
Least-squares Support Vector
Regression for GSP-Phot

prepared by: R. Andrae
reference: GAIA-C8-TN-MPIA-RAN-024
issue: 1
revision: 2
date: 2016-02-05
status: Issued

Abstract
We discuss the least-squares support vector regression as an alternative to the standard
SVR used in GSP-Phot. We find that LSSVR is trivial to implement, more flexible
in its choice of kernel functions, faster to train, has fewer hyperparameters and pro-
vides scientific parameter estimates that are competitive or even slightly better than
the standard SVR currently implemented in GSP-Phot. Nevertheless, we conclude
that the advantages of LSSVR are not decisive such that we will keep the currently
implemented standard SVR for GSP-Phot and use the LSSVR only as a backup.

CU8
Least-squares Support Vector Regression for GSP-Phot
GAIA-C8-TN-MPIA-RAN-024

Document History

Issue Revision Date Author Comment
1 2 2016-02-05 RAN Adding appendix using weights in training.
1 1 2015-03-02 RAN First issue.
D 1 2015-03-02 RAN Including comments from Coryn.
D 0 2015-02-13 RAN First draft.

1 Introduction

GSP-Phot employs a Support Vector Regression (hereafter SVR) to obtain a first estimate of
the stellar parameters from the given BP/RP spectra. The SVR result is then used as an initial
guess for the other GSP-Phot algorithms, Ilium and Aeneas. Currently, this SVR is a standard
SVR algorithm, as described in, e.g., Sect. 3.4 of Deng et al. (2012). While its scientific AP-
estimation performance is very good, its implementation within the DPAC software is somewhat
complicated. It employs the external libsvm library, which is then wrapped by the CU8
classifier package. This design has several disadvantages: First, maintainance support
for libsvm or (less likely) the classifier package could cease in the future. Second, the
classifier package stores the support vectors (BP/RP spectra) in double precision, whereas
float precision would be sufficient and would reduce the memory usage by a factor of two.1

Third, libsvm has a very limited choice of kernel functions and most of them are deactived
by the classifier package.

In this TN, we discuss least-squares SVR as an alternative. We first present the algorithm
and its mathematical details, deriving the fully analytic solution that is trivial to implement.
We then apply least-squares SVR to BP/RP spectra, comparing its scientific AP-estimation
performance to the current GSP-Phot implementation. Finally, in Appendix A, we discuss
how to use weighted training data, e.g., to incorporate errors of training labels or to put more
emphasis on some training examples.

2 Least-squares SVR

In this section, we introduce the least-squares SVR algorithm.

2.1 Least-squares SVR vs. standard SVR

As the name suggests, least-squares SVR employs the squared-error loss function, shown in
Fig. 1c. Conversely, standard SVR uses the so-called ε-insensitive absolute-error loss function,

1Currently, SVR models are quite large and DPCC is worried about the memory consumption.

Technical Note 2

CU8
Least-squares Support Vector Regression for GSP-Phot
GAIA-C8-TN-MPIA-RAN-024

shown in Fig. 1b. This leads to some crucial differences between the standard SVR and least-
squares SVR:

• Least-squares SVR loses the sparsity of the dual problem solution that makes stan-
dard SVR so special. The sparsity of standard SVR originates from the insensitivity
of its loss function to any errors that are smaller than ε (c.f. Fig. 1b). In other words,
while for standard SVR the target function is based on only a handful of support
vectors, for least-squares SVR all training data enter into the target function.

• While the dual problem of standard SVR is a quadratic programming problem
that requires an iterative solution due to the presence of inequality constraints, the
least-squares SVR leads to a dual problem that does not have any inequality con-
straints, such that a one-shot analytic (i.e. non-iterative) solution exists. For standard
SVR, the ε-insensitivity of the loss function, Fig. 1b, gives rise to a distinction of
inequality-type cases whether residuals are larger than ε or smaller than −ε.

Given its one-shot analytic solution, least-squares SVR may therefore be computationally more
efficient for small training data sets. For large training data sets, however, the sparsity of the
standard SVR formulation might eventually lead to lower computational cost.

Figure 1: Comparison of loss functions: (a) The absolute-error loss funcion. (b) The ε-insensitive absolute-error
loss function used by standard SVR. (c) The squared-error loss function used by least-squares SVR.

