The Gaia Challenge

Coryn A.L. Bailer-Jones

Max-Planck-Institut für Astronomie, Heidelberg

acknowledgements: ESA, the Gaia scientific community and industrial partners

Gaia in a nutshell

high accuracy astrometry: parallaxes, proper motions

radial velocities, photometry

Entire sky to V=20, 100 times over 5 years

6D phase space survey + physical parameters

ESA mission for 2011 launch

Science objectives

Main science driver: Galactic composition and formation

- sets parallax/proper motion precision and magnitude limit
- dark matter, merger history, chemical evolution ...
- Stellar astrophysics (HRD, abundances, binaries)
- Star formation (OB assoc., clusters)
- Exoplanets (orbits, masses, transits)
- Solar system (new discoveries, orbits, taxonomy, NEOs)
- Extragalactic (local group galaxies, SNe)
- Cosmic distance scale (geometric to 10 kpc, Cepheids, RR Lyr)
- Reference frame (quasars)
- Fundamental physics (*light bending*, γ to $5x10^{-7}$)

What is astrometry?

- Mean positions
 - Right Ascension, Declination
- Distances
 - parallaxes
- Kinematics
 - 2D (angular) proper motions
 - combined with parallaxes
 => 2D transverse velocities

Astrometry gives five components of **r**,**v** phase space

10

Distances

C D D

- important in every area of astronomy
 - angular scales \rightarrow length scales proper motions \rightarrow velocities
 - 3D spatial structure
 - intrinsic stellar luminosities (HRD, ages)
- all other measures calibrated with parallaxes
- strength of Gaia is accuracy and statistics
 - 1% distance accuracy at 1kpc for V=15
 - 500,000 stars with distance accuracy better than 0.1%
 - 20 million stars 1%
 - 200 million stars 10%
- only from space, and only Gaia

Global astrometry from space

- Ground-based astrometry
 - narrow (single) field
 - reference stars share common parallax effect
 - therefore only *relative* astrometry
 - limited to a few milliarcseconds precision
- Space-based astrometry
 - observe simultaneously in two widely separated fields separated by a fixed *basic* angle
 - measure relative positions along great circle
 - repeat for many orientations over whole sky

Sky scanning principle

Continuous three-axis motion:

- axis rotation (P = 6 days)
- fixed sun angle precesion (P = 70 days)
- orbit around sun (P = 1 year)

Traces quasi great circles on sky

5 year mission

Ecliptic co-ordinates

Hipparcos vs. Gaia

	пірраго
Magnitude Limit	12.4
No. sources	
No. quasars	
No. galaxies	none
Astrometric accuracy	

20 1000 000 000 0.5-1 million 1-10 million 7 μ as at V<10 12-25 μ as at V=15 100-300 μ as at V=20 19 bands 1-10 km/s to V=17-18

Gaia

30

Photmetry Radial velocities

none

The satellite

Sunshield diameter = 11m Total mass = 1700kg (800kg telescope/instruments)

Payload overview

Astrometric instrument: 1.4m x 0.5m primary mirrors

Astrometric focal plane

SiC optical bench

Be

Spectroscopic instrument: 0.56m x 0.45m primary mirror

Astrometric focal plane

direction of motion across focal plane

- the two fields-of-view are superimposed on a single CCD focal plane
- 180 CCDs (2000 x 5600 pixels)
- CCDs clocked in "TDI mode"
- real-time detection of objects
- transmission only of "windows" around objects

Gaia photometry

- Broad Band Photometric system (BBP)
 - 5 broad bands
 - primarily for chromatic correction
- Medium Band Photometric system (MBP)
 - 14 medium bands
 - object classification
 - determination of stellar parameters and interstellar extinction
- systems optimized specifically for Gaia (Jordi et al. 2006)
- vital for exploiting astrometric data!

Gaia spectroscopy

- Slitless spectrograph
- R = 11 500
- around Call triplet (848–874 nm)
- radial velocities (Doppler effect)
- V_{rad} to 1–10 km/s for V < 17.5
- high SNR spectra for millions of stars with V < 14
 - physical stellar parameters, e.g. [α/Fe]

Launch and orbit

basic angle must be stable to ~1 μ as over 6 hours

⇒ 25 μ K thermal stability ⇒ high mechanical stability (no moving parts!)

