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The classification problem

• Astronomical surveys

• “blind”

• large, multidimensional data sets

• Have (good) physical models for some of the objects

• can simulate objects 

• can do supervised classification and derive astrophysical parameters

Astronomical data Classes or APs

simulation
(physical model)

classification
(ML model)
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Stars
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Quasars
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Bayesian learning

Finding rare objects 3

sample selected for (output) class j, and Ni is the total num-
ber of objects of (true) class i in the test set. (There are var-
ious other diagnostics one could use, such as the ROC curve
or precision rate.) These equations give us predictions of the
completeness and contamination for a new (unlabelled) data
set, insofar as we believe it to have the same class fractions
as the training data (that’s our prior).

2.3 Model-based class priors

All classifiers include a prior, whether explicit or not. We
need to know this prior for two reasons. First, we would like
to know what assumption our model is actually making (and
not what we suspect it is making). Second, we would like to
change this prior to something which is appropriate to the
problem at hand. Here we discuss what the prior is, how the
training data may influence it, and how to calculate it post
hoc from a trained model.

2.3.1 Bayes and priors

The outputs from a trained classifier when presented with
data xn are P (Cj |xn, θ), the probability that the data is of
class Cj given the data and the model, θ. This latter quantity
reflects both the architecture of the model and the training
data set used to fix its internal parameters. We can think
of this output as a posterior probability and write it using
Bayes’ theorem

P (Cj |xn, θ) =
P (xn|Cj , θ)P (Cj |θ)

P (xn|θ)
(2)

The term P (xn|Cj , θ) is the likelihood of the data given the
class and model. The term P (Cj |θ) is the prior probability
that, given our model, an object is of class Cj . Bayesian
statistics deals with updating probabilities based on new
data: the prior reflects our knowledge (based on some other
data) before we look at the new data. In the present con-
text, the prior P (Ck = quasar|θ) is the probability that any
one object in our survey is a quasar, before we look at its
spectrum. We always have some prior information, e.g. with
Gaia the fact that it is an all sky survey to G=20.0. If we
know them, we could even treat the magnitude and Galactic
latitude as prior information.

2.3.2 What are the classifier priors and how does the
training data influence them?

Given that we can make the decomposition in equation 2, it
follows that all classification models must possess a prior on
the class probabilities. In some models, for example linear
discriminant analysis or Gaussian mixture models, this prior
is explict and so can be controlled. But in many others,
such as neural networks or support vector machines, it is not
explicit. (See a standard text on machine learning for details
of these methods, e.g. Hastie et al. (2001).) In particular, it
may depend on the class fractions in the training data.

Take, for example, a standard neural network regres-
sion model which is trained by minimizing an error function
over the whole data set. If we trained this on 1000 stars and
just one quasar, it will learn to recognise stars much bet-
ter than quasars, because in minimizing the error it hardly

has to worry about fitting the lone quasar. If we changed
the training data (class fractions), the model and thus the
classifications would change. Other regression models are in-
fluenced by the class fractions in different ways, or not at all.
Given this dependence on the model and data, we refer to
the priors as model-based priors, and the notation P (Cj |θ)
reminds us of this.

This issue of class fractions influencing the model per-
formance is well-known in the machine learning literature,
where it is referred to as the problem of “class imbalance”
or “imbalanced data sets”. It has been demonstrated to in-
fluence neural networks, support vector machines and clas-
sification trees (e.g. Shin & Cho 2003, Visa & Ralescu 2005,
Weiss 2004). But how, exactly, do the class fractions affect
the classifications and, more specifically, the model-based
priors? We might think that in the above example the ratio
of the star to quasar prior probabilities implicit in the model
is 1000 to 1, but this is generally not the case1, because it
depends on the model and how it is trained. The bottom
line is that, in general, the model-based prior is not equal
to the class fractions in the training data.

2.3.3 Calculating the model-based priors

We can calculate the model-based priors, P (Cj |θ), directly
from the trained model via the marginalization equation

P (Cj |θ) =
n=Ntest

X

n=1

P (Cj |xn, θ)P (xn|θ) (3)

where the sum is taken over all Ntest objects in the test
data set. The first term in the sum is the posterior prob-
ability. The second term is the probability that we draw
object xn from the test data set, which is 1/Ntest. Hence
the prior is simply the average of the posterior probabili-
ties. It might seem strange that the prior can be calculated
from the posterior. Yet because the sum is over all objects
in the test set, regardless of their true class, we can think
of this summation as eliminating information on individual
objects, leaving us with what the model probability is for
class Cj in the absence of specific data. This is the prior.
If we had three classes equally represented in the data, and
the classifier were perfect, the prior for each class would be
1/3. Different class fractions and non-perfect classifiers will
give different results.2

In section 4 we will compare the model-based priors
with the training data class fractions.

1 If this were the case, then we might be tempted to address the
class imbalance problem by changing the training data to have
class fractions equal to our priors. But if we had just 10 000 train-
ing vectors, we could then have only 10 quasars, making it hard
for the classifier to correctly classify quasars. We demonstrate this
later (section 4.6).
2 Note that the prior calculation assumes the test set has the
same class fractions as the training set. Interestingly, because the
true classes don’t appear in the equation, we don’t actually need
labels on the individual objects in order to calculate the model-
based prior.
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What is the prior?

• All classification models have a prior (maybe implicit)

• We always have some prior

• Prior influenced by distribution in training data
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Training data distribution influences model fit
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What is the prior?

