Science Contact

Jörg-Uwe Pott
Phone: (+49|0) 6221 528-202
Rix, Hans-Walter
Hans-Walter Rix
Director
Phone: (+49|0) 6221 528-210
Hennawi, Joe
Joe Hennawi
Phone: external at UCSB

at UCSB

Media Contact

Jäger, Klaus
Klaus Jäger
Scientific coordinator
Phone: (+49|0) 6221 528-379

Kick-off for the E-ELT-Camera MICADO: a new era of precision astronomy

Start of the Preliminary Design Phase for the MICADO camera for the E-ELT

October 07, 2015

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement. As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared wavelengths.
The MICADO instrument will be developed and built by a consortium of European institutes in collaboration with ESO. MICADO will be the first dedicated imaging camera for the giant new telescope E-ELT and will take the power of adaptive optics to the next level. This picture shows how the instrument will look when installed on the telescope. Zoom Image
The MICADO instrument will be developed and built by a consortium of European institutes in collaboration with ESO. MICADO will be the first dedicated imaging camera for the giant new telescope E-ELT and will take the power of adaptive optics to the next level. This picture shows how the instrument will look when installed on the telescope. [less]

MICADO is the Multi-AO Imaging Camera for Deep Observations, which has been designed to work on the 39-m European Extremely Large Telescope (E-ELT). This revolutionary telescope will be the largest optical/near-infrared telescope in the world, gathering about 15 times more light than the largest optical telescopes existing today. The MICADO camera will provide the capability for diffraction-limited imaging at near-infrared wavelengths, taking the power of adaptive optics to the next level. To correct for distortions due to the Earth’s atmosphere, MICADO is optimized to make use of adaptive optics (AO): a simple single conjugate AO mode (SCAO) for correction of individual targets and a powerful multi-conjugate AO mode provided by the MAORY (Multi-conjugate Adaptive Optics RelaY) instrument to obtain sharp images over a wide-field of view.

The key capabilities of MICADO are matched to the unique features of the new telescope, and will lead to dramatic discoveries of new or unexplored astrophysical phenomena. To name but a few: Its high sensitivity will allow it to detect the faintest stars and furthest galaxies. Its unprecedented spatial resolution will reveal structures in nebulae and galaxies in detail far beyond what is currently possible. For instance, by resolving stellar populations in distant galaxies their star formation history and evolution can be studied. And with the superb astrometric precision achieved by MICADO, many astronomical objects will no longer be static – they will become dynamic. Measuring the tiny movements of stars will reveal the presence of otherwise hidden black holes in star clusters, and tracking the motions of star clusters will lead to new insights about how our Milky Way formed. In addition, MICADO includes a special mode that will allow it to directly observe and characterize extrasolar planets, and another that enables it to take spectra of compact objects.

An artist's rendering of the European Extremely Large Telescope (E-ELT) in the Chilean Atacama Desert. Construction started in 2014 and first light is targeted for 2024. Zoom Image
An artist's rendering of the European Extremely Large Telescope (E-ELT) in the Chilean Atacama Desert. Construction started in 2014 and first light is targeted for 2024. [less]

“It’s an incredibly exciting prospect, the measurements we’ll be able to make with our camera and this giant future telescope,” says Ric Davies, the Principal Investigator at MPE. “But this is also a very challenging project, and I am glad to have such a capable and enthusiastic team.”

The MICADO instrument will be developed and built by a consortium of European institutes in collaboration with ESO. All partners have a strong tradition of working together to design and build world-class optical and infrared instrumentation. The project is expected to last nearly 10 years from the beginning of the current design phase to the end of commissioning, with the first light of both the E-ELT and MICADO planned for 2024.

As the lead institute, MPE is responsible for the overall project management and system engineering, and represents the consortium towards ESO. In addition, the team at MPE takes the lead in the developing and constructing the MICADO cryostat and the cold optics.

The main contributions of MPIA to MICADO are the high-precision Instrument-De-Rotator and the Calibration Units. The De-Rotator compensates the rotation of the field of view caused by the rotation of the Earth during observations. The Calibration Units will support the detector calibration of both the imaging camera and the spectrograph. A particular challenge is the long-time calibration of astrometric imaging errors unavoidable for a wide- field instrument like MICADO.
"The combination of the never before achieved resolution and light collecting power of the 39m-E-ELT will allow us to unravel for the first time the transition area between the low-mass stellar black holes and their supermassive counterparts in the centers of galaxies," says Jörg-Uwe Pott from MPIA, Instrument Scientist for the entire MICADO project, and adds: "We will win important insights into the innermost processes of active galaxies and the star- and galaxy formation  in the early universe."

<div class="image_description">
<div class="hide_in_print">
<p>Image of the consortium taken at the MICADO kick-off meeting in Vienna.</p>
</div>
</div> Zoom Image

Image of the consortium taken at the MICADO kick-off meeting in Vienna.

Note:

The MICADO consortium comprises:

MPE: Max-Planck-Institut für extraterrestrische Physik (Germany); PI: Ric Davies

MPIA: Max-Planck-Institut für Astronomie (Germany); Co-PI: Jörg-Uwe Pott

USM: Universitäts-Sternwarte München(Germany); Co-PI: Florian Lang-Bardl

IAG: Institute for Astrophysics of the Georg-August-Universität Göttingen (Germany); Co-PI: Harald Nicklas

NOVA: Netherlands Research School for Astronomy (represented by University of Groningen, the University of Leiden, and the NOVA optical/infrared instrumentation group based at ASTRON in Dwingeloo) (The Netherlands); Co-PI: Eline Tolstoy (at Univ. Groningen)

INAF-OAPD: National Institute for Astrophysics at the Observatory of Padova; Co-PI: Roberto Ragazzoni (at OAPD)

CNRS/INSU: Centre National de la Recherche Scientifique/Institut National des Sciences de l’Univers (represented for MICADO by LESIA, GEPI and IPAG) (France); Co-PI: Yann Clenet (at LESIA)

A*: An Austrian partnership (represented for MICADO by the University of Vienna, the University of Innsbruck, the University of Linz, and RICAM Linz [Austrian Academy of Sciences]) (Austria); Co-PI: Joao Alves (Uni. Wien)

(Original text: Hannelore Hämmerle (MPE) et al., http://www.mpe.mpg.de/6460131/News_20151006)

 
loading content