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• Zinnecker & Yorke (2007) Toward Understanding
Massive Star Formation, Ann. Rev. Astron. Astrophys.
45: 481-563 (arXiv:0707.1279)

• Bodenheimer, Laughlin, Rozcyzka,
Yorke (2007) Numerical Methods
in Astrophysics : An Introduction,
Taylor & Francis
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Massive Star Formation:
Observations Confound Theory (1/2)

• Universality of IMF and upper mass limit
– No clear-cut evidence of variation of slope between high mass through

intermediate mass to solar-type stars
• Multiplicity, Hierarchies, Clusters, Associations

– High mass stars generally form in clusters & associations
• In loose OB associations (Ori OB1a,b; Sco OB2; NGC 604)
• In dense clusters (Ori TC; NGC 3603; 30 Dor); most O-stars located in

center
• Starburst galaxies, ULIRGs

– Higher degree of multiplicity of high mass stars than for low mass stars
• Average number of companions ~1.5 for massive primary, whereas ~0.5 for

solar-type primaries
• O-stars have preponderance of close tight binaries with P ~ 3-5 days
• Higher fraction of runaway O-stars than runaway B-stars
• Reduced binarity among runaway O-stars compared to cluster O-stars
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Massive Star Formation:
Observations Confound Theory (2/2)

• Characteristics of OB-star forming regions
– Hot molecular cores in GMCs
– Hypercompact and Ultracompact HII regions
– Masers (OH, H2O, SiO, CH3OH) - in disks or in outflows?
– Both wide-angle and collimated flows observed: jets and outflows
– Cometary proplyds, pillars, mountains
– Turbulence observed; enough to support clumps and cores?

• No disk around an optically visible main sequence O-star found
– Disks around B-stars have been observed

• There are massive molecular cores or clumps without outflows
– There are hot cores without outflows and without radio continuum

• Some magnetic field measurements; when measurable sub/super-
critical within factor 2
– Θ1 Ori C is a magnetic star!
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The Global Picture

• Assume: dN = A m-a dm with a=2.35 (Salpeter) between
m=0.1 and m=100
– Average mass <m> = 0.35

• There is one >50 MO-star for every 7300 stars formed

• In MWG: 2 SN/100 yr (m > 8) => 8 stars/yr formed
– 3 MO/yr converted into stars
– Every 50 yr   produce >8 MO-star
– Every 200 yr produce >20 MO-star
– Every 400 yr produce >30 MO-star
– Every 1000 yr produce >50 MO-star



Understanding Massive Star Formation MSF 2007 Heidelberg, Germany
H.W. Yorke   12

11 Sep 2007

Molecular Cloud Lifetime, SF
Efficiency, Total Molecular Mass (1/3)

Assume:
– 1010 MO ISM, of which 40% is molecular
– 107 yr lifetime of molecular clouds

=> 400 MO/yr of molecular cloud material must be
dissipated and 400 MO/yr must be newly formed

Star formation efficiency = 3/400 = 0.7%
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Molecular Cloud Lifetime, SF
Efficiency, Total Molecular Mass (2/3)

Assume:
– 400 MO/yr of molecular cloud material must be dissipated

Use >30 MO O-stars, of which you have ~8000 in MWG

⇒Each O-star must dissipate 0.05 MO/yr

Champagne flows driven by O5-stars can dissipate
0.01 MO/yr (Yorke 1986)
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Molecular Cloud Lifetime, SF
Efficiency, Total Molecular Mass (3/3)

Assume
– 1010 MO ISM, of which 40% is molecular
– Star Formation efficiency of 50%

3 MO/yr of molecular cloud material will be dissipated and 6 MO/yr
must be newly formed

Lifetime of molecular material: 4x109/6= 7x108 yr

      => at least some molecular material is long-lived
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Is there a hidden Component
of H2?

AV=1

AV=3

AV=1



Understanding Massive Star Formation MSF 2007 Heidelberg, Germany
H.W. Yorke   16

11 Sep 2007

Steps to produce Massive Stars

• Create Giant Molecular Cloud Complexes ~10-100 pc
• Create molecular cloud clumps ~1 pc and cores ~0.1 pc
• Initiate collapse of cores/filaments ~0.1 pc
• Fragment into several sub-clumps ~0.01 pc
• Create first hydrostatic cores ~1 RO = 2.3 x 10-8 pc
• Accrete onto hydrostatic cores through disks, allowing them to

grow in mass
– Accretion Disks ~10-3 pc
– Accretion columns << 10-8 pc

• Hydrostatic cores evolve quickly to H-burning, even while
accreting

• Remnant disks quickly dissipate as accretion halts
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350 µm Cores in the Orion Region

51 cores 0.1 to 46 Msun

Many appear to be
unstable against
gravitational collapse

Li, Velusamy, Goldsmith,
& Langer (2007)
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Questions which need to be
answered

• Assuming a gravitationally unstable massive
clump (10-1 pc), how does enough material
become concentrated into a sufficiently small
volume (a few 10-8 pc) within a sufficiently short
time (~105 yr)?