• All classification models have a prior (maybe implicit)

• We always have some prior

• Prior influenced by distribution in training data

• Motivation behind method

• remove influence of training data distribution (“class imbalance”)

• avoid rebuilding/retraining model to match target population

• actively control priors
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Class fractions

• Relative fraction of objects of each class in a data set

• Training set typically has equal class fractions

• Target population examined here has quasars rare

written here unnormalized
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P (Cj |xn, θ) =
P (xn|Cj , θ)P (Cj |θ)

P (xn|θ)

P mod(Cj |xn, θmod) = an P nom(Cj |xn, θnom)
f target

i=j

f train
i=j

P mod(Cj |xn, θmod) = an P nom(Cj |xn, θnom)× P mod(Cj |θmod)
P nom(Cj |θnom)

P mod(Cj |xn, θmod) = an P nom(Cj |xn, θnom)
P mod(Cj |θmod)
P nom(Cj |θnom)

(1)

= an P nom(Cj |xn, θnom)
f target

i=j

f train
i=j

(2)

P nom(Cj |θnom) = f train
i=j

P mod(Cj |θmod) = f target
i=j

=
1

Ntest

P (xn|θmod) =

„
fmod

i

f test
i

«
1

Ntest

f = (fgalaxy, fquasar, fstar)

f train = (1, 1, 1)

f target = (1, 0.001, 1)
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sample selected for (output) class j, and Ni is the total num-
ber of objects of (true) class i in the test set. (There are var-
ious other diagnostics one could use, such as the ROC curve
or precision rate.) These equations give us predictions of the
completeness and contamination for a new (unlabelled) data
set, insofar as we believe it to have the same class fractions
as the training data (that’s our prior).

2.3 Model-based class priors

All classifiers include a prior, whether explicit or not. We
need to know this prior for two reasons. First, we would like
to know what assumption our model is actually making (and
not what we suspect it is making). Second, we would like to
change this prior to something which is appropriate to the
problem at hand. Here we discuss what the prior is, how the
training data may influence it, and how to calculate it post
hoc from a trained model.

2.3.1 Bayes and priors

The outputs from a trained classifier when presented with
data xn are P (Cj |xn, θ), the probability that the data is of
class Cj given the data and the model, θ. This latter quantity
reflects both the architecture of the model and the training
data set used to fix its internal parameters. We can think
of this output as a posterior probability and write it using
Bayes’ theorem

P (Cj |xn, θ) =
P (xn|Cj , θ)P (Cj |θ)

P (xn|θ)
(2)

The term P (xn|Cj , θ) is the likelihood of the data given the
class and model. The term P (Cj |θ) is the prior probability
that, given our model, an object is of class Cj . Bayesian
statistics deals with updating probabilities based on new
data: the prior reflects our knowledge (based on some other
data) before we look at the new data. In the present con-
text, the prior P (Ck = quasar|θ) is the probability that any
one object in our survey is a quasar, before we look at its
spectrum. We always have some prior information, e.g. with
Gaia the fact that it is an all sky survey to G=20.0. If we
know them, we could even treat the magnitude and Galactic
latitude as prior information.

2.3.2 What are the classifier priors and how does the
training data influence them?

Given that we can make the decomposition in equation 2, it
follows that all classification models must possess a prior on
the class probabilities. In some models, for example linear
discriminant analysis or Gaussian mixture models, this prior
is explict and so can be controlled. But in many others,
such as neural networks or support vector machines, it is not
explicit. (See a standard text on machine learning for details
of these methods, e.g. Hastie et al. (2001).) In particular, it
may depend on the class fractions in the training data.

Take, for example, a standard neural network regres-
sion model which is trained by minimizing an error function
over the whole data set. If we trained this on 1000 stars and
just one quasar, it will learn to recognise stars much bet-
ter than quasars, because in minimizing the error it hardly

has to worry about fitting the lone quasar. If we changed
the training data (class fractions), the model and thus the
classifications would change. Other regression models are in-
fluenced by the class fractions in different ways, or not at all.
Given this dependence on the model and data, we refer to
the priors as model-based priors, and the notation P (Cj |θ)
reminds us of this.

This issue of class fractions influencing the model per-
formance is well-known in the machine learning literature,
where it is referred to as the problem of “class imbalance”
or “imbalanced data sets”. It has been demonstrated to in-
fluence neural networks, support vector machines and clas-
sification trees (e.g. Shin & Cho 2003, Visa & Ralescu 2005,
Weiss 2004). But how, exactly, do the class fractions affect
the classifications and, more specifically, the model-based
priors? We might think that in the above example the ratio
of the star to quasar prior probabilities implicit in the model
is 1000 to 1, but this is generally not the case1, because it
depends on the model and how it is trained. The bottom
line is that, in general, the model-based prior is not equal
to the class fractions in the training data.

2.3.3 Calculating the model-based priors

We can calculate the model-based priors, P (Cj |θ), directly
from the trained model via the marginalization equation

P (Cj |θ) =
n=Ntest

X

n=1

P (Cj |xn, θ)P (xn|θ) (3)

where the sum is taken over all Ntest objects in the test
data set. The first term in the sum is the posterior prob-
ability. The second term is the probability that we draw
object xn from the test data set, which is 1/Ntest. Hence
the prior is simply the average of the posterior probabili-
ties. It might seem strange that the prior can be calculated
from the posterior. Yet because the sum is over all objects
in the test set, regardless of their true class, we can think
of this summation as eliminating information on individual
objects, leaving us with what the model probability is for
class Cj in the absence of specific data. This is the prior.
If we had three classes equally represented in the data, and
the classifier were perfect, the prior for each class would be
1/3. Different class fractions and non-perfect classifiers will
give different results.2

In section 4 we will compare the model-based priors
with the training data class fractions.

