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Gaia spectroscopy

Graphics: ESA,  Astrium
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Simulated spectrophotometry (BP/RP)
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Simulated spectrophotometry (BP/RP)
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Simulated spectrophotometry (BP/RP)
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Simulated spectrophotometry (BP/RP)
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Observed uncalibrated BP/RP spectra
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Observed uncalibrated BP/RP spectra

Graphics: ESA/DPAC/Astrium/ C. Jordi & J.-M. Carrasco
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Simulated radial velocity spectra (RVS)
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Simulated radial velocity spectra (RVS)
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Observed early RVS spectrum
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Classification and parameter estimation

• probabilistic source classification

‣ classes:  star, binary, quasar, galaxy, ...

‣ data:  BP/RP;  photometry;  position, parallax, proper motion

• astrophysical parameter (AP) estimation

‣ for single and binary stars, quasars, and galaxies

‣ data:  BP/RP;  RVS;  parallax (for stars)

• use of various stellar libraries (plus calibration against standards)

• novelty detection (outlier analysis)
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AP estimation system (Apsis) in Gaia
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C. A. L. Bailer-Jones et al.: Astrophysical parameters from Gaia

Table 1. Apsis modules.

Acronym Name
DSC Discrete Source Classifier
ESP Extended Stellar Parametrizer:

-CS ESP – Cool Stars
-ELS ESP – Emission Line Stars
-HS ESP – Hot Stars
-UCD ESP – Ultra Cool Dwarfs

FLAME Final Luminosity Age and Mass Estimator
GSP-Phot Generalized Stellar Parametrizer – Photometry
GSP-Spec Generalized Stellar Parametrizer – Spectroscopy
MSC Multiple Star Classifier
OA Outlier Analysis
OCA Object Clustering Algorithm
QSOC Quasar Classifier
TGE Total Galactic Extinction
UGC Unresolved Galaxy Classifier

3. The astrophysical parameters inference system
(Apsis)

3.1. Principles

The goal of Apsis is to classify and to estimate astrophysical pa-
rameters for the Gaia sources using the Gaia data. These APs
will be part of the publicly released Gaia catalogue. They will
also be used internally in the data processing, for example to help
the template-based extraction of the RVS spectra and the identi-
fication of quasars used to fix the astrometric reference frame.

Our guiding principle for Apsis is to provide reasonably ac-
curate estimates for a broad class of objects covering a large frac-
tion of the catalogue, rather than to treat some specific types of
objects exhaustively. To achieve this, Apsis consists of a number
of modules with di↵erent functions.

The paradigm which underlies most of the Apsis modules is
supervised learning. This means that the classes or parameters of
objects are determined according to the similarity of the data to
a set of templates for which the parameters are already known,
so-called “labelled” data. How this comparison is done – in par-
ticular, how we interpolate between the templates and how we
use the data – is an important attribute distinguishing between
the various machine learning (or pattern recognition) algorithms
available. Our choices are based on their accuracy, utility and
speed. The term “training” is used to describe the process by
which the algorithm is fit to (learns from) the template data. For
the most part we have, to date, used libraries of synthetic spec-
tra as the basis for our training data, although we also use some
semi-empirical libraries. These libraries and the construction of
the training and testing data using a Gaia instrument simulator
are described in Sect. 4. Later, actual Gaia observations will be
used to calibrate the synthetic spectral grids (see Sect. 6).

3.2. Architecture

Each of the modules in Apsis is described separately in Sect. 5.
Here we give an overview and describe their connectivity, which
is summarized in Fig. 5. The acronyms are defined in Table 1.

DSC performs a probabilistic classification into classes such
as “(single) star”, “binary star”, “quasar”. This is used by many
of the other modules to select sources for processing. GSP-Phot
and GSP-Spec estimate stellar parameters using the BP/RP spec-
tra (and parallaxes) and the RVS spectra respectively, whereby
GSP-Phot also estimates the line-of-sight extinction to each star

Fig. 5. Component modules in Apsis and their interdependency. The
module names are defined in Table 1. The arrows indicate a dependency
on the output of the preceding module. The coloured bars underneath
each module indicate which data it uses. Most of the modules addition-
ally use the photometry and some also the Galactic coordinates.

individually. Supporting these are a number of “extended stel-
lar parametrization” modules, which operate on specific types of
stars, their preliminary identification being taken from GSP-Phot
and (if the stars are bright enough) GSP-Spec. These are ESP-
ELS, ESP-HS, ESP-CS, and ESP-UCD. Although GSP-Phot is
trained on a broad set of stars which includes all of these, these
modules attempt to achieve more appropriate parameters esti-
mates by making a more physically-motivated use of the data,
and/or by using other stellar models. Using the outputs of GSP-
Phot, FLAME uses isochrones to estimate stellar luminosities,
masses and ages for certain types of stars. MSC attempts to
estimate parameters of both components of systems suspected
(by DSC) to be unresolved stellar binaries. QSOC and UGC
estimate astrophysical parameters of quasars and (unresolved)
galaxies, respectively. TGE will use the line-of-sight extinction
estimates from GSP-Phot of the most distant stars to build a two-
dimensional map of the total Galactic extinction over the whole
sky. This may also be used as an input to QSOC and UGC.