2.2 Formulating the primary problem

We are given N training data with input values {xn}Nn=1 and output labels {yn}Nn=1. In the case
of GSP-Phot, the xn are the BP/RP spectra of the n-th training example, whereas yn is, e.g., the
effective temperature that we want to estimate from the spectrum. Leaving kernels aside for the
moment, least-squares SVR then attempts to find a linear function,

f(x) = wT · x+ b , (1)

Technical Note 3

CU8
Least-squares Support Vector Regression for GSP-Phot
GAIA-C8-TN-MPIA-RAN-024

to predict y from a given x, where w and b are the parameters of the model. These parameters
need to be fitted from the given training data by optimising some objective function. Addi-
tionally, there will also be some equality constraints, i.e., the objective function will be a La-
grangian, L(w, b,α), where α is the vector of Lagrange multipliers representing all equality
constraints.2 The optimisation process will be a minimisation, i.e., we seek estimates of the
model parameters via

ŵ, b̂ = arg min
w,b

L(w, b,α) . (2)

This is called the “primary problem”.

For least-squares SVR, Deng et al. (2012) (Sect. 8.2.1) define the following Lagrangian,

L(w, b, η) =
1

2
||w||2 +

C

2

N∑
n=1

η2n +
N∑
n=1

αn (yn −w · xn − b− ηn) , (3)

where C is the cost parameter and ηn are the N residuals where the N equality constraints are
ηn = yn−w ·xn−b. Leaving the constraints aside, this Lagrangian consists of two components:
Minimisation of the first term, 1

2
||w||2, will maximise the margin width and thereby produce an

SVR model that generalises well, i.e., which has a low expected error on test data it has not seen
during its training process. Minimisation of the second term,

∑N
n=1 η

2
n, minimises the training

error. Obviously, there is a trade-off here: We can attempt to perfectly fit the training data but
then suffer from overfitting (a narrow margin, high variance, low bias). Alternatively, we can go
for a large margin and vanishing generalisation error, at the expense of high training error (low
variance, high bias). The cost parameter, C, governs exactly this trade-off. A large value of C
will put more emphasis on the training error, whereas a small value of C will make the margin
width more important. Furthermore, Eq. (3) contains the sum of squared residuals,

∑N
n=1 η

2
n,

which obviously depends on the number N of given training examples. Therefore, the same
value of C corresponds to different ratios of margin width vs. training error for training samples
of different sizes N . Since we will choose the value of C through cross-validation, N will
change and this could cause problems. We therefore modify Eq. (3) to become

L(w, b, η) =
1

2
||w||2 +

C

2N

N∑
n=1

η2n +
N∑
n=1

αn (yn −w · xn − b− ηn) , (4)

such that the same value of C corresponds to exactly the same trade-off between margin width
and training error, no matter how large the training set is.3

2For standard SVR, there are not only equality constraints but also inequality constraints, which are handled by
a Lagrangian, too.

3Note that the last term in Eq. (4) does not require a factor of N because these are homologous constraints, i.e.,
they are numerically zero anyway.

Technical Note 4

CU8
Least-squares Support Vector Regression for GSP-Phot
GAIA-C8-TN-MPIA-RAN-024

2.3 Deriving the dual problem

We now solve the primary problem, i.e., we need to minimise the Lagrangian of Eq. (4) w.r.t.
w, b, and ηn, thereby removing any explicit dependence on these variables. We will then arrive
at a Lagrangian that is only a function of the α1, . . . , αN , which are the internal parameters of
an SVM model. First, we take the derivative w.r.t. w and obtain:

∇wL = w −
N∑
n=1

αnxn = 0 ⇔ w =
N∑
n=1

αnxn (5)

Second, we take the derivative w.r.t. b:

∂L

∂b
= −

N∑
n=1

αn = 0 ⇔
N∑
n=1

αn = 0 (6)

Finally, we take the derivative w.r.t. ηn:

∂L

∂ηn
=
C

N
ηn − αn = 0 ⇔ ηn =

N

C
αn ∀n = 1, 2, . . . , N (7)

We now insert back into the original Lagrangian of Eq. (4). We first replace ηn = N
C
αn and

obtain:

L(w, b, η) =
1

2
||w||2 +

N

2C

N∑
n=1

α2
n +

N∑
n=1

αn

(
yn −w · xn − b−

N

C
αn

)
(8)

=
1

2
||w||2 +

N

2C

N∑
n=1

α2
n+

N∑
n=1

αnyn−
N∑
n=1

αnw ·xn−b
N∑
n=1

αn−
N

C

N∑
n=1

α2
n (9)

