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Large surveys

• Goals

• object classification

• identification of specific, maybe rare, objects

• discovery of new types of objects

• Characteristics

• blind, but we have prior information

• can usually build models of known objects ⇒ supervised 

learning
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The Gaia Galactic survey

8kpc

150 million stars with fde <10%
    11 million stars with fde <1%
      100 000 stars with fde <0.1%

all-sky astrometric 
survey complete to 
G=20 (109 objects)

• parallax, proper 
motions

• RVs

• low-res. spectra
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• 3 class problem (star-galaxy-quasar)

• outputs are class probabilities

• train: 5000 of each class        test: 60 000 of each class

Classification engine: SVM

libSVM
(Java)
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Figure 9. The (noise-free) input spectra for the stars (top panel)
and quasars (bottom panel) shown in Fig. 8. The photon flux has
been normalized in each case to have a maximum of 1.0.

Table 2. Model-based priors for the nominal, P (Cj |θnom), and mod-
ified, P (Cj |θmod), cases for the full training data and the case in
which low EW quasars have been removed (“nlEW”). For compari-
son we show the class fractions relevant to he nominal models, ftrain

i ,
and the modified models fmod

i

data G star quasar galaxy

P (Cj |θnom) full 18.5 0.3380 0.3279 0.3341
ftrain

i full 18.5 0.3333 0.3333 0.3333
P (Cj |θmod) full 18.5 0.4965 0.002514 0.5010
fmod

i full 18.5 0.4998 0.000500 0.4998

P (Cj |θnom) nlEW 18.5 0.367 0.283 0.350
P (Cj |θnom) nlEW 20.0 0.368 0.260 0.372
ftrain

i nlEW both 0.388 0.225 0.388
P (Cj |θmod) nlEW 18.5 0.4983 0.000328 0.5013
P (Cj |θmod) nlEW 20.0 0.4762 0.000277 0.5234
fmod

i nlEW both 0.4998 0.000500 0.4998

our training set, and thus from our definition of quasars,
then the SVM should not so readily confuse these stars with
our quasar class. We test this in the next experiment (sec-
tion 4.3).

Table 2 lists the model-based priors (section 2.3). The
first line is for the nominal model. The second row gives,
for comparison, the fraction of objects in each true class, i,
in the training data. These we may consider as frequentist
estimates of the model priors, insofar as the frequency dis-

Table 3. Confusion matrix for class assignments from maximum
probability. Each row corresponds to a true class and sums to 100%.
Nominal priors, G=18.5, no low EW quasars in training data

galaxy quasar star
GALAXY 99.37 0.00 0.63
QUASAR 4.22 85.59 10.19
STAR 0.68 0.13 99.19

tribution of the classes dicates these. At least for this SVM
model with equal class fractions, the model-based priors are
close to the class fractions.

The third and fourth lines give the same but for the
modified model. Now we see that the modified class frac-
tion, fmod

i , for the quasars is not a good proxy for the
model-based prior. This implies that its use in equation 4
will give poor estimates for the true posterior probabilities.
We could attempt to improve this by an iterative procedure:
Now that we have the model-based priors, we can recalcu-
late the model posteriors directly from Bayes’ equation (2)
– rather than our approximation (equation 4) – and then re-
calculate the model-based priors with equation 3. However,
we don’t do this because in our main experiments (next),
the discrepancy is not as large.

4.3 G=18.5 with low EW quasars removed from

the training data

Motivated by the results of the previous experiment, we
removed the low equivalent width quasars (EW< 5000 Å)
from the training data set (2099 of 5000) and re-tuned and
re-trained the SVM. (The choice of 5000 Å is somewhat ar-
bitrary.) The test set is unchanged.

4.3.1 The nominal model

Comparing the confusion matrix (Table 3) to that in the
previous experiment, we now see that fewer quasars are cor-
rectly classified, with 10% being misclassified as stars. Yet
this loss of quasars is balanced by the fact that six times
fewer stars are now misclassified as quasars (0.13% rather
than 0.88% previously, or 78 stars rather than 528). This is
what we wanted to achieve by modifying the training sam-
ple.