The two remaining Apsis modules use the concept of unsu-
pervised learning. OCA works independently of all other mod-
ules by using clustering techniques to detect “natural” patterns
in the data, primarily for novelty detection. OA does something
similar on the objects classified as “outliers” by DSC. Its purpose
is to identify whether some of these outliers are known objects
which were not, or were not correctly, modelled in the training
data. Results from this can be used to improve the models in the
next processing cycle.

3.3. Source selection

Which sources are processed by which modules depends on (1)
the availability of the necessary data; (2) the S/N of the data;
(3) the outputs from other modules.

A74, page 5 of 20

For details see:
Bailer-Jones et al. (2013)
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Preliminary fitting of BP/RP spectra

black = Gaia data   red = model fit (GSP-Phot/Aeneas with Phoenix)
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Expected parameter accuracy from BP/RP

• is a function of true parameters, magnitude, no. observations

• internal RMS residuals for FGKM stars (wide range of other APs)

AP G=15 G=19

Teff / K 70 - 170 90 - 630

A0 / mag 0.07 - 0.14 0.15 - 0.35

[Fe/H] / dex 0.15 - 0.3 0.3 - 0.6

logg / dex 0.2 - 0.4 0.15 - 0.45
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Stellar APs in (final) Gaia catalogue

• class probabilities, Teff, A0, logg, [Fe/H], (R0, [α/Fe], …)

‣ derived MG, luminosity, mass, radius, age (precision highly variable)

‣ uncertainty estimates, posterior PDF in some cases

‣ multiple sets of estimates (different methods, data, spectral libraries)

‣ use of parallax and physical reality (e.g. HRD) in some cases

• additional AP estimates for specific types of stars

‣ e.g. emission line stars, ultra cool dwarfs
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Stellar APs in the Gaia data releases

• GR1 (mid 2016):  nothing planned

• GR2 (early 2017):  Teff, A0 based on BP/RP; integrated BP/RP 
photometry

• GR3 (2018):  main APs based on BP/RP and RVS; BP/RP and RVS

• GR4 (2019):  as GR3 but with improved precision and calibration; 
more detailed APs

• Final release (2022):  improvement of all data products; ground-
based auxiliary data
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Summary

• Gaia has a significant spectroscopic capability

• The Gaia catalogue will contain

‣ Teff, A0, logg, [Fe/H], some individual abundances, physical parameters

‣ multiple parameter estimates: different data/methods/libraries

• Large numbers of objects (variable precision)

‣ 109 stars from low res. spectrophotometry (330-1050 nm; G < 20)

‣ 107 stars from high res. spectroscopy (847-871 nm; GRVS < 12)
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RVS, end-of-mission, pre-launch, SNR
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BP/RP, end-of-mission, pre-launch, SNR
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Table 2. Stellar libraries used to simulate BP/RP and RVS spectra.

Name N Te↵ /K log g / dex [Fe/H] / dex Ref. Notes
OB stars 1296 15 000�55 000 1.75�4.75 0.0�0.6 1 TLUSTY code; NLTE, mass loss, vmicro
Ap/Bp stars 36 7000�16000 4.0 0.0 2 LLmodels code, chemical peculiarities
A stars 1450 6000�16 000 2.5�4.5 0.0 3 LLmodels code, [↵/Fe]= 0.0, +0.4
MARCS 1792 2800�8000 �0.5�5.5 �5.0�1.0 4 Galactic enrichment law for [↵/Fe]
Phoenix 4575 3000�10 000 �0.5�5.5 �2.5�0.5 5 �Te↵ = 100 K
UCD 2560 400�4000 �0.5�5.5 �2.5�0.5 6 various dust models
C stars MARCS 428 4000�8000 0.0�5.0 �5.0�0.0 7 [C/Fe] depends on [Fe/H]
Be 174 15 000�25 000 4.0 0.0 8 range of envelope to stellar radius ratios
WR 43 25 000�51 000 2.8�4.0 0.0 9 range of mass loss rates
WD 187 6000�90 000 7.0�9.0 0.0 10 WDA & WDB
MARCS NLTE 33 4000�6000 4.5�5.5 0.0 11 NLTE line profiles
MARCS RVS 146 394 2800�8000 �0.5�5.5 �5.0�1.0 12 variations in individual elements abundances
3D models 13 4500�6500 2.0�5.0 �2.0�0.0 13 StaggerCode models and Optim3D code
SDSS stars 50 000 3750�10 000 0.0�5.5 �2.5�0.5 14 semi-empirical library
Emission line stars 1620 � � � 15 semi-empirical library (see Sect. 5.4)

