

MIDI performance enhancement with FINITO and PRIMA

Ringberg meeting - September 01-05, 2003

F. Delplancke, S. Menardi L. Andolfato, F. Derie, Ph. Duhoux, A. Glindemann, R. Karban, S. Lévêque, F. Paresce, A. Wallander, R. Wilhelm, K. Wirenstrand

MIDI needs

Exposure time limited by the background (~800ms)
 If no fringe tracking: need to find the 10µm fringes in each frame =>

- Limiting magnitude N = 5 (8) with the ATs (UTs)
- If external fringe detector: coherent frame addition in post-processing =>
 - Limiting magnitude N = 8 (11) with the ATs (UTs)
- If dual-feed and phase-referencing:
 - Aperture reconstructed imaging
 - Differential phase measurements
 - Access to objects with no near-IR counter-part

FINITO (1)

- On-axis fringe tracker
- H-band
- 3-way beam combiner
- LAD and TAD compensation
- No recording of delay
- Installed in Paranal
- Under commissioning
- OPD time scanning

FINITO (2)

- Phase Delay = OPD mod λ
 - High frequency (up to 2kHz)
 - Low noise
 - Small range (λ)
- Group Delay or Coherence = "white" fringe position (LAD)
 - Low frequency (up to 50Hz)
 - Higher noise
 - Large range (10 λ) for fringe jump detection & correction

Limiting magnitude: H=9 to 11 (UT)

PRIMA (1)

VLTI Dual-Feed facility => off-axis fringe tracking

3 aims:

- faint object observation (by stabilising the fringes)
 - dual-feed / dual-field : 2' total FoV (2" FoV for each field)
 - K=13 (guide star) K=20 (object), N=11 on UTs
 - K=10 (guide star) K=16 (object), N=8 on ATs
- phase-referenced imaging
 - accurate (better than 1%) measurement of the visibility modulus and phase
 - observation on many baselines
 - synthetic aperture reconstruction at 10 mas resolution (10 μm)
- micro-arcsecond differential astrometry
 - very accurate extraction of the astrometric phase:
 - 1st phase ~ 2006 : 100 µas
 - 2^{nd} phase ~ 2008 : 10 μas
 - 2 perpendicular baselines
 - 2 phase-reference stars (2D-movement of photocenter)

PRIMA performance

Fringe tracking in K-band:

- Phase delay:
 - Measurement frequency up to 8 kHz (closed loop residuals 70nm rms)
 - OPD measurement noise on the ATs =
 - 70 nm rms at K=7 (0.25 ms)
 - 140 nm rms at K=11 (2 ms)
 - Maximum allowable closed loop residuals ~ 370 nm rms (fringe jumps)
- Group delay:
 - Measurement frequency up to 200 Hz
 - GD measurement noise on the ATs =
 - 900 nm rms at K=7 (5 ms)
 - 1900 nm rms at K=13 (200 ms)
 - 2300 nm rms at K=16 (2 s)
- Incremental Metrology at 1.3 μm:
 - Resolution = 1nm
 - Accuracy on 30 min = 5nm <=> 0.05% on phase in N-band
 - Measurement frequency = 200 kHz
- OPD, GD, metrology are stored at max 8 kHz

AT

case

PRIMA Performances

FSU B – Limiting Magnitude

PRIMA Performances (2)

Instrument integration time - anisoplanatic differential OPD

AT case

Sky coverage (1)

Sky coverage (2)

MIDI Performances with Fringe Tracking

With FINITO

- Available in 2004
- H-band
- Fringe stabilisation at 100nm (370) rms on-axis (closed loop)
- Needs star brighter than H=6 (8) on ATs
- Blind adding of stabilised frames in post-processing
- Fringe visibility loss =
 0.2% (0.5%) on-axis
- Increase of MIDI limiting magnitude by 3 magnitudes

With the FSU

- Available mid-2005
- K-band
- Fringe stabilisation at 70nm (370) rms on-axis or off-axis
- Needs star brighter than K=8 (12.5) on ATs
- Coherent adding of frames in post-processing (slight improvement)
- Fringe visibility loss =
 - 0.1% on-axis
 - + 3% at 10"
 - + 80% at 60"
- Increase of MIDI limiting magnitude by 3 magnitudes + of near-IR counter-part

Imaging with MIDI

Imaging dynamic range D is given by:

 $D \sim \frac{\sqrt{M}.\sqrt{N_{baselines}}}{\delta \varphi + \delta V}$

- Where

- M = number of observations
- N_{baselines} = nb of independent baselines
- $\delta \phi$ = error on phase
- δV = error on visibility modulus

Very important:

- Increase the number of independent baselines
- Well distribute the baselines (not especially uniform)
- Keep a very good accuracy on the phase (1% error on visibility modulus <=> 0.01 rad error on phase)

phase

Potential risks & limitations

- FINITO

- Use not possible on siderostats (photometric variations too high)
- Current absence of an IR tiptilt tracker in the lab (IRIS)
- Larger detector noise than expected (=> limiting magnitude)
- To be commissioned soon
 => then the performances
 will be known

PRIMA & FSU

- Currently only for the ATs in PRIMA mode (on-axis with the UTs is allowed)
- IRIS should be installed and running by 2005
- Detector noise at longer T_{int}
- Group Delay bias long term stability is critical for phasereferencing (large number of baselines = long observation programme) => FSU calibration is essential
- Still to be built and installed but thorough modeling

The accurate knowledge of the atmospheric dispersion (LAD-TAD) will probably be essential to reach the ultimate accuracy