New simulations and observations of highly-complex molecules in star-forming regions

Rob Garrod Depts. of Astronomy & Chemistry

UNIVERSITY of VIRGINIA

Background Image: © ESO / J. Francisco Salgado

Molecules are observed throughout the Milky Way

Interplanetary dust grain

Molecules are observed throughout the Milky Way

Detection of gas-phase interstellar molecules

- Rotational spectroscopy with radio-telescopes

Effelsberg telescope Forest of Eiffel, Germany 100m diameter

Green Bank telescope (GBT) W. Virginia 100m diameter

IRAM telescope Sierra Nevada, Spain 30m diameter

Sub-Millimeter Array (SMA) interferometer Mauna Kea, Hawaii 8 x 6m antennas

ALMA – your new favorite radio-telescope

- Wavelengths: 0.32 8.6 mm (35 940 GHz)
- 5000 meters altitude.
- High spatial resolution (~0.01 arcsecond).
- The most sensitive mm/sub-mm instrument.
- Operating since 2011 (Cycle 0).

Atacama Large Millimeter/sub-mm Array Llano de Chajnantor, Atacama Desert, Chile [12 x 7m] + [54 x 12m] antennas

Detected interstellar/circumstellar molecules (~200 so far)

Number of atoms												
2			3	4	5	6	7	8	9	10	11	12+
AlCl AlF AlO C_2 CF ⁺ CH CN CO CO ⁺ CP CS	PN PO SiC SiN SiO SiS TiO ArH ⁺ CH ⁺ CN ⁺	AINC AIOH C_3 C_2H C_2O C_2S C_2P CO_2 FeCN H_3^+ H_2C	$\begin{array}{c} \mathrm{NH}_2\\ \mathrm{N}_2\mathrm{H}^+\\ \mathrm{N}_2\mathrm{O}\\ \mathrm{NaCN}\\ \mathrm{NaOH}\\ \mathrm{OCS}\\ \mathrm{O}_3\\ \mathrm{SO}_2\\ c\text{-}\mathrm{SiC}_2\\ \mathrm{SiCN}\\ \mathrm{SiNC}\\ \mathrm{SiNC}\\ \end{array}$	$\begin{array}{c} CH_{3} \\ l-C_{3}H \\ l-C_{3}H^{+} \\ c-C_{3}H \\ C_{3}N \\ PH_{3} \\ C_{3}O \\ C_{3}S \\ H_{3}O^{+} \\ C_{2}H_{2} \\ H_{2}CN \end{array}$	$\begin{array}{c} C_5 \\ NH_4{}^+ \\ CH_4 \\ CH_3O \\ c{-}C_3H_2 \\ l{-}C_3H_2 \\ H_2CCN \\ H_2C_2O \\ H_2CNH \\ H_2COH^+ \\ C_4H \\ C_4$	$c-H_2C_3O$ HNCHCN C_2H_4 CH ₃ CN CH ₃ NC CH ₃ OH CH ₃ SH $l-H_2C_4$ HC ₃ NH ⁺ NH ₂ CHO C ₅ H	c-C ₂ H ₄ O CH ₃ C ₂ H CH ₃ NH ₂ CH ₂ CHCN C ₂ H ₃ OH C ₆ H CH ₃ NCO HC ₅ N CH ₃ CHO HC ₅ O C ₆ H ⁻	$CH_{3}C_{3}N$ $HCOOCH_{2}OH$ $HCOOCH_{3}$ $CH_{3}COOH$ $C_{6}H_{2}$ $CH_{2}CHCHO$ $CH_{2}CHCHO$ $CH_{2}CCHCN$ $CH_{3}CHNH$ $C_{7}H$ $NH_{2}CH_{2}CN$ $l-HC_{6}H$	$\begin{array}{c} CH_{3}C_{4}H\\ CH_{3}OCH_{3}\\ C_{2}H_{5}CN\\ CH_{3}CONH_{2}\\ C_{2}H_{5}OH\\ C_{8}H\\ HC_{7}O\\ HC_{7}N\\ CH_{3}CHCH_{2}\\ C_{8}H^{-}\\ CH_{3}NHCHO\left(?\right) \end{array}$	CH ₃ COCH ₃ (CH ₂ OH) ₂ C ₂ H ₅ CHO CH ₃ C ₅ N CH ₃ CHCH ₂ O CH ₃ OCH ₂ OH Complex, sa organic mo	$\begin{array}{c} HC_9N\\ C_2H_5OCHO\\ CH_3COOCH_3\\ CH_3C_6H \end{array}$	$\begin{array}{c} c\text{-}C_{6}\text{H}_{6} \\ n\text{-}C_{3}\text{H}_{7}\text{CN} \\ i\text{-}C_{3}\text{H}_{7}\text{CN} \\ C_{2}\text{H}_{5}\text{OCH}_{3} (?) \\ c\text{-}C_{6}\text{H}_{5}\text{CN} \\ C_{60} \\ C_{60}^{+} \\ C_{70} \end{array}$
FeO H ₂ HCI HF	HCI ⁺ NS NS ⁺ SH	H ₂ Cl ⁺ H ₂ O CH ₂ HO ₂	Si ₂ C TiO ₂ HS ₂ HCO ⁺	H ₂ CN ⁺ H ₂ CO H ₂ CS HCCN	C4H ⁻ HC3N HCCNC HC(0)CN	C ₅ N HC ₂ CHO SiC ₃ CN CH ₂ CNH (?)	Melacular cla	CH ₃ SiH ₃	C ₂ H ₅ SH (?)			
Dittuse clouds (e.g. Zeta Ophiuchi)				Dense, dark clouds (e.g. <i>B68</i>)			Molecular clouds / star formation					