=
1

2
||w||2 − N

2C

N∑
n=1

α2
n +

N∑
n=1

αnyn −
N∑
n=1

αnw · xn (10)

In the last step, we already used
∑N

n=1 αn = 0 and if we now also insert w =
∑N

n=1 αnxn, we
finally obtain:

L(α) =
1

2

N∑
m,n=1

αmαnxm · xn −
N

2C

N∑
n=1

α2
n +

N∑
n=1

αnyn −
N∑

m,n=1

αmαnxm · xn (11)

= −1

2

N∑
m,n=1

αmαnxm · xn −
N

2C

N∑
n=1

α2
n +

N∑
n=1

αnyn (12)

Technical Note 5

CU8
Least-squares Support Vector Regression for GSP-Phot
GAIA-C8-TN-MPIA-RAN-024

= −1

2

N∑
m,n=1

αmαn

(
xm · xn +

N

C
δmn

)
+

N∑
n=1

αnyn (13)

Here, δmn denotes the Kronecker-delta. This objective function is subject to the constraint∑N
n=1 αn = 0, such that the Lagrangian of the dual problem eventually reads:

L(α) = −1

2

N∑
m,n=1

αmαn

(
xm · xn +

N

C
δmn

)
+

N∑
n=1

αnyn + λ

(
N∑
n=1

αn

)
(14)

2.4 Solving the dual problem

This dual problem involves only a single equality constraint but – unlike standard SVR – there
are no inequality constraints. Consequently, the dual problem is a quadratic problem and it must
have an analytic solution. Introducing theN×N matrixMmn = xm ·xn+ N

C
δmn and the vector

e = (1, 1, . . . , 1)T , we can write Eq. (14) as:

L(α) = −1

2
αT ·M ·α+ y ·α+ λ (e ·α) (15)

Taking the first derivative w.r.t. α, we obtain:

∇αL(α) = −M ·α+ y + λe = 0 (16)

Assuming that the matrix M is invertible, which is almost guaranteed for a proper choice of
C > 0 that adds to M ’s diagonal elements, we can solve:

α = M−1 · (y + λe) (17)

We still need to eliminate the Lagrange multiplier λ, though. Given ∂L
∂λ

= e · α = 0, we can
compute:

e ·α = 0 = eT ·M−1 · (y + λe) ⇔ λ = −e
T ·M−1 · y
eT ·M−1 · e

(18)

The analytic solution to the dual problem is therefore given by:

α = M−1 · y −
(
eT ·M−1 · y
eT ·M−1 · e

)(
M−1 · e

)
(19)

Technical Note 6

CU8
Least-squares Support Vector Regression for GSP-Phot
GAIA-C8-TN-MPIA-RAN-024

2.5 Evaluating the target function

Once the analytic solution for α has been obtained, we can calculate the target function given
by Eq. (1), where w =

∑N
n=1 αnxn and b is obtained by picking any n, say n = 1, and solving

for the constraint ηn = yn −w · xn − b to obtain

b = y1 − η1 −w · x1 = y1 −
N

C
α1 −

N∑
m=1

αmxm · x1 . (20)

We therefore obtain the target function

f(x) =
N∑
n=1

αnxn · x+ y1 −
N

C
α1 −

N∑
m=1

αmxm · x1 , (21)

which predicts y for some new input vector x.

2.6 From linear to nonlinear models

2.6.1 The kernel trick

So far, the model that we have considered in Eq. (1) had the mathematical form of a linear
hyperplane. Real-world problems, such es estimating stellar parameters from BP/RP spectra,
are usually not linear though. It is the so-called “kernel trick” that makes the SVR (standard or
least-squares) applicable to nonlinear problems.

All the key equations of the problem involve the training data examples in the form of inner
products xm · xn, and never in any other form. This is true for the solution for b in Eq. (20) as
well as for f(x) which contains w · x where w is given by Eq. (5).

The kernel trick now works as follows: One maps x from the D-dimensional data space (for
GSP-Phot, this is the space of 120 BP/RP pixels) into some other feature space via z = Φ(x),
where Φ(·) is a nonlinear function. Then, one replaces any inner product xm · xn by zm · zn in
all equations. What the mapping function Φ(·) actually does is irrelevant because all we need
are inner products, which we can write as,

zm · zn = Φ(xm) · Φ(xn) = K(xm,xn) (22)

where K(·, ·) is the so-called kernel function that is symmetric in both arguments. All we need
to do here, is specify the kernel function K(·, ·) but not the mapping Φ(·) because we do not
need it. As long as we are choosing a valid kernel function, it is enough to know that a mapping
exists.