Note how few galaxies are misclassified as stars and
quasars, and how this has hardly changed from the pre-
vious experiment. In all experiements we have performed
with these data (including many not reported here), the
galaxies are always classified with high confidence. As we are
not changing the class fractions for galaxies – they are act-
ing mostly to make the classification problem for the SVM
harder – we focus on the stars and quasars from now on.

We summarze the model confidence (posterior probabil-
ties) in the histograms in Fig. 10. We can read several things
from this: the leading diagonal shows P (class|CLASS), how
confident the true positives are; the central row shows
P (class|QUASAR), the probabilities assigned to each class for
true quasars; the central column shows P (quasar|CLASS),
the quasar probabilities assigned to objects of each true
class. We see that the confidences for the correct classes

c© 0000 RAS, MNRAS 000, 000–000

Here: assign objects to class with largest probability
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Bayesian learning

Finding rare objects 3

sample selected for (output) class j, and Ni is the total num-
ber of objects of (true) class i in the test set. (There are var-
ious other diagnostics one could use, such as the ROC curve
or precision rate.) These equations give us predictions of the
completeness and contamination for a new (unlabelled) data
set, insofar as we believe it to have the same class fractions
as the training data (that’s our prior).

2.3 Model-based class priors

All classifiers include a prior, whether explicit or not. We
need to know this prior for two reasons. First, we would like
to know what assumption our model is actually making (and
not what we suspect it is making). Second, we would like to
change this prior to something which is appropriate to the
problem at hand. Here we discuss what the prior is, how the
training data may influence it, and how to calculate it post
hoc from a trained model.

2.3.1 Bayes and priors

The outputs from a trained classifier when presented with
data xn are P (Cj |xn, θ), the probability that the data is of
class Cj given the data and the model, θ. This latter quantity
reflects both the architecture of the model and the training
data set used to fix its internal parameters. We can think
of this output as a posterior probability and write it using
Bayes’ theorem

P (Cj |xn, θ) =
P (xn|Cj , θ)P (Cj |θ)

P (xn|θ)
(2)

The term P (xn|Cj , θ) is the likelihood of the data given the
class and model. The term P (Cj |θ) is the prior probability
that, given our model, an object is of class Cj . Bayesian
statistics deals with updating probabilities based on new
data: the prior reflects our knowledge (based on some other
data) before we look at the new data. In the present con-
text, the prior P (Ck = quasar|θ) is the probability that any
one object in our survey is a quasar, before we look at its
spectrum. We always have some prior information, e.g. with
Gaia the fact that it is an all sky survey to G=20.0. If we
know them, we could even treat the magnitude and Galactic
latitude as prior information.

2.3.2 What are the classifier priors and how does the
training data influence them?

Given that we can make the decomposition in equation 2, it
follows that all classification models must possess a prior on
the class probabilities. In some models, for example linear
discriminant analysis or Gaussian mixture models, this prior
is explict and so can be controlled. But in many others,
such as neural networks or support vector machines, it is not
explicit. (See a standard text on machine learning for details
of these methods, e.g. Hastie et al. (2001).) In particular, it
may depend on the class fractions in the training data.

Take, for example, a standard neural network regres-
sion model which is trained by minimizing an error function
over the whole data set. If we trained this on 1000 stars and
just one quasar, it will learn to recognise stars much bet-
ter than quasars, because in minimizing the error it hardly

has to worry about fitting the lone quasar. If we changed
the training data (class fractions), the model and thus the
classifications would change. Other regression models are in-
fluenced by the class fractions in different ways, or not at all.
Given this dependence on the model and data, we refer to
the priors as model-based priors, and the notation P (Cj |θ)
reminds us of this.

This issue of class fractions influencing the model per-
formance is well-known in the machine learning literature,
where it is referred to as the problem of “class imbalance”
or “imbalanced data sets”. It has been demonstrated to in-
fluence neural networks, support vector machines and clas-
sification trees (e.g. Shin & Cho 2003, Visa & Ralescu 2005,
Weiss 2004). But how, exactly, do the class fractions affect
the classifications and, more specifically, the model-based
priors? We might think that in the above example the ratio
of the star to quasar prior probabilities implicit in the model
is 1000 to 1, but this is generally not the case1, because it
depends on the model and how it is trained. The bottom
line is that, in general, the model-based prior is not equal
to the class fractions in the training data.

