Finding rare objects in astronomical surveys

Coryn Bailer-Jones
Max Planck Institute for Astronomy, Heidelberg
http://www.mpia.de/~calj

MPI für biologische Kybernetik 19 November 2008

Overview

- I. The classification problem
- 2. Probability modification method
- 3. Classification engine (SVM)
- 4. Application to the future Gaia mission
- 5. Questions and open issues

Acknowledgements

- Gaia @ MPIA group
 - Kester Smith
 - Vivi Tsalmantza
 - Rainer Klement
 - formerly: Christian Elting, Carola Tiede
- Various data providers within Gaia DPAC

http://www.mpia.de/GAIA

The classification problem

- Astronomical surveys
 - "blind"
 - large, multidimensional data sets
- Have (good) physical models for some of the objects
 - can simulate objects
 - can do supervised classification and derive astrophysical parameters

Stars

Galaxies

Continuum Spectrum Hot Gas Cold Gas Absorption Line Spectrum

Astronomical spectra

Coryn Bailer-Jones, MPIA Heidelberg

Bayesian learning

What is the prior?

- All classification models have a prior (maybe implicit)
- We always have some prior
- Prior influenced by distribution in training data

Training data distribution influences model fit

What is the prior?

- All classification models have a prior (maybe implicit)
- We always have some prior
- Prior influenced by distribution in training data
- Motivation behind method
 - remove influence of training data distribution ("class imbalance")
 - avoid rebuilding/retraining model to match target population
 - actively control priors

Class fractions

Relative fraction of objects of each class in a data set

$$\mathbf{f} = (f_{\text{galaxy}}, f_{\text{quasar}}, f_{\text{star}})$$

Training set typically has equal class fractions

$$\mathbf{f}^{train} = (1, 1, 1)$$

• Target population examined here has quasars rare

$$\mathbf{f}^{target} = (1, 0.001, 1)$$

written here unnormalized

The modified model

$$P(C_j|x_n,\theta) = \frac{P(x_n|C_j,\theta)P(C_j|\theta)}{P(x_n|\theta)}$$

define modified model:

$$P^{mod}(C_j|x_n, \theta^{mod}) = a_n P^{nom}(C_j|x_n, \theta^{nom}) \times \frac{P^{mod}(C_j|\theta^{mod})}{P^{nom}(C_j|\theta^{nom})}$$

approximate priors using class fractions:

$$P^{nom}(C_j|\theta^{nom}) = f_{i=j}^{train} \quad P^{mod}(C_j|\theta^{mod}) = f_{i=j}^{target}$$

$$P^{mod}(C_j|x_n, \theta^{mod}) = a_n P^{nom}(C_j|x_n, \theta^{nom}) \frac{f_{i=j}^{target}}{f_{i=j}^{train}}$$

Model-based priors

$$P(C_j|x_n,\theta) = \frac{P(x_n|C_j,\theta)P(C_j|\theta)}{P(x_n|\theta)}$$

Can calculate the model-based priors from a trained model

$$P(C_{j}|\theta) = \sum_{n=1}^{n=N_{test}} P(C_{j}|x_{n},\theta)P(x_{n}|\theta)$$

$$= \frac{1}{N_{test}}$$
(model outputs)

Consistency of priors

1.
$$P^{mod}(C_j|x_n, \theta^{mod}) = a_n P^{nom}(C_j|x_n, \theta^{nom}) \frac{f_{i=j}^{target}}{f_{i=j}^{train}}$$

2.
$$P(C_j|\theta) = \sum_{n=1}^{n=N_{test}} P(C_j|x_n,\theta)P(x_n|\theta)$$
 for nom and mod

3.
$$P^{mod}(C_j|x_n, \theta^{mod}) = a_n P^{nom}(C_j|x_n, \theta^{nom}) \times \frac{P^{mod}(C_j|\theta^{mod})}{P^{nom}(C_j|\theta^{nom})}$$

Iterate stage 2 and 3 to achieve consistent priors

Comparison of model-based priors and class fractions

	data	G	star	quasar	galaxy
$P(C_j heta^{nom}) \ f_i^{train} \ P(C_j heta^{mod}) \ f_i^{mod}$	full full full full	18.5 18.5 18.5 18.5	0.3380 0.3333 0.4965 0.4998	0.3279 0.3333 0.002514 0.000500	0.3341 0.3333 0.5010 0.4998
$P(C_{j} heta^{nom}) \ P(C_{j} heta^{nom}) \ f_{i}^{train} \ P(C_{j} heta^{mod}) \ P(C_{j} heta^{mod}) \ f_{i}^{mod}$	nlEW nlEW nlEW nlEW nlEW nlEW	18.5 20.0 both 18.5 20.0 both	0.367 0.368 0.388 0.4983 0.4762 0.4998	0.283 0.260 0.225 0.000328 0.000277 0.000500	0.350 0.372 0.388 0.5013 0.5234 0.4998

