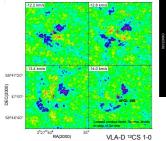
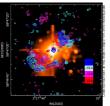
Gas infall and bow shocks in the vicinity of the young 8-10 M_☉ star AFGL 490

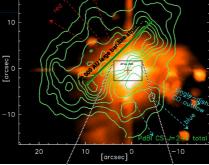
K. Schreyer ¹, E. Araya ², P. Hofner ^{2,3}, H. Linz ⁴, Th. Henning ⁴

¹ Astrophysikalisches Institut und Universitäts-Sternwarte Jena, Schillergäßchen 2-3, D-07745 Jena, Germany

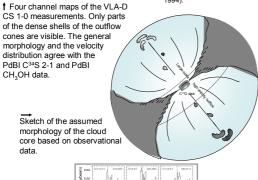

² Physics Department, New Mexico Tech. 801 Leroy Place, Socorro, NM 87801 ³ National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 ⁴ Max-Planck-Institut für Astronomie, Königstuhl 17,

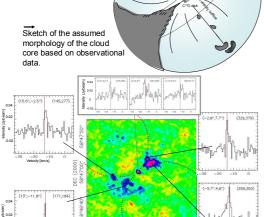

D-69117 Heidelberg, Germany

Summary

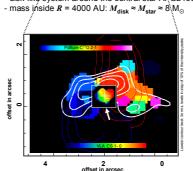

We observed the region of the young B2-3 star AFGL 490 in C34S 2-1 and CH3OH 2-1 using the Plateau de Bure Interferometer as well as in CS 1-0 with the VLA C & D array. These observations show that the 20 000 AU large bar-like structure (originally interpretated as edgeon disk; Mundy & Adelmann 1988) is created by the wide-angle high-velocity outflow.

Observational results

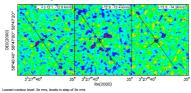


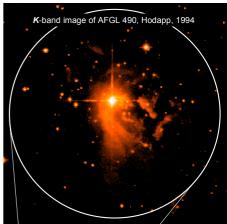


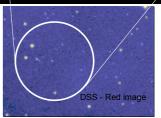
Color-coded overlay the four velocity channels (right, VLA-D CS 1-0) with the K-band image (Hodapp

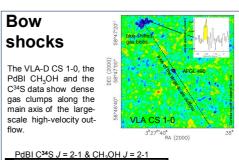


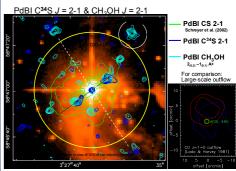
- Previous PdBI CS 2-1 (Schreyer et al. 2002)
- a bar-like dense gas structure was found
- disk-like system around the central star AFGL490




† Four VLA-D CS 1-0 spectra (right and left) indicate the presence of shocked dense gas in a thin layer around the outflow cones. The CS double profiles towards AFGL 490 (top) vary over the inner circumstellar disk found in PdBI C17O 2-1 (Schreyer et al. 2006)




↑ Velocity-coded images of the PdBI C17O 2-1 data (Schrever T velocity-coded images of the Potal C⁺**O 2-1 data (scrieyer et al. 2006; white contours) and the VLA-C CS 1-0 line (white inner box). The red and blue contours represent the previously measured red- and blue-shifted PdBI CS 2-1 line emission (Schreyer et al. 2002). The circumstellar disk with *R* ≈1500 AU is traced with different line transitions. Only the densest parts (M_{cm}≈ 1 M_s) are visible in C⁺*Po (Who dense spiral arms? Fromang et al. 2004). Advanced modelling of the line profiles points to an inclination & position angle of 30°. The inne


→ Channel maps of the PdBI C³⁴S 2-1data

Total integrated line emissions of C34S 2-1, CH3OH 2(0.2)-1(0.1)A4 and CS 2-1. Whereas C³⁴S traces mainly the rim of the blueshifted outflow conus, CH₃OH is detected predominantly on the red-shifted outflow conus

Evidence for gas infall

Spectra map of CH₃OH $2_{(0,2)}\hbox{-}1_{(0,1)}E,\ 2_{(0,2)}\hbox{-}1_{(0,1)}A^+,\ \&\ 2_{(1,1)}\hbox{-}1_{(1,0)}E$ without continuum subtraction CH,OH Evidence for inverse P Cygni profiles are found in the PdBI CH₃OH 2-1 and VLA-D CS 1-0 data towards the southern region of the circumstellar disk of AFGL 490 indicating on-going gas accretion from the envelope to the disk

Results & Conclusions

- In C34S and CH3OH, parts of the dense rims / shells of the outflow cones are detected. These dense cloud parts build likely the 20 000 AU-large bar-like structure in the cloud center in which the young star AFGL 490 is embedded.
- We assume that the large-scale high-velocity CO outflow is created by a surface disk wind. The opening angle close to disk is $>140^{\circ}$.
- Inverse P Cygni profiles in C34S and CS detected towards the immediate envelope of the inner circumstellar disk ($R = 1500 \pm 100 \text{ AU}$, Schreyer et al. 2006) indicate on-going gas infall from the envelope
- The presence of individually small gas clumps along the main axis of the bipolar outlow point to non-steady state gas accretion from the to the central star.
- Interestingly, there is no dense gas (detectable in C34S and CH3OH and VLA CS) between the circumstellar disk (R_{out} = 1500 AU with a rather sharp outer edge) and the "outflow shells" (which start out at a distance of $R \ge 2500$ AU from the star).