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Disks in Massive Star Formation?

Theoretically: existence of disks is a B NS
robust result independent of specific -} ﬁw
formation mechanism -

/

fundamental in circumventing accretion : 0 \v/ (\

barrier of radiation pressure (e.g. Krumholz et al.

2 O O 5 10 i ve‘oc(;y — 10 20 30
) Patel et al, 2005

likely play a role in determining binarity and
Upper mass cutoff (e.g. Kratter & Matzner, 2006)

Observationally: just beginning to probe

proper size and time scales. more soon from
ALMA & EVLA

How can we make useful predictions for
these disks as f(M,,1)?




Massive Embedded Disks: what should we expect?

What dominates angular momentum
transport!?

Do disks fragment? If so, what
do they make!?

How will these disks
appear to ALMA and
the EVLA?
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How will these disks
appear to ALMA and
the EVLA?
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Physical Scenario

star + disk r

"

M(<r)

Turbulent region (core) begins to
collapse

Cloud pressure and core
temperature determine the
magnitude of turbulent support

Net angular momentum determines
circularization radius of the infalling
material as f(t)

Problem I: high column cores
make these phenomena very
difficult to observe




Outflow Cavity

Infall
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Problem ll: large parameter space to explore
numerically with MHD + radiation

Solution: A global, single zone
model that incorporates these
processes can characterize the

parameter space of disks in HMSF
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Dimensionless Parameters of
Accreting Disks

external, imposed quantities vary with
environment, while local quantities are
derived from physical model within the disk

Environment Derived

|. set by core:increase 2. global disk 3. local disk 4. within the disk:

orbital times to drain
disk

in system mass / orbital

. uantit quantity
time ] 4
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Model Components I: Accretion Model

dynamical times to drain
the disk
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Model Components Il: Heating & Cooling

accretion + irradiation contribute
significantly to disk heating even at
high M

irradiation model accounts for optically thin
& thick regimes for two cases:
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Disk radius evolution for 200/,

— fiducial model

— alternate realization
circularization radiu
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Characteristics of a |5 M, star

* Disk properties: ‘ ‘
Evelutionary track

f[gd > %SSEU through Qand 4
S~ 50 g/cm”
1~ 0.35

e Detectable?
* ALMA:yes (<2-3 Kpc) |

* EVLA: yes (< 0.5 Kpc)
(Krumbholz et al, 2007)

(o
ey

Observed disk around

Ceph A HW 2: Patel et al.

2005, Torrelles et al 2007*, &
Jimenez-Serra et al 2007
measure similar characteristics

(54
Q

DECLINATION (J2000)
»
«©

e NH3 1

62°01'48"

1 1 1 1 1 1 1
22"56™M18%2 18% 17°8 22"56M18%2
RIGHT ASCENSION (J2000)




Observational Classification

o Typel
e < |0%yrs
e stable (local & global)
e small disk mass

e Typell

10%-10°> yrs

* core mass dependence

Final Mass
°

stability:

e spiral vs fragmentation
e significant disk mass

e Type lll

>0 yrs

Disks with 4 > 0.2 around stars Type Il disks should have strong
with masses > 8V should  spiral arms (m=1,2) which are * higher Q
be detectable with ALMA (d ~ easy to find in surveys by
few Kpc) and EVLA (d ~0.5 observing the disk morphology
Kpc) in the continuum

small disk mass
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Conclusions

Strong spiral arm structure should produce observable, non-
Keplerian motion

Outer disk temperatures exceed 100K for stars > 10 M
Outer disk peak column densities ~50 g/cm?

Binary formation through disk fission for cores > 30 M
Core angular momentum profile has strong influence

Environmental variables ( >, 7.) do not qualitatively change these
conclusions