Gaia Galactic survey

- 10⁹ objects
- large data variance
- variable noise
- multidimensional data on each object (~80 element spectrum)
- Build classification models with simulated data (test too, for now)

Optical spectra

Quasars
Variation in slope, line strength, redshift

Input spectra

Gaia spectra

86 pixels per object

Classification engine: SVM

libSVM (Java)

- RBF kernel, scale length γ
- probabilities from sigmoidal fit (Platt 2000)
- multiple classes from pairwise coupling (Wu et al. 2004)
- tune C (regularizer) and γ using CV and Nelder-Mead
- train: 5000 of each class test: 60 000 of each class

Coryn Bailer-Jones, MPIA Heidelberg

Confusion matrix

	galaxy	quasar	star
GALAXY	99.37	0.00	0.63
QUASAR	4.22	85.59	10.19
STAR	0.68	0.13	99.19

Assign objects to class with largest probability

Performance metrics

- Build a sample by setting a probability threshold, Pt
- Sample completeness for class j

N(truly of class j in sample)
N(class j in test set)

Sample contamination for class j

N(of all other classes in sample)
N(in sample)

Sample building

Nominal model

blue line is completeness

red line is contamination

Modified model

Target population has quasars rare (prior)

$$\mathbf{f} = (f_{\text{galaxy}}, f_{\text{quasar}}, f_{\text{star}})$$

$$\mathbf{f}^{target} = (1, 0.001, 1)$$

$$P^{mod}(C_j|x_n, \theta^{mod}) = a_n P^{nom}(C_j|x_n, \theta^{nom}) \frac{f_{i=j}^{target}}{f_{i=j}^{train}}$$

Test data set not changed, but calculations for completeness and contamination are modified to account for changed **f**

Sample building Modified model

blue line is completeness

red line is contamination

Thresholded confusion matrix

		STREET, STREET			
	galaxy	quasar	star	unclassified	Effective
					fraction
GALAXY	98.97	0.00	0.64	0.73	1.0
QUASAR	6.82	62.00	26.37	8.73	0.001
STAR	0.78	0.00	98.69	1.09	1.0
				The state of the s	

threshold of P = 0.8 for stars and galaxies P = 0.2 for quasars

Checking and comparing the models

modified model on test data set with f = (1, 0.001, 1)

nominal model on test data set with f = (1, 0.001, 1)

blue = quasar completeness red = quasar contamination solid = predicted dashed = measured

The advantages of the modified model

- Zero contamination of the quasar sample with a completeness of 62%
 - simultaneously star and galaxy sample completeness of 99% with low contamination (0.7%)
- Can apply to any target population without retraining
- Using nominal model on a population in which quasars really are rare gives poor results

Further development: add other data

- 2D astrometric data
- Could fit with a mixture model

blue = Galactic objects
red = extragalactic objects

Further development: subclassifiers

$$P_i(C_j|data) = P_{bprp}(C_j|x_i) P_{astro}(C_j|\varpi_i, \mu_i) P_G(C_j|G_i) P_{lat}(C_j|l_i) P_{ext}(C_j|\cdot)$$

Open issues and questions

1. Is a SVM optimal for this?

- Which kernel? Tuning? No genuine probabilities
- KDE works okay for lower-D problems

2. How best to do initial outlier detection?

currently use I-class SVM

3. Data-model mismatch

- lots of simulated data but imperfect models ⇒ missing variance (calibration problem); covariate shift
- iteratively build training data sets? semi-supervised methods?

Classifier comparison

	spectra	only	spectra	spectra + astrometry		
	K=4	K=3	K=4	K=3		
SVM	10.4	2.5	8.3	0.6		
Boosting	37.8	33.9	13.0	1.5		
MLP	9.4	1.8	7.5	0.2		
Mclust	10.9	0.8	9.4	0.1		
RBF	38.5	24.0	27.1	15.3		

overall classification error in % class assignment by highest probability K=3 or 4 class problem

Open issues and questions

- 4. Dimensionality reduction?
- 5. Is a posterior probability sufficient as goodness-of-fit?
- 6. Class discovery / novelty detection
 - which unsupervised methods?
 - how to feed back into supervised classifiers?
- 7. How to define the training data distribution for regression problems?

Summary and Conclusions

- Assign probabilities; use thresholds to build ad hoc samples
- Class fractions in training data can bias classifier
- Take into account priors on target population
 - failure to do so gives inferior results
 - train model once on equal class fractions then adjust probabilities
- 62% quasar sample completeness with zero contamination
- see arXiv:0809.3373 (MNRAS, in press)