2.3.3 Calculating the model-based priors

We can calculate the model-based priors, P (Cj |θ), directly
from the trained model via the marginalization equation

P (Cj |θ) =
n=Ntest

X

n=1

P (Cj |xn, θ)P (xn|θ) (3)

where the sum is taken over all Ntest objects in the test
data set. The first term in the sum is the posterior prob-
ability. The second term is the probability that we draw
object xn from the test data set, which is 1/Ntest. Hence
the prior is simply the average of the posterior probabili-
ties. It might seem strange that the prior can be calculated
from the posterior. Yet because the sum is over all objects
in the test set, regardless of their true class, we can think
of this summation as eliminating information on individual
objects, leaving us with what the model probability is for
class Cj in the absence of specific data. This is the prior.
If we had three classes equally represented in the data, and
the classifier were perfect, the prior for each class would be
1/3. Different class fractions and non-perfect classifiers will
give different results.2

In section 4 we will compare the model-based priors
with the training data class fractions.

1 If this were the case, then we might be tempted to address the
class imbalance problem by changing the training data to have
class fractions equal to our priors. But if we had just 10 000 train-
ing vectors, we could then have only 10 quasars, making it hard
for the classifier to correctly classify quasars. We demonstrate this
later (section 4.6).
2 Note that the prior calculation assumes the test set has the
same class fractions as the training set. Interestingly, because the
true classes don’t appear in the equation, we don’t actually need
labels on the individual objects in order to calculate the model-
based prior.

c© 0000 RAS, MNRAS 000, 000–000
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Class imbalance problem
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The modified model
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P (Cj |xn, θ) =
P (xn|Cj , θ)P (Cj |θ)

P (xn|θ)

P mod(Cj |xn, θmod) = an P nom(Cj |xn, θnom)
f target

i=j

f train
i=j

P nom(Cj |θnom) = f train
i=j

P mod(Cj |θmod) = f target
i=j
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i=j

f train
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(2)

P nom(Cj |θnom) = f train
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1
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• Adjust priors to reflect “class fractions” in target population

• Here, quasars are 1000 times rarer (our prior)
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The effect on quasar classification

blue = quasar completeness   red = quasar contamination
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The advantages of the modified model 

• With quasars 1000 times rare than stars and galaxies

• zero contamination of the quasar sample with a completeness 
of 62%

• simultaneously: star and galaxy sample completeness of 99% 
with low contamination (0.7%)

• Can apply to any target population without retraining

• Using nominal model on a population in which quasars 
really are rare gives poor results
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sample selected for (output) class j, and Ni is the total num-
ber of objects of (true) class i in the test set. (There are var-
ious other diagnostics one could use, such as the ROC curve
or precision rate.) These equations give us predictions of the
completeness and contamination for a new (unlabelled) data
set, insofar as we believe it to have the same class fractions
as the training data (that’s our prior).

2.3 Model-based class priors

All classifiers include a prior, whether explicit or not. We
need to know this prior for two reasons. First, we would like
to know what assumption our model is actually making (and
not what we suspect it is making). Second, we would like to
change this prior to something which is appropriate to the
problem at hand. Here we discuss what the prior is, how the
training data may influence it, and how to calculate it post
hoc from a trained model.

2.3.1 Bayes and priors

The outputs from a trained classifier when presented with
data xn are P (Cj |xn, θ), the probability that the data is of
class Cj given the data and the model, θ. This latter quantity
reflects both the architecture of the model and the training
data set used to fix its internal parameters. We can think
of this output as a posterior probability and write it using
Bayes’ theorem

P (Cj |xn, θ) =
P (xn|Cj , θ)P (Cj |θ)

P (xn|θ)
(2)

The term P (xn|Cj , θ) is the likelihood of the data given the
class and model. The term P (Cj |θ) is the prior probability
that, given our model, an object is of class Cj . Bayesian
statistics deals with updating probabilities based on new
data: the prior reflects our knowledge (based on some other
data) before we look at the new data. In the present con-
text, the prior P (Ck = quasar|θ) is the probability that any
one object in our survey is a quasar, before we look at its
spectrum. We always have some prior information, e.g. with
Gaia the fact that it is an all sky survey to G=20.0. If we
know them, we could even treat the magnitude and Galactic
latitude as prior information.