1 If this were the case, then we might be tempted to address the
class imbalance problem by changing the training data to have
class fractions equal to our priors. But if we had just 10 000 train-
ing vectors, we could then have only 10 quasars, making it hard
for the classifier to correctly classify quasars. We demonstrate this
later (section 4.6).
2 Note that the prior calculation assumes the test set has the
same class fractions as the training set. Interestingly, because the
true classes don’t appear in the equation, we don’t actually need
labels on the individual objects in order to calculate the model-
based prior.
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approximate priors using class fractions:
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P (Cj |xn, θ) =
P (xn|Cj , θ)P (Cj |θ)

P (xn|θ)

P mod(Cj |xn, θmod) = an P nom(Cj |xn, θnom)
fmod

i=j

f train
i=j

P nom(Cj |θnom) = f train
i=j

P mod(Cj |θmod) = fmod
i=j
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sample selected for (output) class j, and Ni is the total num-
ber of objects of (true) class i in the test set. (There are var-
ious other diagnostics one could use, such as the ROC curve
or precision rate.) These equations give us predictions of the
completeness and contamination for a new (unlabelled) data
set, insofar as we believe it to have the same class fractions
as the training data (that’s our prior).

2.3 Model-based class priors

All classifiers include a prior, whether explicit or not. We
need to know this prior for two reasons. First, we would like
to know what assumption our model is actually making (and
not what we suspect it is making). Second, we would like to
change this prior to something which is appropriate to the
problem at hand. Here we discuss what the prior is, how the
training data may influence it, and how to calculate it post
hoc from a trained model.

2.3.1 Bayes and priors

The outputs from a trained classifier when presented with
data xn are P (Cj |xn, θ), the probability that the data is of
class Cj given the data and the model, θ. This latter quantity
reflects both the architecture of the model and the training
data set used to fix its internal parameters. We can think
of this output as a posterior probability and write it using
Bayes’ theorem

P (Cj |xn, θ) =
P (xn|Cj , θ)P (Cj |θ)

P (xn|θ)
(2)

The term P (xn|Cj , θ) is the likelihood of the data given the
class and model. The term P (Cj |θ) is the prior probability
that, given our model, an object is of class Cj . Bayesian
statistics deals with updating probabilities based on new
data: the prior reflects our knowledge (based on some other
data) before we look at the new data. In the present con-
text, the prior P (Ck = quasar|θ) is the probability that any
one object in our survey is a quasar, before we look at its
spectrum. We always have some prior information, e.g. with
Gaia the fact that it is an all sky survey to G=20.0. If we
know them, we could even treat the magnitude and Galactic
latitude as prior information.

2.3.2 What are the classifier priors and how does the
training data influence them?

Given that we can make the decomposition in equation 2, it
follows that all classification models must possess a prior on
the class probabilities. In some models, for example linear
discriminant analysis or Gaussian mixture models, this prior
is explict and so can be controlled. But in many others,
such as neural networks or support vector machines, it is not
explicit. (See a standard text on machine learning for details
of these methods, e.g. Hastie et al. (2001).) In particular, it
may depend on the class fractions in the training data.

Take, for example, a standard neural network regres-
sion model which is trained by minimizing an error function
over the whole data set. If we trained this on 1000 stars and
just one quasar, it will learn to recognise stars much bet-
ter than quasars, because in minimizing the error it hardly

has to worry about fitting the lone quasar. If we changed
the training data (class fractions), the model and thus the
classifications would change. Other regression models are in-
fluenced by the class fractions in different ways, or not at all.
Given this dependence on the model and data, we refer to
the priors as model-based priors, and the notation P (Cj |θ)
reminds us of this.

This issue of class fractions influencing the model per-
formance is well-known in the machine learning literature,
where it is referred to as the problem of “class imbalance”
or “imbalanced data sets”. It has been demonstrated to in-
fluence neural networks, support vector machines and clas-
sification trees (e.g. Shin & Cho 2003, Visa & Ralescu 2005,
Weiss 2004). But how, exactly, do the class fractions affect
the classifications and, more specifically, the model-based
priors? We might think that in the above example the ratio
of the star to quasar prior probabilities implicit in the model
is 1000 to 1, but this is generally not the case1, because it
depends on the model and how it is trained. The bottom
line is that, in general, the model-based prior is not equal
to the class fractions in the training data.

2.3.3 Calculating the model-based priors

We can calculate the model-based priors, P (Cj |θ), directly
from the trained model via the marginalization equation

P (Cj |θ) =
n=Ntest

X

n=1

P (Cj |xn, θ)P (xn|θ) (3)

where the sum is taken over all Ntest objects in the test
data set. The first term in the sum is the posterior prob-
ability. The second term is the probability that we draw
object xn from the test data set, which is 1/Ntest. Hence
the prior is simply the average of the posterior probabili-
ties. It might seem strange that the prior can be calculated
from the posterior. Yet because the sum is over all objects
in the test set, regardless of their true class, we can think
of this summation as eliminating information on individual
objects, leaving us with what the model probability is for
class Cj in the absence of specific data. This is the prior.
If we had three classes equally represented in the data, and
the classifier were perfect, the prior for each class would be
1/3. Different class fractions and non-perfect classifiers will
give different results.2

In section 4 we will compare the model-based priors
with the training data class fractions.

