Iracing the Ingredients for a Interstellar Space I hrough Habitable Earth from

Planet Formation

Edwin (Ted) Bergin University of Michigan

(Minnesota), J. Li (Michigan) F. Ciesla (Chicago), M. Hirschmann collaborators: G. Blake (Caltech),

The Ingredients for a

Habitable World

at right distance from star

liquid water

volatile elements (CHON)

astronomy to planets, exoplanets?

How can we make connections trom

Iracing Chemical Origins

- For terrestrial worlds and giant planets: difficult to torm. determine what was provided when and in what
- For C and N carriers it is easier to concentrate on BULK composition (if possible).
- i.e. not worrying about a particular organic needed to make RNA
- Oxygen is an important outlier in this regard as we know it was provided as $H_2O + silicates$.

Planetary Synthesis Modeling

- e.g. Mordasini; Rubie; Bond; Mulders; Cridland; ...
- Assume some initial chemical composition of disk that is implanted into planetesimals.
- Could use chemical equilibrium; solar system constraints; or kinetic chemical models.
- Composition is fixed (no loss) as planetesimals grow.
- Dynamical model is imprinted (where are giant) terrestrial planets via N-body simulations. planets and do they move); build giant and

Iracing Chemical Origins: Giant Planets

- Strong focus on atmospheric C/O ratios motivated by Oberg, Murray-Clay, & Bergin 2011.
- Basic idea:
- core-accretion model of giant planet formation
- rocks/ices go to core (assume it does not mix)
- atmosphere accreted from nebular gas
- ightarrow location of planet formation can change C/O ratio
- based on snowlines.

O Ratio & Elevated C/

Öberg & Bergin 2016

Making a terrestrial world

numerous potential loss terms drift/evaporation; internal heatings in planetesimals; collisions; core formation

NEED to understand key processes first!!! talk to experts who have studied our planet

Fracing Origins of the Earth

Tracers of Bulk Composition

in Starting Materials

- Interstellar medium: initial
- chemical/physical conditions
- Comets:
- ightarrow Halley studied in situ
- → Sun-grazing

Tracers of Bulk Composition

in Starting Materials

- Interstellar medium: initial
- chemical/physical conditions
- Comets:
- ightarrow Halley studied in situ
- → Sun-grazing

Tracers of Bulk Composition in Starting Materials

- Meteorites: sample asteroid belt
- Carbonaceous chondrites: rare primitive meteorites
- \rightarrow Ordinary chondrites: common, most (T > 800 K in parent body) have evidence for metamorphism
- \rightarrow Enstatite chondrites: rare, low oxygen
- Bulk Silicate Earth: entire Earth
- (including atm./oceans) minus the core

Iower than
expected
density (than
Fe) based on
seismic wave
propagation

Poirier 1994; Birsch 1952

→ potentia

elements: H, C,

0, Si, S, N

Nitrogen

Nitroger

Nitrogen

Nitroger

N as a racer ot **Process**

Except for Ordinary Chondrites, Earth C/N \neq potential starting materials

N as a Iracer ot **rocess**

as progenitor material

) Isotopic evidence rules out ordinary chondrites

N as a Iracer ot **rocess**

as progenitor material

2) Isotopic evidence rules out ordinary chondrites

Li et al., in prep.; after McDonough & Sun 1995

Protoplanetary UISK

- Use dust spectral energy distribution to determine: n(r,z), T(r,z) for dust
- Molecular lines to constrain gas parameters
- Detailed chemical models (Fogel+ 11, Cleeves+ 13, Schwarz+ 14, Du+ 15) to model chemistry

Du et al. 2015, ApJ, subm.

Main N carriers: N₂, NH₃, organics

Main C carriers: Refractory grains, CO, CO₂, organics

	\sim 2) have this carbon
Jones et al. 2013	anhydrous IDPs (C/Si
0 2 4 6 8 10 × (μm ⁻¹)	Halley and
	➡ in Solar System:
0.50 Si-orains	spectroscopy
	absorption line
2 per H)	➡ confirmed by
	extinction
	➡ interstellar dust
r space is in refractory form.	50% of C in interstella
fractory Carbon	Interstellar Re

Interstellar Carbonaceous Grains

- → For carbonaceous meteorites C/Si < 1</p>
- must destroy ISM carbon grains
- sublimation temperature > 400 K
- ➡ Four (?) potential mechanisms
- **1.** Photoablation
- 2. Oxidation (reactions with atomic O, OH)
- **3.** Destruction via reactions with frozen, but free, oxygen (Shi et al. 2015)
- 4. Parent body processing

Interstellar Carbonaceous Grains

→ For carbonaceous meteorites - C/Si < 1</p>

- must destroy ISM carbon grains
- sublimation temperature > 400 K
- \rightarrow Four (?) potential mechanisms
- 1. Photoablation
- 2. Oxidation (reactions with atomic O, OH)
- 3. Destruction via reactions with frozen, but free,
- oxygen (Shi et al. 2015)
- 4. Parent body processing

small grains (< 1 µm; early?)