Notes. N is the number of spectra in the library. Ap/Bp are peculiar stars; UCD are ultracool dwarfs; WR are Wolf Rayet stars; WD are white
dwarfs.
References. 1) Bouret et al. (2008); 2) Kochukhov & Shulyak (2008); 3) Shulyak et al. (2004); 4) Gustafsson et al. (2008); 5) Brott & Hauschildt
(2005); 6) Allard et al. (2001); 7) Masseron, priv. comm.; 8), 9) Martayan et al. (2008); 10) Castanheira et al. (2006); 11) Korn et al., priv. comm.;
12) Recio-Blanco et al., priv. comm.; 13) Chiavassa et al. (2011); 14) Tsalmantza & Bailer-Jones (2010b); 15) Lobel et al. (2010).

4. Model training and testing

Supervised classification methods are based on the comparison
of observed data with a set of templates. These are used to train
the models in some way. For this purpose we may use either
observed or synthetic templates, both of which have their advan-
tages and disadvantages. Observed templates better represent the
spectra one will actually encounter in the real data, but rarely
cover the necessary parameter range with the required density,
in particular not for a survey mission like Gaia. Synthetic tem-
plates allow us to characterize a wide parameter space, and also
to model sources which are very rare or even which have not
(yet) been observed. Intrinsically free of observational noise and
interstellar extinction, they allow us to freely add these e↵ects
in a controlled manner. They are, however, simplifications of the
complex physics and chemistry in real astrophysical sources, so
they do not reproduce real spectra perfectly. This may be prob-
lematic for pattern recognition, so synthetic spectra will need
calibration using the actual Gaia observations of known sources
(see Sect. 6)6.

The training data for the Apsis modules are based on a mix-
ture of observed (actually “semi-empirical”) and synthetic li-
braries for the main sources we expect to encounter. These are
described below. Once the library spectra have been constructed,
BP/RP and RVS spectra are artificially reddened, then simu-
lated at the required G magnitude and with a S/N corresponding
to end-of-mission spectra (see Sect. 2) using the Gaia Object
Generator (GOG, Luri et al. 2005).

4.1. Stellar spectral libraries
The Gaia community has calculated large libraries of synthetic
spectra with improved physics for many types of stars. We are
able to cover a broad AP space with some redundancy between
libraries. Each library uses codes optimized for a given Te↵
range, or for a specific object type, and includes as appropriate
the following phenomena: departures from local thermodynamic
6 Of course, to estimate physical parameters we must, at some point,
use physical models, so dependence on synthetic spectra cannot be
eliminated entirely.

equilibrium (LTE); dust; mass loss; circumstellar envelopes;
magnetic fields; variations of single element abundances; chem-
ical peculiarities. The libraries are listed in Table 2 with a sum-
mary of their properties and AP space. Not all of these libraries
are used in the results reported in Sect. 5. The synthetic stellar
libraries are described in more detail in Sordo et al. (2010, 2011)
together with details on their use in the Gaia context. The large
synthetic grids for A, F, G, K, and M stars have been computed
in LTE for both BP/RP and RVS. For OB stars, non-LTE (NLTE)
line formation has been taken into account.

Synthetic spectra are of course not perfect. We cannot
yet satisfactorily simulate some processes, such as emission
line formation. To mitigate these drawbacks, observed spec-
tra are included in the training dataset in the form of semi-
empirical libraries. These are observed spectra to which APs
have been assigned using synthetic spectra, and for which the
wavelength coverage has been extended (as necessary) using
the best fitting synthetic spectrum. Semi-empirical libraries have
been constructed for “normal” stars using SDSS (Tsalmantza &
Bailer-Jones 2010b), and from other sources for emission line
stars (Lobel et al. 2010; see Sect. 5.4).

Starting from the available synthetic and semi-empirical li-
braries, two types of data set are produced. The first one mirrors
the AP space of the spectral libraries, and is regularly spaced
in some APs. The second one involves interpolation on some
of the APs (Te↵ , log g, [Fe/H]) but with no extrapolation (and
we do not combine di↵erent libraries). See Sordo et al. (2011)
for details on how the interpolation is done. Both datasets are
intended for training the AP estimation modules, while the in-
terpolated one serves also for testing. In both cases extinction is
applied using Cardelli’s law (Cardelli et al. 1989), with a given
set of extinction parameters. Extinction is represented using an
extinction parameter, A0, rather than the extinction in a partic-
ular band, as defined in Sect. 2.2 of Bailer-Jones (2011). The
parameter A0 corresponds to A

V

in Cardelli’s formulation of the
extinction law, but this new formulation is chosen to clarify that
it is an extinction parameter, and not necessarily the extinction
in the V band, because the extinction (for broad bands) depends
also on the spectral energy distribution of the source.
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