1 If this were the case, then we might be tempted to address the
class imbalance problem by changing the training data to have
class fractions equal to our priors. But if we had just 10 000 train-
ing vectors, we could then have only 10 quasars, making it hard
for the classifier to correctly classify quasars. We demonstrate this
later (section 4.6).
2 Note that the prior calculation assumes the test set has the
same class fractions as the training set. Interestingly, because the
true classes don’t appear in the equation, we don’t actually need
labels on the individual objects in order to calculate the model-
based prior.
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P (Cj |xn, θ) =
P (xn|Cj , θ)P (Cj |θ)

P (xn|θ)

P mod(Cj |xn, θmod) = an P nom(Cj |xn, θnom)
f target

i=j

f train
i=j

P nom(Cj |θnom) = f train
i=j

P mod(Cj |θmod) = f target
i=j

=
1

Ntest
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sample selected for (output) class j, and Ni is the total num-
ber of objects of (true) class i in the test set. (There are var-
ious other diagnostics one could use, such as the ROC curve
or precision rate.) These equations give us predictions of the
completeness and contamination for a new (unlabelled) data
set, insofar as we believe it to have the same class fractions
as the training data (that’s our prior).

2.3 Model-based class priors

All classifiers include a prior, whether explicit or not. We
need to know this prior for two reasons. First, we would like
to know what assumption our model is actually making (and
not what we suspect it is making). Second, we would like to
change this prior to something which is appropriate to the
problem at hand. Here we discuss what the prior is, how the
training data may influence it, and how to calculate it post
hoc from a trained model.

2.3.1 Bayes and priors

The outputs from a trained classifier when presented with
data xn are P (Cj |xn, θ), the probability that the data is of
class Cj given the data and the model, θ. This latter quantity
reflects both the architecture of the model and the training
data set used to fix its internal parameters. We can think
of this output as a posterior probability and write it using
Bayes’ theorem

P (Cj |xn, θ) =
P (xn|Cj , θ)P (Cj |θ)

P (xn|θ)
(2)

The term P (xn|Cj , θ) is the likelihood of the data given the
class and model. The term P (Cj |θ) is the prior probability
that, given our model, an object is of class Cj . Bayesian
statistics deals with updating probabilities based on new
data: the prior reflects our knowledge (based on some other
data) before we look at the new data. In the present con-
text, the prior P (Ck = quasar|θ) is the probability that any
one object in our survey is a quasar, before we look at its
spectrum. We always have some prior information, e.g. with
Gaia the fact that it is an all sky survey to G=20.0. If we
know them, we could even treat the magnitude and Galactic
latitude as prior information.

2.3.2 What are the classifier priors and how does the
training data influence them?

Given that we can make the decomposition in equation 2, it
follows that all classification models must possess a prior on
the class probabilities. In some models, for example linear
discriminant analysis or Gaussian mixture models, this prior
is explict and so can be controlled. But in many others,
such as neural networks or support vector machines, it is not
explicit. (See a standard text on machine learning for details
of these methods, e.g. Hastie et al. (2001).) In particular, it
may depend on the class fractions in the training data.

Take, for example, a standard neural network regres-
sion model which is trained by minimizing an error function
over the whole data set. If we trained this on 1000 stars and
just one quasar, it will learn to recognise stars much bet-
ter than quasars, because in minimizing the error it hardly

has to worry about fitting the lone quasar. If we changed
the training data (class fractions), the model and thus the
classifications would change. Other regression models are in-
fluenced by the class fractions in different ways, or not at all.
Given this dependence on the model and data, we refer to
the priors as model-based priors, and the notation P (Cj |θ)
reminds us of this.

This issue of class fractions influencing the model per-
formance is well-known in the machine learning literature,
where it is referred to as the problem of “class imbalance”
or “imbalanced data sets”. It has been demonstrated to in-
fluence neural networks, support vector machines and clas-
sification trees (e.g. Shin & Cho 2003, Visa & Ralescu 2005,
Weiss 2004). But how, exactly, do the class fractions affect
the classifications and, more specifically, the model-based
priors? We might think that in the above example the ratio
of the star to quasar prior probabilities implicit in the model
is 1000 to 1, but this is generally not the case1, because it
depends on the model and how it is trained. The bottom
line is that, in general, the model-based prior is not equal
to the class fractions in the training data.

2.3.3 Calculating the model-based priors

We can calculate the model-based priors, P (Cj |θ), directly
from the trained model via the marginalization equation

P (Cj |θ) =
n=Ntest

X

n=1

P (Cj |xn, θ)P (xn|θ) (3)

where the sum is taken over all Ntest objects in the test
data set. The first term in the sum is the posterior prob-
ability. The second term is the probability that we draw
object xn from the test data set, which is 1/Ntest. Hence
the prior is simply the average of the posterior probabili-
ties. It might seem strange that the prior can be calculated
from the posterior. Yet because the sum is over all objects
in the test set, regardless of their true class, we can think
of this summation as eliminating information on individual
objects, leaving us with what the model probability is for
class Cj in the absence of specific data. This is the prior.
If we had three classes equally represented in the data, and
the classifier were perfect, the prior for each class would be
1/3. Different class fractions and non-perfect classifiers will
give different results.2

In section 4 we will compare the model-based priors
with the training data class fractions.

1 If this were the case, then we might be tempted to address the
class imbalance problem by changing the training data to have
class fractions equal to our priors. But if we had just 10 000 train-
ing vectors, we could then have only 10 quasars, making it hard
for the classifier to correctly classify quasars. We demonstrate this
later (section 4.6).
2 Note that the prior calculation assumes the test set has the
same class fractions as the training set. Interestingly, because the
true classes don’t appear in the equation, we don’t actually need
labels on the individual objects in order to calculate the model-
based prior.
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P (xn|θ)

P mod(Cj |xn, θmod) = an P nom(Cj |xn, θnom)
f target

i=j

f train
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sample selected for (output) class j, and Ni is the total num-
ber of objects of (true) class i in the test set. (There are var-
ious other diagnostics one could use, such as the ROC curve
or precision rate.) These equations give us predictions of the
completeness and contamination for a new (unlabelled) data
set, insofar as we believe it to have the same class fractions
as the training data (that’s our prior).