Start: disk with well mixed gas and dust

Start: disk with well mixed gas and dust

Due to gas drag and pressure gradients grains accumulate where the gas pressure maximizes: settle to the midplane

Start: disk with well mixed gas and dust

Due to gas drag and pressure gradients grains accumulate where the gas pressure maximizes: settle to the midplane

Grains grow into rocks in dust-rich midplane

Turbulence in the disk acts against dust settling

(Weidenshilling 1984)

Lee, Bergin, and Nomura 2010 Anderson et al. 2016, ApJ, submitted

Anderson et al. 2016, ApJ, submitted

Anderson et

in the inner disk.

Evidence of oxidation would be excess CC constrain C/N ratio and search for Astronomically we can attempt to destruction of carbon grains

submitted

Zhang et al. 2016, Nat. Astro., in review

Peering into the midplane

Inetic Chemical Mode

 Organics/carbon grains most likely carriers
Halley has ISM carbon content; C/N(max) = 12
Disk chemistry produces C/N ~

1-12

N as a racer ot **rocess**

N as a Iracer of Process

Key Factors: C/N & Core Formation

- Solubility in silicate melt
- ➡ C more soluble than N oxidizing conditions
- → N more soluble than C reducing conditions

Oxidized vs Reduced

- Standard definition loss (oxidized) or gain (reduced) of an electron.
- H is a reducing agent, O is a oxidizing agent
- Scenarios:
- \rightarrow Planetary embryos potentially existed as early as 2 Myr after CAI's (Dauphas and Pourmand 2011).
- \rightarrow Gas-rich nebula was present.
- \rightarrow Early H₂ atmosphere in equilibrium with magma ocean would be highly reducing.

Oxidized vs Reduced

- Standard definition loss (oxidized) or gain (reduced) of an electron.
- H is a reducing agent, O is a oxidizing agent
- Scenarios:
- Earth's core formed at least 30 Myr after CAI's (e.g. Nimmo & Kleine 2015).
- H_2 nebula dissipated; initial H_2 rich atmosphere ablated.
- Oxidation state driven by presence/absence of water or previous presence of water forming FeC
- Earth form's from material primary interior to the snowline presents a moderately reducing proto-Earth

Uxidized vs Reduced

- Standard definition loss (oxidized) or gain (reduced) of an electron
- H is a reducing agent, O is a oxidizing agent
- Scenarios:
- Earth's core formed at least 30 Myr after CAI's (e.g. Nimmo & Kleine 2015).
- H^2 nebula dissipated; initial H^2 rich atmosphere ablated
- Oxidation state driven by presence/absence of water.
- Earth forms from material with contributions beyond nebular snowline (during magma ocean phase).
- Current consensus model and is much more oxidizing.

Key Factors: C/N & Core Formation

- Solubility in silicate melt
- ➡ C more soluble than N oxidizing conditions
- → N more soluble than C reducing conditions
- Affinity for Fe-rich metal
- C partitions more strongly than N (factors of 100 - 104)
- Timing (before, during, after core formation)

Model

- 1.C/N(initial) = 25
- 2. Chemical equilibrium with variable fraction of Fe/Silicate mixture
- Forms metal/volatile rich silicate mixture
- overlying atmosphere

Node

- 3. Segregation and isolation of core
- \rightarrow mantle with C and N that do not go to core
- overlying atmosphere equilibrium based on initia

Elkins-Tanton, 2008)

A - atmosphere returns to mantle to form BSE B - atmosphere lost to space, mantle is BSE

Making a Habitable Planet

- Earth's C and N likely supplied by materials that reduced, if not oxidized were a mixture of our cases - so at least
- magma-ocean related core formation (under most likely conditions) provides
- \rightarrow low C in mantle, high N in atmosphere account for high C/N ratio need loss of primordial atmosphere to

Assembling a Habitable World

- Most likely carriers of C and N are organics and carbonaceous grains
- fractionates further; between and within bodies. In large (many km sized planetesimals) C/N
- Core formation should drastically reduce the C/N ratio geochemical constraints. primordial atmosphere - but need improved of forming planet, requiring substantial loss of N-rich
- Hints at variable supply and retention of key ingredients of habitable worlds