2.3.2 What are the classifier priors and how does the
training data influence them?

Given that we can make the decomposition in equation 2, it
follows that all classification models must possess a prior on
the class probabilities. In some models, for example linear
discriminant analysis or Gaussian mixture models, this prior
is explict and so can be controlled. But in many others,
such as neural networks or support vector machines, it is not
explicit. (See a standard text on machine learning for details
of these methods, e.g. Hastie et al. (2001).) In particular, it
may depend on the class fractions in the training data.

Take, for example, a standard neural network regres-
sion model which is trained by minimizing an error function
over the whole data set. If we trained this on 1000 stars and
just one quasar, it will learn to recognise stars much bet-
ter than quasars, because in minimizing the error it hardly

has to worry about fitting the lone quasar. If we changed
the training data (class fractions), the model and thus the
classifications would change. Other regression models are in-
fluenced by the class fractions in different ways, or not at all.
Given this dependence on the model and data, we refer to
the priors as model-based priors, and the notation P (Cj |θ)
reminds us of this.

This issue of class fractions influencing the model per-
formance is well-known in the machine learning literature,
where it is referred to as the problem of “class imbalance”
or “imbalanced data sets”. It has been demonstrated to in-
fluence neural networks, support vector machines and clas-
sification trees (e.g. Shin & Cho 2003, Visa & Ralescu 2005,
Weiss 2004). But how, exactly, do the class fractions affect
the classifications and, more specifically, the model-based
priors? We might think that in the above example the ratio
of the star to quasar prior probabilities implicit in the model
is 1000 to 1, but this is generally not the case1, because it
depends on the model and how it is trained. The bottom
line is that, in general, the model-based prior is not equal
to the class fractions in the training data.

2.3.3 Calculating the model-based priors

We can calculate the model-based priors, P (Cj |θ), directly
from the trained model via the marginalization equation

P (Cj |θ) =
n=Ntest

X

n=1

P (Cj |xn, θ)P (xn|θ) (3)

where the sum is taken over all Ntest objects in the test
data set. The first term in the sum is the posterior prob-
ability. The second term is the probability that we draw
object xn from the test data set, which is 1/Ntest. Hence
the prior is simply the average of the posterior probabili-
ties. It might seem strange that the prior can be calculated
from the posterior. Yet because the sum is over all objects
in the test set, regardless of their true class, we can think
of this summation as eliminating information on individual
objects, leaving us with what the model probability is for
class Cj in the absence of specific data. This is the prior.
If we had three classes equally represented in the data, and
the classifier were perfect, the prior for each class would be
1/3. Different class fractions and non-perfect classifiers will
give different results.2

In section 4 we will compare the model-based priors
with the training data class fractions.

1 If this were the case, then we might be tempted to address the
class imbalance problem by changing the training data to have
class fractions equal to our priors. But if we had just 10 000 train-
ing vectors, we could then have only 10 quasars, making it hard
for the classifier to correctly classify quasars. We demonstrate this
later (section 4.6).
2 Note that the prior calculation assumes the test set has the
same class fractions as the training set. Interestingly, because the
true classes don’t appear in the equation, we don’t actually need
labels on the individual objects in order to calculate the model-
based prior.
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P (Cj |xn, θ) =
P (xn|Cj , θ)P (Cj |θ)

P (xn|θ)

P mod(Cj |xn, θmod) = an P nom(Cj |xn, θnom)
f target

i=j

f train
i=j

P nom(Cj |θnom) = f train
i=j

P mod(Cj |θmod) = f target
i=j

=
1

Ntest

c© 0000 RAS

posterior
(model outputs)

These calculated priors agree closely with class fractions in 
target sample



Coryn Bailer-Jones, MPIA Heidelberg

Summary and Conclusions

• Assign probabilities; use thresholds to build ad hoc samples

• Class fractions in training data can bias classifier

• all models have a prior (may be implicit)!

• Take into account priors on target population

• train model once on equal class fractions then adjust 
probabilities

• 62% quasar sample completeness with zero contamination

• <13 contaminants in sample of 250 000 quasars with Gaia

• Bailer-Jones et al. 2008, MNRAS 391, 1838