How does the kernel trick allow the SVM to handle nonlinear data? The equations of the
SVM are still those of a linear hyperplane. However, the linear hyperplane no longer resides

Technical Note 7

CU8
Least-squares Support Vector Regression for GSP-Phot
GAIA-C8-TN-MPIA-RAN-024

in the data space but instead it resides in the feature space that is created by the implicitely
selected mapping. And because the mapping function Φ(·) is nonlinear, a linear hyperplane in
the kernel’s feature space corresponds to a nonlinear boundary in the data space. Consequently,
a kernel SVM can handle nonlinear data, provided that a suitable kernel is chosen.

2.6.2 Kernel functions

What is a valid choice for the kernel function? The kernel function is meant to represent an inner
product in some feature space, which means that K(·, ·) has to be a symmetric and positive-
semidefinite function, i.e., K(·, ·) must have the following two properties:

symmetry: K(x,x′) = K(x′,x) ∀x,x′ (23)

positive-semidefinite: K(x,x) ≥ 0 ∀x (24)

The two simplest kernel functions that satisfy these conditions are the constant kernel,K(xn,xm) =
1, and the linear kernel K(xn,xm) = xn · xm. Furthermore, there are the following theorems:

1. Any summation of kernel functions,K1(xn,xm)+K2(xn,xm), is a kernel function.

2. Any product of kernel functions, K1(xn,xm)K2(xn,xm), is a kernel function.

3. Any convergent series of kernel functions,
∑∞

j=0Kj(xn,xm), is a kernel function.

From these definitions it follows that any polynomial p(·) with argument xn · xm is a kernel
function, e.g.,

K(xm,xn) = 1 + 2(xm · xn) +
1

2
(xm · xn)2 (25)

is a kernel function. Furthermore, any convergent polynomial series is a kernel function. This
applies in particular to any convergent Taylor expansion. For instance,

Kexponential(xm,xn) =
∞∑
j=0

1

j!
(xm · xn)j = exm·xn (26)

KGaussian(xm,xn) = e−||xm||2e−||xn||2
∞∑
j=0

(−2)j

j!
(xm · xn)j = e−||xm−xn||2 (27)

are both kernel functions. Furthermore, also the Cauchy function can act as a kernel:

KCauchy(xm,xn) =
1

1 + ||xm − xn||2
=
∞∑
p=0

(−1)p||xm − xn||2p (28)

Technical Note 8

CU8
Least-squares Support Vector Regression for GSP-Phot
GAIA-C8-TN-MPIA-RAN-024

=
∞∑
p=0

(−1)p
(
||xm||2 − 2xm · xn + ||xn||2

)p (29)

The advantage of the Cauchy kernel is that it does not involve any transcendental functions
such as square-roots, logarithms or exponentials. As we are going to demonstrate in the next
section, this makes the Cauchy kernel to have substantially lower computational cost than, e.g.,
the Gaussian kernel.

3 Scientific performance on BP/RP spectra

In order to get an impression of the scientific performance of such a least-squares SVR model,
we apply it to cycle 8 BP/RP spectra. The Main Stellar Library chosen is PHOENIX at G =
15. The standard SVR used by GSP-Phot is trained on 10 000 training spectra. However,
the standard SVR is sparse and at G = 15 it typically has 4 000 support vectors, whereas
least-squares SVR is not sparse and will use all available training spectra as support vectors.
Therefore, we restrict the training of the least-squares SVR to no more than 4 000 spectra. More
precisely, we train least-squares SVR models using trainings sets containing 1 000, 2 000 and
4 000 spectra, which are randomly selected from the set of 12 000 training spectra available and
whose composition is described in RAN-012.

Least-squares SVR has two hyperparameters – the costC and the kernel width γ – whose values
are found by minimising the two-fold cross-validation error on a two-dimensional brute-force
grid search in C and γ. Figure 2 shows maps of the two-fold cross-validation error as a function
of hyperparameters. Evidently, the maps are multimodal, which is the reason why we use a
brute-force grid. If we used, e.g., a gradient-descent algorithm instead, we would simply get
stuck in the nearest local minimum.4 We use three different kernel functions, the Gaussian, the
Cauchy kernel and the exponential kernel, to train least-squares SVR models for the parameters
log10 Teff, A0, log g and [Fe/H].

