-Sequence turn off
- kinematics
 - mass segregation (dynamic vs. primordial)
 - evaporation of low mass members, dispersion into interstellar medium
- Gaia will discover thousands more open clusters

Exosolar planets

- astrometric companion search
 - $-\alpha = (M_p/M_s)(a_p/d)$
 - 47 UMa: astrom. displacement 360 μ as
 - no sin i ambiguity in mass
- extensive, unbiased survey
 - monitor 10⁵ stars to 200 pc (V<13)
 - all stellar types to P ~ 10 years
 - ~ 5000 new planets expected
 - orbital solutions for 1000-2000 systems
 - masses to 10 M_E to 10pc

- Jupiter across Sun ⇒ 0.01 mag photometric ampltiude
- expect 6000 detections for 0-2 AU orbit around F-K stars

Solar system

Gaia capabilities

- all sky complete survey to G=20, to within 35° of Sun ("daytime")
- discovery of 10⁵-10⁶ new objects (cf. 65000 now)
- very accurate orbital elements (~30 times better)
- multi-band photometry (taxonomy, chemistry)

main belt asteroids

- solar system formation
- sizes, albedos, masses (~ 100, cf. 10 now)

Near-Earth Objects

expect 1600 Earth-crossing (vs. 100 now)

General Relativity

- light bending (Sun: 4 mas at 90°), γ to 5x10⁻⁷
- perihelion precession (and solar J₂)

Data reduction principle

Data processing

- 1 Mb/s for 5 years (~ 100 TB raw)
- complex data treatment
 - objects mixed up in time and space
 - astrometry, photometry and spectroscopy
 - iterative adjustment of parameters for ~100 million stars
- many tasks, e.g.
 - object matching, attitude modelling, global astrometric processing, binary star analysis, radial velocity determination, photometry, variablity analysis, CCD calibration, object classification, determination of stellar physical parameters
- ~10²¹ FLOPS (10¹⁷ FLOPS from 1 PC in 1 year)
 - 1s per star for all operations would require 30 years
- basic data processing prototype (GDAAS)

Timeline and the scientific community

- Fully approved and funded ESA mission
 - phase A study 2001-2005
 - implementation phase starts early 2006
 - launch 2011
 - end of nominal mission in 2016 2017
 - data processing complete ca. 2019
- Scientific community is responsible for the data processing
 - funding by national agencies
 - DACC currently responding to "Letters of Intent" to set up an trans-European data processing consortium
 - significant commitment, investment and expertise required
 - but rewards will be extensive

Summary

Formation and evolution of the Galaxy
Stellar structure and formation
Exoplanets
Solar system
Fundamental physics

All sky survey to V=20 (10⁹ stars) 5D phase space (6D to V~17)

Accuracy = 10 μ as @ V=15:

- ⇒ distances to <1% for 20 million stars</p>
- ⇒ transverse velocities to 1km/s at 20 kpc

Physical stellar properties (multiband photometry)

Launch 2011; 5 year mission http://www.rssd.esa.int/Gaia