Complex organic molecules (COMs) in "hot cores"

Belloche et al. 2008

99

CH₃CN

CH₃NC

 C_2H_3CN

 C_2H_5CN

 C_3H_7CN

A&A 499, 215–232 (2009) DOI: 10.1051/0004-6361/200811550 © ESO 2009

Increased complexity in interstellar chemistry: detection and chemical modeling of ethyl formate and *n*-propyl cyanide in Sagittarius B2(N)*,**

A. Belloche¹, **R. T. Garrod**^{2,1}, H. S. P. Müller^{3,1}, K. M. Menten¹, C. Comito¹, and P. Schilke¹

Ethyl Formate HCOOC₂H₅

An ester implicated in the flavor/smell of RUM and (perhaps) RASPBERRIES

Milky Way tastes of raspberry and rum

By GARY O'SHEA Published: 22 Apr 2009

Astrochemistry goes to Hollywood

Life cycle of stars and planets

Complex organics begin to form around this point ("*Hot Core*" stage)

Are planetary systems seeded for life at **inception**?

Credit: Bill Saxton

Big questions

- How do interstellar complex organics form?
- How complex can they get?
- Can we use them to understand other properties of star-forming objects?

Gas Phase vs. Grain Surface Chemistry

•

.

• Free-roaming reactants collide/react.

• Only break-up of complex, or photon emission, can stabilize products.

- Reactants accrete onto grain.
- Stick via van der Waals forces.
 - Thermally migrate between binding sites (potential wells).

Surface absorbs chemical energy, stabilizing product.

 \rightarrow Can build molecules atom by atom, group by group.

What's the interstellar recipe for complex organics?

- Gas-phase mechanisms
 - \rightarrow <u>Not</u> very effective for highly-saturated organics.

• Answer involves grain-surface ice...

Diffusive chemistry on cold dust grains: H₂O

Updated model: *MIMICK* (Model for Interstellar Monte Carlo Ice Chemical Kinetics)

Garrod (in prep.) Clements, Berk, Cooke & Garrod (2018) Willis & Garrod (2017)

- Larger grain: *r* = 100 Å (amorphous)
- Larger network:

-Accrete: H, C, O, N, CO

- -Form: e.g. H_2O , CO_2 , CH_4 , NH_3 , CH_3OH
- Methanol (CH3OH)

- a building block for larger things...

 $\begin{array}{cccc} \mathsf{CO} \xrightarrow{\mathsf{H}} & \mathsf{HCO} \xrightarrow{\mathsf{H}} & \mathsf{H}_2\mathsf{CO} \xrightarrow{\mathsf{H}} & \mathsf{CH}_3\mathsf{O} \xrightarrow{\mathsf{H}} & \mathsf{CH}_3\mathsf{OH} \\ & \uparrow & & \uparrow & & \uparrow \end{array}$

.etc..