Table 1 provides a detailed comparison. First and foremost, we see that, if trained on a similar
number of 4 000 spectra, the Gaussian and the Cauchy kernel achieve AP estimation results
that are competitive with the standard SVR currently implemented in GSP-Phot. If we train
on fewer spectra, the results degrade. More precisely, least squares SVR using the Gaussian or
the Cauchy kernel achieve almost identical results for Teff and A0, whereas they outperform the
standard SVR when it comes to [Fe/H].5 Finally, Table 1 also shows that while the Gaussian
and the Cauchy kernel achieve very similar results, the exponential kernel fails hard to provide

4Standard SVR also suffers from such multimodalities when optimising the hyperparameters. In fact, the
problem is even worse because standard SVR has a third hyperparameter, whereas LSSVR has only two.

5Their results for log g are also substantially better but here the current GSP-Phot implementation has some
problem unrelated to SVR, so this is not a fair comparison.

Technical Note 9

CU8
Least-squares Support Vector Regression for GSP-Phot
GAIA-C8-TN-MPIA-RAN-024

Figure 2: Maps of two-fold cross-validation RMS error as a function of hyperparameters C and γ for all four
parameters (log10 Teff, A0, log g, [Fe/H]). We used the Cauchy kernel and 4 000 BP/RP spectra for training.

Table 1: Scientific AP-estimation performance (RMS errors) of standard SVR and least-squares SVR for
PHOENIX at G = 15. Least-squares SVR models are assessed using three different kernel functions (Gaus-
sian, Cauchy and exponential) and for training sets of 1 000, 2 000 and 4 000 spectra, respectively. The standard
SVR model was trained on a set of 12 000 spectra, whereof ca. 4 000 are support vectors.

SVR standard least-squares
kernel Gaussian Gaussian Cauchy exponential
training spectra ca. 4 000 1 000 2 000 4 000 1 000 2 000 4 000 1 000 2 000 4 000
Teff [K] 94 123 106 94 122 105 95 2314 1219 1006
A0 [mag] 0.063 0.077 0.065 0.061 0.077 0.064 0.060 2.441 1.084 9.063
log g [dex] 0.709 0.490 0.486 0.396 0.472 0.479 0.396 0.813 1.304 14.262
[Fe/H] [dex] 0.278 0.306 0.296 0.218 0.301 0.295 0.215 0.744 1.495 1.350

Technical Note 10

CU8
Least-squares Support Vector Regression for GSP-Phot
GAIA-C8-TN-MPIA-RAN-024

any scientifically useful results. As we used exactly the same code implementation, this cannot
be any software issue but it is a real failure of the exponential kernel.6 We conclude that while
seeking the perfect kernel function may be elusive, some care is still required because not all
kernel functions are useful. Figure 3 directly compares the standard SVR currently implemented
in GSP-Phot and the least-squares SVR using the Cauchy kernel.

Figure 3: Scientific AP-estimation performance of the standard SVR used by GSP-Phot (top row) and least-squares
SVR with Cauchy kernel trained on 4 000 spectra (bottom row). The LSSVR results here use the hyperparameter
values that were inferred from Fig. 2.

As an aside, we also notice that the training process is ca. 30% faster if we use the Cauchy kernel
instead of the Gaussian kernel. As mentioned before, this is because the Cauchy kernel does
not involve any transcendental functions. Since training SVM models is a very time-consuming
process, there is a real practical benefit of using the Cauchy kernel, even if it scientifically
produces the same results as the Gaussian kernel.

4 Conclusions

We investigated least-squares SVR as an alternative to the standard SVR which is currently
implemented in GSP-Phot. Here a summary of our comparison:

6We can only guess why the exponential kernel has such a poor performance. One potential reason is that the
other kernels use distances ||x− x′|| between spectra, which are somehow more informative than the projections
x · x′ used by the exponential kernel.

Technical Note 11

CU8
Least-squares Support Vector Regression for GSP-Phot
GAIA-C8-TN-MPIA-RAN-024

standard SVR least-squares SVR
implementation: libsvm & classifier from scratch
support vectors: stored in double precision stored in float precision
kernel function: Gaussian only whatever we want
hyperparameters: C, γ, ε C, γ
scientific results: very good AP estimates slightly better AP estimates

All in all, least-squares SVR is a viable alternative to the standard SVR that is currently im-
plemented in GSP-Phot: Least-squares SVR is easier to maintain, uses less memory, is more
flexible with regard to kernel functions, has less hyperparameters and is thus faster/easier to
train, and, last but not least, even has a slightly better scientific AP-estimation performance.
However, while least-squares SVR is one step ahead of the standard SVR in all respects, its
advantages are still only minor. There is no striking argument that clearly calls for a replace-
ment of the standard SVR by the least-squares SVR in GSP-Phot. We conclude that we will not
change the SVR implementation of GSP-Phot at the moment. Nonetheless, the least-squares
SVR investigated in this TN provides an excellent back-up in the case that any problems with
libsvm or the classifier package occur in the future.