2.3 Model-based class priors

All classifiers include a prior, whether explicit or not. We
need to know this prior for two reasons. First, we would like
to know what assumption our model is actually making (and
not what we suspect it is making). Second, we would like to
change this prior to something which is appropriate to the
problem at hand. Here we discuss what the prior is, how the
training data may influence it, and how to calculate it post
hoc from a trained model.

2.3.1 Bayes and priors

The outputs from a trained classifier when presented with
data xn are P (Cj |xn, θ), the probability that the data is of
class Cj given the data and the model, θ. This latter quantity
reflects both the architecture of the model and the training
data set used to fix its internal parameters. We can think
of this output as a posterior probability and write it using
Bayes’ theorem

P (Cj |xn, θ) =
P (xn|Cj , θ)P (Cj |θ)

P (xn|θ)
(2)

The term P (xn|Cj , θ) is the likelihood of the data given the
class and model. The term P (Cj |θ) is the prior probability
that, given our model, an object is of class Cj . Bayesian
statistics deals with updating probabilities based on new
data: the prior reflects our knowledge (based on some other
data) before we look at the new data. In the present con-
text, the prior P (Ck = quasar|θ) is the probability that any
one object in our survey is a quasar, before we look at its
spectrum. We always have some prior information, e.g. with
Gaia the fact that it is an all sky survey to G=20.0. If we
know them, we could even treat the magnitude and Galactic
latitude as prior information.

2.3.2 What are the classifier priors and how does the
training data influence them?

Given that we can make the decomposition in equation 2, it
follows that all classification models must possess a prior on
the class probabilities. In some models, for example linear
discriminant analysis or Gaussian mixture models, this prior
is explict and so can be controlled. But in many others,
such as neural networks or support vector machines, it is not
explicit. (See a standard text on machine learning for details
of these methods, e.g. Hastie et al. (2001).) In particular, it
may depend on the class fractions in the training data.

Take, for example, a standard neural network regres-
sion model which is trained by minimizing an error function
over the whole data set. If we trained this on 1000 stars and
just one quasar, it will learn to recognise stars much bet-
ter than quasars, because in minimizing the error it hardly

has to worry about fitting the lone quasar. If we changed
the training data (class fractions), the model and thus the
classifications would change. Other regression models are in-
fluenced by the class fractions in different ways, or not at all.
Given this dependence on the model and data, we refer to
the priors as model-based priors, and the notation P (Cj |θ)
reminds us of this.

This issue of class fractions influencing the model per-
formance is well-known in the machine learning literature,
where it is referred to as the problem of “class imbalance”
or “imbalanced data sets”. It has been demonstrated to in-
fluence neural networks, support vector machines and clas-
sification trees (e.g. Shin & Cho 2003, Visa & Ralescu 2005,
Weiss 2004). But how, exactly, do the class fractions affect
the classifications and, more specifically, the model-based
priors? We might think that in the above example the ratio
of the star to quasar prior probabilities implicit in the model
is 1000 to 1, but this is generally not the case1, because it
depends on the model and how it is trained. The bottom
line is that, in general, the model-based prior is not equal
to the class fractions in the training data.

2.3.3 Calculating the model-based priors

We can calculate the model-based priors, P (Cj |θ), directly
from the trained model via the marginalization equation

P (Cj |θ) =
n=Ntest

X

n=1

P (Cj |xn, θ)P (xn|θ) (3)

where the sum is taken over all Ntest objects in the test
data set. The first term in the sum is the posterior prob-
ability. The second term is the probability that we draw
object xn from the test data set, which is 1/Ntest. Hence
the prior is simply the average of the posterior probabili-
ties. It might seem strange that the prior can be calculated
from the posterior. Yet because the sum is over all objects
in the test set, regardless of their true class, we can think
of this summation as eliminating information on individual
objects, leaving us with what the model probability is for
class Cj in the absence of specific data. This is the prior.
If we had three classes equally represented in the data, and
the classifier were perfect, the prior for each class would be
1/3. Different class fractions and non-perfect classifiers will
give different results.2

In section 4 we will compare the model-based priors
with the training data class fractions.

1 If this were the case, then we might be tempted to address the
class imbalance problem by changing the training data to have
class fractions equal to our priors. But if we had just 10 000 train-
ing vectors, we could then have only 10 quasars, making it hard
for the classifier to correctly classify quasars. We demonstrate this
later (section 4.6).
2 Note that the prior calculation assumes the test set has the
same class fractions as the training set. Interestingly, because the
true classes don’t appear in the equation, we don’t actually need
labels on the individual objects in order to calculate the model-
based prior.
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Figure 9. The (noise-free) input spectra for the stars (top panel)
and quasars (bottom panel) shown in Fig. 8. The photon flux has
been normalized in each case to have a maximum of 1.0.