How are simple ices converted into gas-phase COMs?

Current COM formation paradigm for hot cores:

Dissociation / diffusion / sublimation

• Ice forms on grains surfaces at low temps (~10K):

- atomic diffusion/addition of atoms/molecules from gas phase.

- Production of CR-induced photo-fragments (*radicals*).
- Warm temperatures ⇒ Radicals meet via diffusion: react to produce COMs
- Desorption into gas phase at high temps (>100 K)
- Destruction in gas phase caused by reactions with ions: *CR ionization rate matters*.

Garrod & Herbst (2006), Garrod et al. (2008), etc.

• Destruction in gas phase caused by reactions with ions: *CR ionization rate matters*.

Garrod & Herbst (2006), Garrod et al. (2008), etc.

Exploring Molecular Complexity with ALMA (EMoCA)

Sagittarius B2(N): High-mass star-forming core(s)

Full 3-mm (band 3; 84 – 114 GHz) unbiased line survey of Sgr B2(N) (cycle 0/1 data)

Belloche (PI), Garrod, Mueller & Menten (2014): *i*-C₃H₇CN Belloche, Mueller, Garrod & Menten (2016): **Deuterated organics** Alkanethiols & alkanols Mueller et al. (2016): Margules et al. (2016): ¹³C-substituted C₂H₅CN vib. excited $n-C_3H_7CN$ Mueller et al. (2016): Garrod et al. (2017): Butyl cyanide models Belloche, Meshcheryakov, Garrod, et al. (2017): CH₃NCO, CH₃NHCHO Bonfand, Belloche, Menten, Garrod & Mueller (2017): 3 new hot cores Thiel, Belloche, Menten, Garrod & Mueller (2017): COMs in diffuse clouds Bizzocchi et al. (2017): HC₃N Richard et al. (2018): Aminopropionitrile (search)

EMoCA results for Sgr B2(N)

EMoCA results for Sgr B2(N)

EMoCA results for Sgr B2(N)

Branched carbon chains

- <u>New class</u> of interstellar molecule
 - \Rightarrow No previous interstellar detections
- Not present in chemical models
- Branching is found in e.g. amino acids on Earth/in meteorites.

Belloche, Garrod, Müller, & Menten, 2014, *Science*, 345, 1584

Iso-/normal- propyl cyanide model results

(Belloche, Garrod, Müller, & Menten, 2014)

New/recent additions to the network

(Garrod, Belloche, Müller & Menten, 2017)

(Smaller alkanes and alkyl cyanides were already present in 2014 network)

Butyl cyanide production <u>on dust grains</u> via radical addition

ĊH ₃	+	ĊH ₂ CH ₂ CH ₂ CN	\rightarrow	$n-C_4H_9CN$
ĊH ₂ CH ₃	+	ĊH ₂ CH ₂ CN	\rightarrow	$n-C_4H_9CN$
ĊH ₂ CH ₂ CH ₃	+	ĊH ₂ CN	\rightarrow	$n-C_4H_9CN$
ĊH ₂ CH ₂ CH ₂ CH ₃	+	ĊN	\rightarrow	$n-C_4H_9CN$
ĊN	+	C_4H_8	\rightarrow	CH ₃ CH ₂ ĊHCH ₂ CN
Н	+	CH ₃ CH ₂ CHCH ₂ CN	\rightarrow	<i>n</i> -C ₄ H ₉ CN
ĊH ₃	+	CH ₃ ĊHCH ₂ CN	\rightarrow	<i>i</i> -C ₄ H ₉ CN
CH ₃ ĊHCH ₃	+	ĊH ₂ CN	\rightarrow	<i>i</i> -C ₄ H ₉ CN
ĊH ₂ CH(CH ₃)CH ₃	+	ĊN	\rightarrow	<i>i</i> -C ₄ H ₉ CN
ĊH ₃	+	CH ₃ CH ₂ ĊHCN	\rightarrow	s-C ₄ H ₉ CN
ĊH ₃	+	ĊH ₂ CH(CH ₃)CN	\rightarrow	s-C ₄ H ₉ CN
ĊH ₂ CH ₃	+	CH ₃ ĊHCN	\rightarrow	s-C ₄ H ₉ CN
CH ₃ ĊHCH ₂ CH ₃	+	ĊN	\rightarrow	s-C ₄ H ₉ CN
ĊH ₃	+	CH ₃ Ċ(CH ₃)CN	\rightarrow	t-C ₄ H ₉ CN
$CH_3\dot{C}(CH_3)CH_3$	+	ĊN	\rightarrow	t-C ₄ H ₉ CN