Lissajous' orbit about Earth-Sun L2 point 5 year mission

Phased antenna array:

- 3 Mb/s for 8 hours per day
- single ground station (Madrid)

Stellar structure and evolution

structure models

- luminosities (also need A_V and T_{eff})
- helium abundances (not available in spectrum; need accurate luminosities)
- open clusters and SFRs
 - 70 within 500pc, providing *individual* distances to 0.5-1% (<5pc) at V=15
 - accurate ages from position in HRD of MS turn off
 - Gaia will discover thousands more (from clustering in 6D space, HRD)
- binaries
 - directly calibrate Mass-Luminosity relationship

Galaxy formation

- **ACDM models**
 - galaxies built up by many small units
- look for evidence of mergers/accretion
 - in external galaxies
 - but in more detail in our Galaxy

Spatial overdensities in the halo

- spatial overdensities/streams found
 - Sagittarius dSph
 - Canis Major
- but limited discovery space
 - low contrast
 - projection effects
 - streams well-mixed spatially
- can improve with
 - radial velocities
 - better identification of tracers
- ultimately need astrometry

Substructure fossils in phase space

Initial distribution

30

Final distribution after 12 Gyr convolved with Gaia errors

Galactic thin and thick disks

- mass of the disk
 - determine gravitational potential from stellar motions
 - from stellar LF determine dark matter distribution
- formation of disk
 - monolithic collapse or via accretion of satellites?
 - is there a smooth age-metallicity-kinematic relation?
 - phase space measurements to look for substructure
 - age from WD luminosity function (200,000, precise to <0.5 Gyr)

Exosolar planetary systems

- astrometric binaries (AB1)
 - $\alpha = (M_p/M_s)(a_p/d)$
- extensive, unbiased survey
 - monitor 10^5 stars to 200 pc (V<13)
 - all stellar types to P ~ 10 years
 - ~ 5000 new planets expected
 - orbital solutions for 1000 2000 systems
- need additional spectroscopy to determine mass (ratio)
 - masses to few 10 M_{Earth} to 10pc
 - no sin i ambiguity

47 Ursa Majoris astrometric displacement = 360 μ as (Sozzetti et al. 2001)

Solar system

- Gaia capabilities
 - all sky complete survey to G=20, to within 40° of Sun ("daytime")
 - discovery of 10⁵ 10⁶ new objects (cf. 65000 now)
 - very accurate orbital elements (~30 times better)
 - multi-band photometry (taxonomy, chemistry)
- main belt asteroids
 - solar system formation
 - sizes, albedos, masses (~ 100, cf. 10 now)
- Near-Earth Objects
 - expect 1600 Earth-crossing (vs. 100 now)
- General Relativity
 - light bending (Sun: 4 mas at 90°), γ to 5x10⁻⁷
 - perihelion precession (and solar J_2)

Our challenge: the data processing

- 1 Mb/s for 5 years (~ 100 TB raw)
- complex data treatment
 - objects mixed up in time and space
 - astrometry, photometry and spectroscopy
 - iterative adjustment of parameters for ~100 million stars
- many tasks, e.g.
 - object matching, attitude modelling, global astrometric processing, binary star analysis, radial velocity determination, photometry, variablity analysis, CCD calibration, object classification, determination of stellar physical parameters, solar system objects...
- ~10²¹ FLOPS (10¹⁷ FLOPS from 1 PC in 1 year)
 - 1s per star for *all* operations would require 30 years
- basic data processing prototype (GDAAS)

Timeline and the scientific community

- Fully approved and funded ESA mission
 - prime contractor selected in January 2006
 - optimization and implementation phase starts mid 2006
 - launch December 2011
 - nominal mission in 2012 2016
 - data processing complete ca. 2018
- Scientific community is responsible for the data processing
 - funding by national agencies
 - currently setting up the Data Processing and Analysis Consortium
 - major partners already identified (following "Letters of Intent")
 - significant commitment, investment and expertise required
 - but rewards will be extensive

CU8: Astrophysical Parameters

- stellar parameters
 - T_{eff}, log g, [Fe/H], A_V, [α /Fe]
 - include parallax to derive luminosity; evolutionary model to derive age
- Gaia observes entire sky to V=20
 - no prior information; very wide parameter space
 - need an initial classification (esp. QSO identification)
- many complications
 - optimal combination of photometry, spectroscopy and astrometry
 - differing spatial resolutions and flux limits; source variability
 - parameter degeneracy; problem of "weak" parameters
- solutions
 - supervised machine learning methods (extensive development required!)

Summary

Formation and evolution of the Galaxy Stellar structure and formation Exoplanets Solar system Fundamental physics

All sky survey to V=20 (10^9 stars) 5D phase space (6D to V~17)

> Physical stellar properties (multiband photometry)

Accuracy = 15 µas @ V=15: ⇒ distances to <1% for 20 million stars ⇒ transverse velocities to 1km/s at 20 kpc

Launch 2011; 5 year mission http://www.rssd.esa.int/Gaia