Table 2. Model-based priors for the nominal, P (Cj |θnom), and mod-
ified, P (Cj |θmod), cases for the full training data and the case in
which low EW quasars have been removed (“nlEW”). For compari-
son we show the class fractions relevant to he nominal models, ftrain

i ,
and the modified models fmod

i

data G star quasar galaxy

P (Cj |θnom) full 18.5 0.3380 0.3279 0.3341
ftrain

i full 18.5 0.3333 0.3333 0.3333
P (Cj |θmod) full 18.5 0.4965 0.002514 0.5010
fmod

i full 18.5 0.4998 0.000500 0.4998

P (Cj |θnom) nlEW 18.5 0.367 0.283 0.350
P (Cj |θnom) nlEW 20.0 0.368 0.260 0.372
ftrain

i nlEW both 0.388 0.225 0.388
P (Cj |θmod) nlEW 18.5 0.4983 0.000328 0.5013
P (Cj |θmod) nlEW 20.0 0.4762 0.000277 0.5234
fmod

i nlEW both 0.4998 0.000500 0.4998

our training set, and thus from our definition of quasars,
then the SVM should not so readily confuse these stars with
our quasar class. We test this in the next experiment (sec-
tion 4.3).

Table 2 lists the model-based priors (section 2.3). The
first line is for the nominal model. The second row gives,
for comparison, the fraction of objects in each true class, i,
in the training data. These we may consider as frequentist
estimates of the model priors, insofar as the frequency dis-

Table 3. Confusion matrix for class assignments from maximum
probability. Each row corresponds to a true class and sums to 100%.
Nominal priors, G=18.5, no low EW quasars in training data

galaxy quasar star
GALAXY 99.37 0.00 0.63
QUASAR 4.22 85.59 10.19
STAR 0.68 0.13 99.19

tribution of the classes dicates these. At least for this SVM
model with equal class fractions, the model-based priors are
close to the class fractions.

The third and fourth lines give the same but for the
modified model. Now we see that the modified class frac-
tion, fmod

i , for the quasars is not a good proxy for the
model-based prior. This implies that its use in equation 4
will give poor estimates for the true posterior probabilities.
We could attempt to improve this by an iterative procedure:
Now that we have the model-based priors, we can recalcu-
late the model posteriors directly from Bayes’ equation (2)
– rather than our approximation (equation 4) – and then re-
calculate the model-based priors with equation 3. However,
we don’t do this because in our main experiments (next),
the discrepancy is not as large.

4.3 G=18.5 with low EW quasars removed from

the training data

Motivated by the results of the previous experiment, we
removed the low equivalent width quasars (EW< 5000 Å)
from the training data set (2099 of 5000) and re-tuned and
re-trained the SVM. (The choice of 5000 Å is somewhat ar-
bitrary.) The test set is unchanged.

4.3.1 The nominal model

Comparing the confusion matrix (Table 3) to that in the
previous experiment, we now see that fewer quasars are cor-
rectly classified, with 10% being misclassified as stars. Yet
this loss of quasars is balanced by the fact that six times
fewer stars are now misclassified as quasars (0.13% rather
than 0.88% previously, or 78 stars rather than 528). This is
what we wanted to achieve by modifying the training sam-
ple.

Note how few galaxies are misclassified as stars and
quasars, and how this has hardly changed from the pre-
vious experiment. In all experiements we have performed
with these data (including many not reported here), the
galaxies are always classified with high confidence. As we are
not changing the class fractions for galaxies – they are act-
ing mostly to make the classification problem for the SVM
harder – we focus on the stars and quasars from now on.

We summarze the model confidence (posterior probabil-
ties) in the histograms in Fig. 10. We can read several things
from this: the leading diagonal shows P (class|CLASS), how
confident the true positives are; the central row shows
P (class|QUASAR), the probabilities assigned to each class for
true quasars; the central column shows P (quasar|CLASS),
the quasar probabilities assigned to objects of each true
class. We see that the confidences for the correct classes

c© 0000 RAS, MNRAS 000, 000–000
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Gaia Galactic survey

• 109 objects

• large data variance

• variable noise

• multidimensional data on each object (~80 element 
spectrum)

• Build classification models with simulated data (test too, for 
now)
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• RBF kernel, scale length γ

• probabilities from sigmoidal fit (Platt 2000)

• multiple classes from pairwise coupling (Wu et al. 2004)

• tune C (regularizer) and γ using CV and Nelder-Mead

• train: 5000 of each class        test: 60 000 of each class

Classification engine: SVM
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Figure 9. The (noise-free) input spectra for the stars (top panel)
and quasars (bottom panel) shown in Fig. 8. The photon flux has
been normalized in each case to have a maximum of 1.0.

Table 2. Model-based priors for the nominal, P (Cj |θnom), and mod-
ified, P (Cj |θmod), cases for the full training data and the case in
which low EW quasars have been removed (“nlEW”). For compari-
son we show the class fractions relevant to he nominal models, ftrain

i ,
and the modified models fmod

i

data G star quasar galaxy

P (Cj |θnom) full 18.5 0.3380 0.3279 0.3341
ftrain

i full 18.5 0.3333 0.3333 0.3333
P (Cj |θmod) full 18.5 0.4965 0.002514 0.5010
fmod

i full 18.5 0.4998 0.000500 0.4998

P (Cj |θnom) nlEW 18.5 0.367 0.283 0.350
P (Cj |θnom) nlEW 20.0 0.368 0.260 0.372
ftrain

i nlEW both 0.388 0.225 0.388
P (Cj |θmod) nlEW 18.5 0.4983 0.000328 0.5013
P (Cj |θmod) nlEW 20.0 0.4762 0.000277 0.5234
fmod

i nlEW both 0.4998 0.000500 0.4998

our training set, and thus from our definition of quasars,
then the SVM should not so readily confuse these stars with
our quasar class. We test this in the next experiment (sec-
tion 4.3).