CN radical has some special reactions...

Crucial additions to (grain-surface) reaction network:

Barriers from gas-phase experimental data by Gannon et al. (2008)

$$\dot{\mathbf{C}}\mathbf{N} + \mathbf{C}_{3}\mathbf{H}_{6} \rightarrow \mathbf{CH}_{3}\dot{\mathbf{C}}\mathbf{H}\mathbf{CH}_{2}\mathbf{C}\mathbf{N} \quad (\mathbf{E}_{A} = 0)$$

$$\mathbf{CH}_{3}\dot{\mathbf{C}}\mathbf{H}\mathbf{CH}_{2}\mathbf{C}\mathbf{N} + \mathbf{H} \rightarrow \mathbf{n} \cdot \mathbf{C}_{3}\mathbf{H}_{7}\mathbf{C}\mathbf{N} \quad (n \cdot \text{propyl cyanide})$$

$$\mathbf{CH}_{3} \cdot \mathbf{CH} = \mathbf{CH}_{2}$$

$$\dot{\mathbf{C}}\mathbf{N} + \mathbf{C}_{4}\mathbf{H}_{8} \rightarrow \mathbf{CH}_{3}\mathbf{C}\mathbf{H}_{2}\dot{\mathbf{C}}\mathbf{H}\mathbf{C}\mathbf{H}_{2}\mathbf{C}\mathbf{N} \quad (\mathbf{E}_{A} = 0)$$

$$\mathbf{CH}_{3}\mathbf{C}\mathbf{H}_{2}\dot{\mathbf{C}}\mathbf{H}\mathbf{C}\mathbf{H}_{2}\mathbf{C}\mathbf{N} + \mathbf{H} \rightarrow \mathbf{n} \cdot \mathbf{C}_{4}\mathbf{H}_{9}\mathbf{C}\mathbf{N} \quad (n \cdot \text{butyl cyanide})$$

$$\mathbf{CH}_{3} \cdot \mathbf{CH}_{2}\dot{\mathbf{C}}\mathbf{H}\mathbf{C}\mathbf{H}_{2}\mathbf{C}\mathbf{N} + \mathbf{H} \rightarrow \mathbf{n} \cdot \mathbf{C}_{4}\mathbf{H}_{9}\mathbf{C}\mathbf{N} \quad (n \cdot \text{butyl cyanide})$$

• Without these reactions, branching dominates the chemistry!

Nitrile predictions

- *n*-propyl cyanide is correctly more abundant than the *iso* form (i.e. better than our previous model).
- Attack of CN on propylene seems to be the critical mechanism.

- The branched *sec*-BuCN dominates the butyl cyanides.
- Comparable to n-<u>Pr</u>CN abundance \Rightarrow detectable?
- *tert*-BuCN is formed, but very unlikely to be detectable.

Can COMs constrain physical parameters?

Need to constrain these values somehow

Cosmic-ray ionization

• $H_2 + CR \rightarrow H_2^+$ (+CR)

... is the main source of ionization in dark/dense interstellar clouds.

• Canonical rate is $\zeta = 1.3 \times 10^{-17} \text{ s}^{-1}$ – but poorly constrained, and *only measured for diffuse gas*.

- CR ionization rate determines ambient UV field (fluorescence of H₂)
 ⇒ Promotes formation of COMs on grains
- CR ionization chemistry destroys gas-phase molecules
 ⇒ Promotes <u>destruction</u> of COMs <u>in gas-phase</u>

Perhaps we can tune ζ to reproduce observations...

