The MIDI-Infrared Instrument for the VLTI

Two beam interferometry at 7-14 µm

The MIDI project - problems and solutions

Uwe Graser, Ringberg, 1.-5. September 2003
The MIDI project

" The MIDI consortium/organization
" MIDI milestones
" MIDI basics

The challenges:

" New field: mid-IR interferometry on very large telescopes
" Interfaces (Paranal/VLTI/ESO/consortium)

MIDI critical points:

" Fluctuating high background
" Alignment
" Vibrations
"
The MIDI consortium/Organization:

" Max-Planck-Institute for Astronomy, Germany
 PIs: Leinert (P-Scientist), Graser (P-Manager)

" NOVA, Netherlands: Co-PI: Rens Waters
 ASTRON/Dwingeloo (Cold optics)
 NEVEC/Leiden (SW: NRTS, EWS, SW-Manager: W.Jaffe)

" France: Co-PI: Guy Perrin
 Paris/Meudon, France (Fiber, SW: DRS)
 Observatoire de Nice (Chair of science group: B. Lopez)

" Kiepenheuer Institut, Freiburg, Germany
 (Warm optical bench)

" Landessternwarte Tautenburg, Germany (Calibrators)
 (ESO Instrument-scientist: M. Schöller/Andrea Richichi)
MIDI Milestones

16/17 Jun 1997 First MIDI-meeting at MPIA
15-17 Jul 1997 ISAC-Meeting at ESO
9 Dec 1997 Steering committee at ESO
15-17 Jul 1998 Internal concept Review at MPIA
15 Dec 1998 Concept Design Review at ESO
29 Jul 1999 Final Design review Optics
29 Feb 2000 Final Design Review MIDI
10 Sep 2002 Preliminary Acceptance Europe
4.11.-15.12.2002 Assembly, Installation, Verification, Paranal
15 Dec 2002 MIDI first fringes with UT's (UT1, UT3)
20-24 Feb 2003 First commissioning, Paranal (2 n_{eff})
16-21 May 2003 Second commissioning, Paranal (3 n_{eff})
7-13 Jun 2003 First GT- and SDT observations, Paranalization
Aug, Sep 2003 Paranalization
6-9 Nov 2003 SDT
11.-15. Dec003 Third Commissioning
27.1-9.2. 2004 Paranalization, GTO, SDT
spring 2004 Open for community (in commissioned modes only)

(SDT = Science demonstration time, GTO = Guaranteed time observation)
MIDI basic parameter:

MIDI: 2-beam pupil plane interferometer at m-IR wavelengths

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength coverage</td>
<td>N (8 µm - 13 µm), expandable to Q (17 - 26 µm)</td>
</tr>
<tr>
<td>Spectral resolution</td>
<td>up to 300 (prism, grism)</td>
</tr>
<tr>
<td>Sampling time for fringe motion</td>
<td>100 ms ... 1 sec</td>
</tr>
<tr>
<td>Atmospheric stability for chopping</td>
<td>200 ms (estimated)</td>
</tr>
<tr>
<td>Detector pixel size</td>
<td>50 µm</td>
</tr>
<tr>
<td>(320 x 240) Full well</td>
<td>2 \cdot 10^7 electrons (Raytheon Si:As HiB IBC)</td>
</tr>
<tr>
<td>Read noise scale</td>
<td>~ 800 electrons</td>
</tr>
<tr>
<td>Background noise from sky+VLTI</td>
<td>3.5 \cdot 10^9 photons/sec</td>
</tr>
<tr>
<td>from tunnel (at UT in Airy disk)</td>
<td>4.6 \cdot 10^9 photons/sec</td>
</tr>
<tr>
<td>FOV on sky, beam-diameter in MIDI</td>
<td>2 '', 18/10 mm</td>
</tr>
</tbody>
</table>

VLTI:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>UTs</th>
<th>ATs</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLTI baselines</td>
<td>47 ... 130 m</td>
<td>8 ... 202 m</td>
</tr>
<tr>
<td>VLTI spatial resolution at 10 µm</td>
<td>0.044" ... 0.016"</td>
<td>0.26" ... 0.010"</td>
</tr>
<tr>
<td>Airy disk (FWHM) at 10 µm</td>
<td>0.26"</td>
<td>1.14"</td>
</tr>
<tr>
<td>Limiting N-magnitude</td>
<td>(without/with external fringe tracking)</td>
<td>3-4 / 8-9 mag</td>
</tr>
</tbody>
</table>
Principle of MIDI - the Mid-Infrared Interferometer for the VLTI