Table 2 lists the model-based priors (section 2.3). The
first line is for the nominal model. The second row gives,
for comparison, the fraction of objects in each true class, i,
in the training data. These we may consider as frequentist
estimates of the model priors, insofar as the frequency dis-

Table 3. Confusion matrix for class assignments from maximum
probability. Each row corresponds to a true class and sums to 100%.
Nominal priors, G=18.5, no low EW quasars in training data

galaxy quasar star
GALAXY 99.37 0.00 0.63
QUASAR 4.22 85.59 10.19
STAR 0.68 0.13 99.19

tribution of the classes dicates these. At least for this SVM
model with equal class fractions, the model-based priors are
close to the class fractions.

The third and fourth lines give the same but for the
modified model. Now we see that the modified class frac-
tion, fmod

i , for the quasars is not a good proxy for the
model-based prior. This implies that its use in equation 4
will give poor estimates for the true posterior probabilities.
We could attempt to improve this by an iterative procedure:
Now that we have the model-based priors, we can recalcu-
late the model posteriors directly from Bayes’ equation (2)
– rather than our approximation (equation 4) – and then re-
calculate the model-based priors with equation 3. However,
we don’t do this because in our main experiments (next),
the discrepancy is not as large.

4.3 G=18.5 with low EW quasars removed from

the training data

Motivated by the results of the previous experiment, we
removed the low equivalent width quasars (EW< 5000 Å)
from the training data set (2099 of 5000) and re-tuned and
re-trained the SVM. (The choice of 5000 Å is somewhat ar-
bitrary.) The test set is unchanged.

4.3.1 The nominal model

Comparing the confusion matrix (Table 3) to that in the
previous experiment, we now see that fewer quasars are cor-
rectly classified, with 10% being misclassified as stars. Yet
this loss of quasars is balanced by the fact that six times
fewer stars are now misclassified as quasars (0.13% rather
than 0.88% previously, or 78 stars rather than 528). This is
what we wanted to achieve by modifying the training sam-
ple.

Note how few galaxies are misclassified as stars and
quasars, and how this has hardly changed from the pre-
vious experiment. In all experiements we have performed
with these data (including many not reported here), the
galaxies are always classified with high confidence. As we are
not changing the class fractions for galaxies – they are act-
ing mostly to make the classification problem for the SVM
harder – we focus on the stars and quasars from now on.

We summarze the model confidence (posterior probabil-
ties) in the histograms in Fig. 10. We can read several things
from this: the leading diagonal shows P (class|CLASS), how
confident the true positives are; the central row shows
P (class|QUASAR), the probabilities assigned to each class for
true quasars; the central column shows P (quasar|CLASS),
the quasar probabilities assigned to objects of each true
class. We see that the confidences for the correct classes

c© 0000 RAS, MNRAS 000, 000–000

Assign objects to class with largest probability
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Performance metrics

• Build a sample by setting a probability threshold, Pt

• Sample completeness for class j 

• Sample contamination for class j

N(truly of class j in sample)

N(class j in test set)

N(in sample)
N(of all other classes in sample)
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P (xn|Cj , θ)P (Cj |θ)

P (xn|θ)

P mod(Cj |xn, θmod) = an P nom(Cj |xn, θnom)
f target

i=j

f train
i=j

P mod(Cj |xn, θmod) = an P nom(Cj |xn, θnom)× P mod(Cj |θmod)
P nom(Cj |θnom)

P mod(Cj |xn, θmod) = an P nom(Cj |xn, θnom)
P mod(Cj |θmod)
P nom(Cj |θnom)

(1)

= an P nom(Cj |xn, θnom)
f target

i=j

f train
i=j

(2)

P nom(Cj |θnom) = f train
i=j

P mod(Cj |θmod) = f target
i=j

=
1

Ntest

P (xn|θmod) =

„
fmod

i

f test
i

«
1

Ntest

f = (fgalaxy, fquasar, fstar)

f train = (1, 1, 1)

f target = (1, 0.001, 1)
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Modified model

Sample
building

blue line is
completeness

red line is
contamination
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Thresholded confusion matrix

Finding rare objects 11

Figure 12. Histograms of the DSC class posterior probabilities, shown for each output class (columns) split for objects of each true
class (rows). Modified priors, G=18.5, no low EW quasars in training data

Table 4. Confusion matrix for class assignments achieved by apply-
ing a probability threshold. Each row gives the percentage of objects
of each true class assigned to the different output classes (columns).
As an object may now be assigned to more than one class, the val-
ues in a row no longer sum to 100%, plus some objects may remain
unclassified. The thresholds applied are Pt = 0.2 for quasars and
Pt = 0.8 for stars and galaxies. Modified priors, G=18.5

galaxy quasar star unclassified Effective
fraction

GALAXY 98.97 0.00 0.64 0.73 1.0
QUASAR 6.82 62.00 26.37 8.73 0.001
STAR 0.78 0.00 98.69 1.09 1.0

The confusion matrix for this modified case is shown in
Table 4. As class assignments are now based on thresholds
rather than maximum probability, and because we can set
these thresholds independently of one another, a given ob-
ject may be assigned to more than one class or it may remain
unclassified. Therefore the values in a row no longer sum
to 100%. Here we use thresholds of 0.8, 0.2, 0.8 for galaxy,
quasar and star respectively. The quasar threshold is chosen
to give zero quasar contamination and delivers a good com-

pleteness of 62%. The star and galaxy threholds were also
chosen from inspecting the C&C curves in Fig. 13, and yield
high completeness (around 99%) and about 0.7% cross con-
tamination. From a first glance at the table we might think
that this star sample is heavily contaminated by quasars
(26.37%). Yet we must remember that quasars are effec-
tively rare, so the fraction of quasar contaminants expressed
as percentage of objects in the star output is

100% ×
26.37 × 0.001

26.37 × 0.001 + 98.69 × 1.0 + 0.64 × 1.0
= 0.03%

(The quasar contamination of the galaxy sample is even
smaller). Recall also that the histograms, such as Fig. 12,
show the actual number of objects in the test set, not the
effective number. So what looks like a relatively large num-
ber of quasars confidently classified as stars corresponds to
a far smaller number in the target population.