Cosmic-ray ionization in hot cores

(Barger & Garrod, in prep.)

- Run grid of models with varying CR ionization rate and warm-up timescales.
- Why also timescale? Timescale and CR flux may be degenerate...

Work by UVa grad student

Chris Barger.

W	arm-up Timescale	Cosmic-ray Ionization Rate			
Notation	Time to reach 200K (yr)	Notation	$\zeta({ m s}^{-1})$		
t_1	3.13×10^{3}	ζ_1	2.60×10^{-18}		
t_2	6.25×10^3	ζ_2	5.81×10^{-18}		
t_3	$1.25{\times}10^4$	${\zeta_3}^*$	1.30×10^{-17}		
t_4	$2.50{\times}10^4$	ζ_4	2.60×10^{-17}		
${t_5}^*$	5.00×10^4	ζ_5	5.20×10^{-17}		
t_6	$1.00{ imes}10^5$	ζ_6	1.04×10^{-16}		
t_7^*	$2.00{\times}10^5$	ζ_7	2.08×10^{-16}		
t_8	$4.50{ imes}10^5$	ζ_8	4.16×10^{-16}		
t_9 *	1.00×10^{6}	ζ_9	8.32×10^{-16}		

*Original parameters from G13

Model outputs for COMs

Chemical/physical model mapping to sources

We map the chemical model results to <u>observational physical profiles</u>, based on temperature. (see Garrod 2013)

Cumulative line-emission matches for all four sources

Matches based on line-emission int. intensities for <u>11 molecules studied by Bisschop+ (2007)</u>:

Best-model matches for all four sources

Source	Best Model	κ	Fit to ζ (s^{-1})	# lines			
NGC 6334 IRS 1	${ m t}_3\zeta_5$	0.471	$3.68 - 7.35 \times 10^{-17}$	137			
NGC 7538 IRS 1	${ m t}_{1.5}\zeta_6$	0.337	$7.35 \times 10^{-17} - 1.47 \times 10^{-16}$	72			
$W3(H_2O)$	${ m t_4}\zeta_4$	0.357	$1.84 - 3.68 \times 10^{-17}$	82			
W33A	$t_0\zeta_{7.5}$	0.261	$2.08 - 4.16 \times 10^{-16}$	52			
1							
"Match" parameter, $\kappa = mean(\kappa_i)$							
$\kappa_i = erfc(log_2([\int T_B(\nu)d\nu]_i) - log_2([\int T_B(\nu)d\nu]_{obs,i}))$							

- Optimal CR ionization rates are higher than typically adopted values (1.3x10⁻¹⁷ s⁻¹).
- Optimal warm-up timescales are shorter than the usual "fast" warm-up timescale.

 ζ vs. N_H

Warm-up timescale vs. mass

Log-log correlation between:

- N_H (from van der Tak dust model)
- CR ionization rate

Log-linear correlation between:

- Integrated core mass (from van der Tak dust model)
- Warm-up timescale

What comes next?

Combined simulations of hot-core hydrodynamics / chemistry / molecular emission

- Funded by NASA Astrophysics Theory Program.
- Will produce 2-D and 3-D hydro+radiation simulations, and combine them with MAGICKAL chemistry model and spectral simulation code.
- UVa co-I's Herbst (Chem/Astro), Li (Astro) and Davis (Astro).
- Grad students Chris Barger (Chem) and Andy Lam (Astro) working on it...

Conclusions

- Branching in molecular structures opens a new frontier in astrochemistry.
- Degree of molecular branching appears to increase with larger molecules.
- Dominance of *straight-chain* PrCN related to CN insertion into unsaturated hydrocarbons.
- Molecules with different functional groups may show yet greater branching ⇒ lack of insertion routes (high activation barriers)

- COMs may be a useful diagnostic of CR ionization rates.
- Rapid warm-up and high CR ionization rates
 ⇒ better match to observations.
- Strong correlations with mass and H column density.

Thanks for listening

Special thanks to ...

The EMoCA team

Garrod astrochemistry group:

Chris Barger Aspen Clements Matt DeSelm Miwha Jin Gwendoline Stephan Eric Willis

Funding:

NASA APRA program NASA EW program NASA ATP program