- **Beam compressors**: 80 → 18 mm
- **Detector**: (240 x 320)
- **Grism/Prism**
- **Filter**
- **Beam combiner**
- **Field stop/ Spatial filter**
- **Photometric channels**
- **Cold box**: 40 K radiation shield
- **Intermediate focus**
- **Off-axis paraboloids** (P_1, P_2)
- **Pupil stop**
- **Spatial filter**
- **Path length variation** by movable roof mirrors (on Piezo stages)
- **Cold box**: 70 K radiation shield
- **Optics**: $T < 40$ K
- **Detector**: $T = 8$ K
- **Detector** (240 x 320)
- **VLTI**
- **MIDI**
- **Dewar window (ZnSe)**
- **Off-axis paraboloids**
- **Intermediate focus**
- **Cameras**
- **ZnSe plate**: 50:50 Coating
- **Photometric Beamsplitter**: (30:70)
- **Filter**
- **Grism/Prism**
- **Camera**
- **Path length variation by movable roof mirrors (on Piezo stages)**
Critical points for MIDI: the interfaces

- Interface to ESO: VLTI group in process of formation (JMM, AGl) (ICD 1.0: Nov 99, SOW: June 2000)

- Interface to Paranal: S. Morel at MPIA for 1 year (knowledge transfer)

- SW-interface to ESO (... in process of)
 \[\Rightarrow\] new data fits format (table fits)

- SW-interface in collaboration ([OS, DCS, ICS] - [NRTS, EWS] - [DRS])
 \[MPIA\quad NEVEC\quad Meudon\]
 \[\Rightarrow\] software manager (SW-M)
Critical points for MIDI: the hardware

"High Background: 3.5 \cdot 10^9 \text{ e}^-/\text{sec} \text{ from sky+VLTI (on UT in Airy disk)} \text{ (full well: } 2 \cdot 10^7 \text{ e}^-)"

\(\Rightarrow\) dispersion of the signal: prism, grism
\(\Rightarrow\) short integration times: 0.2 - 20 msec
detector: Read-out-time: 1 6.9 msec
\(\Rightarrow\) high frame/data rate: 1 - 36 Mbyte/sec (3 Mb/sec to archive)

"Background fluctuations: \(\Rightarrow\) Chopping (for accurate photometry)
(Photometric mode, AO, fringe tracker)

"Coherence time with filter: \(\sim\) 100 msec

"Cooling: Closed cycle cooler \(\Rightarrow\) vibrations

"Alignment of optics: to keep alignment when cooling to < 40 K
Background in the mid-infrared

Eta Carina (~ 11000 Jy)

Tunnel background
~17 °C

Sky background
~5-10 °C

Z CaM (~ 100 Jy)

UT1 Beam A
Vibrations:

Paranal: no liquid He \Rightarrow use of a closed cycle cooler
\rightarrow 1 Hz vibrations
\rightarrow Separate mount for CCC (650 kg)
\rightarrow connection via metallic bellow
\rightarrow damping feet, copper braid, ...

\Rightarrow internal jitter on detector: 0.04 pixel
The Alignment of MIDI:

1) Separate alignment/adjustment in the warm with visible light
 - alignment of "cold optics" (MIDI open)
 - alignment of warm optical bench

2) Cooling down of MIDI
 - shrinking homologous,
 - position/direction correction by 5-axis mount

→ Iteration:
 - alignment of warm optical bench to cold optics
 - alignment of MIDI to VLTI (5-axis mount)
Conclusion:

MIDI: December 97 December 2002 →

Installation and first commissionings/measurements have shown that MIDI works as planned

....... yet up to now only in the commissioned mode(s) (i.e. self-fringe-tracking with prism or filter)

Still to come:

More commissioning (up to now only 5 UT-nights !):
- Commissioning of further modes (grism,)
- Commissioning with external fringe tracker
 (available by begin of 2004)
- Commissioning with ATs (available by autumn 2004)

MIDI extensions: 20 µm, Apres-MIDI