It is again interesting to identify the misclassifications.
Those true stars which are most confused as quasars are
show in Fig. 14. As can be seen from the plot of the cor-
responding library spectra (Fig. 15), four of these are hot
stars with Teff " 40 000 K. The other three are cooler (two
around 4000 K, one around 7000 K) but have very high ex-
tinctions (8–9 magnitudes AV). This gives rise to the much

c© 0000 RAS, MNRAS 000, 000–000

threshold of P = 0.8 for stars and galaxies
P = 0.2 for quasars
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Checking and comparing the models

blue = quasar completeness   red = quasar contamination
solid = predicted  dashed = measured
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The advantages of the modified model 

• Zero contamination of the quasar sample with a 
completeness of 62%

• simultaneously star and galaxy sample completeness of 99% with 
low contamination (0.7%)

• Can apply to any target population without retraining

• Using nominal model on a population in which quasars 
really are rare gives poor results
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Further development: add other data
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red = extragalactic objects
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Further development: subclassifiers

P(Ck | BP/RP)

P(Ck | !µ, )

P(Ck | lat)

P(Ck | G)

P(Ck | ext)

 BP/RP

!µ,

Galactic 
latitude

G-band 
magnitude

 external 
data

STAR
QSO
GALAXY

GALACTIC
EXTRAGALACTIC

STAR
QSO
GALAXY

STAR
QSO
GALAXY

STAR
QSO
GALAXY

CU8
Developing DSC
GAIA-C8-TN-MPIA-CBJ-040

the classes, and they will be strong priors for certain ranges of their measure (not many quasars
at G=10!). Actually, there is no strict distinction between a prior and a likelihood here, as they
are all data based on Gaia measurements. Therefore, we instead think of a multicomponent
classifier, each component (subclassifier) giving class probabilities based on certain data.

BJ08 has demonstrated that including astrometry as inputs to the DSC-SVM classifier does not
improve overall performance. This is because most stars have astrometry consistent with zero.
Thus only a significantly non-zero detection of astrometry is useful evidence (against being
extragalactic); yet here it is indeed useful and should be used.

The useful components and corresponding suitable models are as follows. The resulting proba-
bilities are probability vectors (value for each class).

1. BP/RP; assigns a probability for all classes; high dimensional pattern recognition
method (e.g. SVM); Gives Pbprp

2. astrometry; assigns a probability of being Galactic; 2D classifier, such as mixture
models (see GAIA-C8-TN-MPIA-CBJ-037); Gives Pastro

3. G-band magnitude; 1D function (for each class), possibly parametric, fit based on
the currently known magnitude function of stars, galaxies and quasars (see GAIA-
C8-TN-MPIA-CBJ-036); Gives PG

4. Galactic latitude; 1D function (for each class), possibly parametric, fit based on the
currently known spatial distributions of stars, galaxies and quasars (see GAIA-C8-
TN-MPIA-CBJ-036); Gives Plat

5. External data; classifications of objects based on existing data; Gives Pext

The posterior probability assigned by DSC for BP/RP object i with spectrum xi is then

Pi(Cj|data) = Pbprp(Cj|xi) Pastro(Cj|!i, µi) PG(Cj|Gi) Plat(Cj|li) Pext(Cj|·) (1)

for each class j.

Notes

• In combining classifiers, we probably want to prevent each subclassifier giving a
probability of exactly 0 (or 1), i.e. set limits.

• The magnitude and latitude model could be combined into a 2D model, one for each
class.

Technical Note 7
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Open issues and questions

1. Is a SVM optimal for this?

• Which kernel? Tuning? No genuine probabilities

• KDE works okay for lower-D problems

2. How best to do initial outlier detection?

• currently use 1-class SVM

3. Data-model mismatch

• lots of simulated data but imperfect models  ⇒ missing variance 

(calibration problem);  covariate shift

• iteratively build training data sets? semi-supervised methods?
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Classifier comparison

Sheet1

spectra only spectra + astrometry

K=4 K=3 K=4 K=3

SVM 10.4 2.5 8.3 0.6

Boosting 37.8 33.9 13.0 1.5

MLP 9.4 1.8 7.5 0.2

Mclust 10.9 0.8 9.4 0.1

RBF 38.5 24.0 27.1 15.3

overall classification error in %
class assignment by highest probability
K=3 or 4 class problem
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Open issues and questions

4. Dimensionality reduction?

5. Is a posterior probability sufficient as goodness-of-fit?

6. Class discovery / novelty detection

• which unsupervised methods?

• how to feed back into supervised classifiers?

7. How to define the training data distribution for regression 
problems?
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Summary and Conclusions

• Assign probabilities; use thresholds to build ad hoc samples

• Class fractions in training data can bias classifier

• Take into account priors on target population

• failure to do so gives inferior results

• train model once on equal class fractions then adjust probabilities

• 62% quasar sample completeness with zero contamination

• see arXiv:0809.3373 (MNRAS, in press)