• How does the forming massive star influence its
immediate surroundings to limit its mass?

• Today I will not try to answer these questions
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Destruction of circumstellar disks
• Destruction of circumstellar disk:

Initial conditions

Luminosity of star: 3550 LO
Mass of central star: 8.3 MO
Stellar wind: 30 km s-1    10-8 MO yr -1

Mass of disk: 0.7 MO
H-ionizing flux: 7 x 1044 s-1

Net UV flux: 2 x 1048 s-1

Results

Disk wind via “external” UV heating
Stellar wind focused through polar cavity
Photoevaporation of disk within 105 years
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Accretion and mass loss as mass
exchange between components

Large scale flows

Disk acts as 
reservoir
for material

Large scale flows
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Necessary conditions for forming
stars by accretion

• The mass gained
by accretion must
exceed losses

• Must accrete
material within
“reasonable” time

• Gravity must be
dominant force

M
.

diskM* (t) = M
.

S-wind(t’) - (t’) ] dt’[

M
.

accMdisk (t) = M
.

disk(t’) - (t’) ] dt’[ M
.

D-wind(t’) -

. . .
Macc MS-wind- MD-wind- ~ M* / tacc
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What determines these dM/dt’s?

• Mdisk related to angular momentum transport within disk
– Magnetic fields
– Tidal effects (bars, spiral arms)
– Turbulence (photon bubbles: Turner, Quataert, Yorke 2007)

• Macc determined by cloud core parameters, competitive
accretion
– tacc ~ tff ~ tcross

• MD-wind has contributions from jets and photoevaporation
– Mjet ~ f(Mdisk)
– Mphotoevap ~ f(Fν)

• MS-wind related to stellar parameters
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Important relevant time scales

• Free-fall time scale

• Accretion time scale

• Kelvin-Helmholtz
time scale (time to
reach ZAMS)

~ M -2

Ae

Be
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Luminosity & Radius of ZAMS star

Kelvin-Helmholtz timescale
(for thermal readjustment)
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Sources of Luminosity of
accreting Stars

• Accretion luminosity: Lacc = GM*/R* dM/dt

Lacc = 6000 LO [M*/30 MO]0.2 [dM/dt / 10-4 MO/yr]

• Deuterium burning
LD = 400 LO [dM/dt / 10-4 MO/yr]

• PMS Contraction

LKH = GM*
2/R*

2 dR/dt

• Hydrogen burning

 L* = 105 LO [M*/30 MO]3.2
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Important relevant length scales

• Size of clump to
produce star of
mass M

• Photoevaporation
radius

• Dust destruction
radius

• Stellar radius
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The Eddington accretion limit

Assume electron
scattering for
minimum opacity...
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Evolution of accreting stars in the
HRD ( dM*/dt > 0 )

(Yorke 2002; Behrend & Maeder 2001)

Behrend & Maeder 2001

Yorke 2002
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Evolution of accreting stars in the
HRD ( dM*/dt > 0 )

(Yorke 2002; Behrend & Maeder 2001)

Yorke 2002
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Evolution of accreting stars in
the HRD ( dM*/dt > 0 )

L

accL  + L

*

*

Yorke & Bodenheimer (in prep)
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Evolution of accreting stars in
the HRD ( dM*/dt > 0 )

Yorke & Bodenheimer (in prep)

10-3 MO yr -1
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Evolution of accreting stars in
the HRD ( dM*/dt > 0 )

Yorke & Bodenheimer (in prep)

10-4 MO yr -1
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How likely is it to observe high
mass stars during accretion?

Assume:
• Galactic star formation

rate: 5 MO/yr
• tacc = 2 x 105 yr
• Salpeter IMF

– N(M) dM = A M−α dM
– 0.1 MO < M < 100 MO

Note that the local Galaxy
(r < 500 pc) contains ~10-3

of Galactic star forming volume
480390>50

1200950>30

24002000>20

63005400>10

N*
α = 2.3

N*
α = 2.35

M*
[MO]

=> 106 MO in stars
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• Accretion physics will be key to understanding
formation of massive stars

• Stellar evolution is not dead

Concluding Remarks
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Conclusions
• Massive star formation is a difficult theoretical problem

– Magnetic, radiative forces on dust important
– Complex microphysics (dust, degree of ionization, …)
– Massive stars form in groups/clusters and their winds,

ionizing radiation, and supernova explosions strongly
affect ongoing star formation.

• Massive stars photoionize nearby disks (including their
own), eventually destroying the disks.
– The accretion and disk destruction processes close to

massive stars operate on similar timescales.
– Photoionization can limit the final mass of the star.

• Observations continue to confound theorists
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Thank you