In future tests, we should also investigate whether SVR models perform better on CU5’s spline
coefficients instead of the pixels of the sampled spectra. Furthermore, we should investigate
into multivariate SVR models, which estimate all four parameters (Teff, A0, log g and [Fe/H]) in
a single model instead of building four completely independent univariate models.

References

[RAN-012], Andrae, R., 2013, Recent improvements and current performance of GSP-Phot,
GAIA-C8-TN-MPIA-RAN-012,
URL http://www.rssd.esa.int/cs/livelink/open/3222048

Deng, N., Tian, Y., Zhang, C., 2012, Support Vector Machines: Optimization Based Theory,
Algorithms, and Extensions, Chapman & Hall/CRC, 1st edn.

A Training LSSVR on weighted labels

The LSSVR algorithm presented above are assuming that all training examples are of equal
importance, or have no or identical label errors. In practice, one sometimes wants to drop this
simplification and introduce a weighting. This can be accomplished by modifying Eq. (4) such
that

L(w, b, η) =
1

2
||w||2 +

C

2N

N∑
n=1

Wnη
2
n +

N∑
n=1

αn (yn −w · xn − b− ηn) , (30)

Technical Note 12

http://www.rssd.esa.int/cs/livelink/open/3222048

CU8
Least-squares Support Vector Regression for GSP-Phot
GAIA-C8-TN-MPIA-RAN-024

where we have introduced the weights W1,W2, . . . ,WN for every training example. This is the
only possible way to introduce weights. The first term, 1

2
||w||2 controls the margin and does

not know about any training data. The last term introduces the Lagrange multipliers and is
numerically zero. The middle term, on the other hand, describes the training error and it is thus
the natural place to weigh up or down the impact of individual training examples. Note that we
have effectively Cn = WnC, i.e., every training example has its own cost parameter. However,
we set the relative weights Wn a priori and then only have one global cost factor C.

Given this Lagrangian, we derive the secondary problem as before, where the solution is largely
identical. In principle, we can use the substitution C → WnC to directly jump to the solution
of the LSSVR algorithm. Nevertheless, we want to give a proper derivation. First, we take the
derivative w.r.t. w and obtain:

∇wL = w −
N∑
n=1

αnxn = 0 ⇔ w =
N∑
n=1

αnxn (31)

Second, we take the derivative w.r.t. b:

∂L

∂b
= −

N∑
n=1

αn = 0 ⇔
N∑
n=1

αn = 0 (32)

Finally, we take the derivative w.r.t. ηn:

∂L

∂ηn
=
C

N
Wnηn − αn = 0 ⇔ ηn =

N

WnC
αn ∀n = 1, 2, . . . , N (33)

We now insert back into the original Lagrangian of Eq. (4). We first replace ηn = N
C
αn and

obtain:

L(α) = −1

2

N∑
m,n=1

αmαn

(
xm · xn +

N

WnC
δmn

)
+

N∑
n=1

αnyn + λ

(
N∑
n=1

αn

)
(34)

The Lagrangian is almost identical, only the diagonal elements of the matrix M are slightly
modified, Mmn = xm · xn + N

WnC
δmn. Otherwise, the analytic solution for the Lagrange

multipliers is still of the exact same form,

α = M−1 · y −
(
eT ·M−1 · y
eT ·M−1 · e

)(
M−1 · e

)
(35)

However, when evaluating the target function, we need to pay attention to the newly introduced
weighting one last time,

f(x) =
N∑
n=1

αnxn · x+ y1 −
N

W1C
α1 −

N∑
m=1

αmxm · x1 , (36)

which predicts y for some new input vector x.

Technical Note 13

	Introduction
	Least-squares SVR
	Least-squares SVR vs. standard SVR
	Formulating the primary problem
	Deriving the dual problem
	Solving the dual problem
	Evaluating the target function
	From linear to nonlinear models
	The kernel trick
	Kernel functions

	Scientific performance on BP/RP spectra
	Conclusions
	Training LSSVR on weighted labels

