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Disks in Massive Star Formation?

• Theoretically: existence of disks is a 
robust result independent of specific 
formation mechanism 

• fundamental in circumventing accretion 
barrier of radiation pressure (e.g. Krumholz et al. 
2005)

• likely play a role in determining binarity and 
upper mass cutoff (e.g. Kratter & Matzner, 2006)

• Observationally: just beginning to probe 
proper size and time scales. more soon from 
ALMA & EVLA
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TABLE 1

Total On-Source and Individual Frame Exposure Times
for Each Filter and Plate Scale

Filter Name
Pixel Scale
(arcsec)

Frame Time
(s)

On-Source Time
(s)

H . . . . . . . . . . 0.37 20 2300
K! . . . . . . . . . . 0.37 10 890
Brg . . . . . . . . 0.37 40 800
H2 . . . . . . . . . 0.37 40 960
H . . . . . . . . . . 0.19 30 480
K! . . . . . . . . . . 0.19 30 240

Fig. 2.—Contours of continuum-subtracted Brg (top) and H2 (bottom)
superposed on the K! gray scale.

Fig. 1.—H (top) and K! (bottom) images of the central region near G192.
The gray scale is the square root, and the newly discovered 2 mm source is
centered and marked with lines.

differences between our fluxes and 2MASS fluxes for the 15
stars that had high signal-to-noise ratio in 2MASS (the other
15 were close to the 2MASS sensitivity limit and had high
reported flux errors) were 0.09 and 0.07 mag in H and K!,
respectively. These numbers confirm that our photometric er-
rors, both random and systematic, are better than !10%.

3. RESULTS

Figure 1 shows H and K! images near G192. In these ob-
servations, a pointlike source is detected for the first time at
2 mm, very close to the millimeter source, distinct from the

extended K! emission. The source is very red and not clearly
detected in the H band.
Figure 2 shows contours of continuum-subtracted H2 and Brg

superposed on a gray-scale K! image. H2 and Brg line emission
can contribute a significant amount of flux to the K! filter if
shocked or ionized gas, respectively, are present. Clearly, the
outflow cavity contains ionized gas, close to the source. The new
2.1 mm source is not obvious in continuum-subtracted Brg and
is therefore unlikely to be a pocket of ionized gas.
Continuum-subtracted H2 is brightest on the southern edge of

the central nebula and in an extension to the northeast. Also
detected are two knots to the east and west, nearly equally spaced
25" (0.24 pc) from the millimeter source. By their alignment,
these are most likely shocks in the outflow or jet, but they do
not clearly correspond to features in CO or broadband (scattered)
K! light. S98 detected some of these H2 features, although at
lower resolution and sensitivity (their Fig. 10). The new K!
source is not clearly distinguished in continuum-subtracted H2,
so it is unlikely to be merely a region of shocked gas.
Astrometry was performed using 25 relatively uncrowded

stars present in our field and in the 2MASS catalog. The rms
residuals were 0".8, with some stellar residuals as large as 1".5.
Centroiding of our newly discovered 2 mm source is accurate
to 0".25, and the frame defined by the 2MASS positions is
expected to be better than 0".2, so we estimate the positional
error to be 1".0. The 2 mm source is located at a p 5h58m13s.6,

(J2000.0), and the millimeter and high-′ ′′d p 16!31 58
resolution centimeter source is located at a p 5h58m13s.53,

Indebetouw et al, 2003
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How can we make useful predictions for         
these disks as            ?f(M∗, t)



Massive Embedded Disks: what should we expect?

What dominates angular momentum 
transport?

How will these disks 
appear to ALMA and 

the EVLA?

Do disks fragment? If so, what 
do they make?
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Ṁ

M
d
Ω

)

 

!
 B

in
a
ry

 F
o

rm
a
ti

o
n

 !
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Physical Scenario
• Turbulent region (core) begins to 

collapse

• Cloud pressure and core 
temperature determine the 
magnitude of turbulent support

• Net angular momentum determines 
circularization radius of the infalling 
material as f(t)

r
Rc

M(< r)

star + disk

core

Problem I: high column cores 
make these phenomena very 

difficult to observe
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Given an optically thin emission at the reprocessing temper-
ature T1, the effective opacity for the second reprocessing event
is given by

!̄ ¼
R
!"2!"1B" T1ð ÞR
!"1B" T1ð Þ

; ð39Þ

where !"1 is the opacity law at the reprocessing radius and !"2 is
that for cool dust near Rd . Figure 1 shows T1 and !̄ for a given
model; notably, !̄ ’ 15 cm2 g$1 for a wide range of parameters,
dropping only for especially large disk radii [and especially low
values of !sph(Rd)].

Integrating the flux through the disk at Rd from the sky in-
tensity of reradiated light (assuming optically thin second re-
processing), we find that the flux of this radiation at the disk
radius Rd is given by equation (34) if

fF ¼ 0:28!̄!sph; ð40Þ

giving fF ’ 1/16 for typical parameters. Using this result to cal-
culate the irradiation temperature of an optically thick disk in
equation (34), we find that it falls below the critical temperature
for local fragmentation at the outer disk edge only if

period >
7400 f 1:69p

f
3=4
j

!̄

10 cm2 g$1

!cl

165 M% pc$2

! "3=4

;
T?

4500 K

! "
10 K

Tc

! "9=4

yr ð41Þ

there; this is comparable to the characteristic maximum period
in x 2.2.

Note that we have taken " ¼ 100% here, since the absence
of the outflow cavity implies that all of the material is accreted

onto the star. This raises the critical disk temperature to about
22 K.

4.2.2. Outflow Cavity

Amore realistic calculation must account for the region along
the axis that is cleared by the jet. An outflow cavity warms the
disk by providing more direct illumination than is available other-
wise. To calculate this, we must specify the shape of the outflow
cavity.
Note, first, that the wind ram pressure is expected generically

to vary as 1/(r 2 sin2# ) with distance and angle # from the axis
(Matzner & McKee 1999). Inflow ram pressure scales as r$5/2

from the centrifugal radius to the edge of the inflow. We see on
comparison that inflow dominates close to the star and near the
equator, and the wind dominates far from the star and near the axis.
By this reasoning, Matzner & McKee (2000) divided the initial
core into accreting and ejected angles depending on the velocity
imparted by the wind impulse to gas at the edge of the core. Our
parameter " is simply the accreted mass as a fraction of the ini-
tial mass.
By the same logic, gas that is not cast away by the wind is

destined to fall inward, and its motion is less and less affected by
the wind ram pressure as it does. Therefore, we are justified in
approximating the shape of the outflow cavity as an unperturbed
streamline in the infall solution of Terebey et al. (1984). The
streamline in question is roughly the one that divides infall and
outflow in the Matzner & McKee (2000) theory. For the case of
a spherical initial core, then, the initial angle of this streamline
is given by

cos #0 ¼ ": ð42Þ

(We assume a spherical core for the remainder of this sec-
tion.) This streamline strikes the disk at a radius sin2(#0)Rd ¼
(1$ "2)Rd .
Geometrically, a fraction " of the starlight strikes the cavity

inner edge because the remaining 1$ " is cleared by the out-
flow.However, smaller " leads to a broader outflow cavity, which
causes a greater portion of the reprocessed starlight to reach
the disk. After performing ray-tracing calculations of reradia-
tion from the inner edge of the infall, using a geometry like that
shown in Figure 2, we find that fF is adequately described by
0.1"$0.35 in the relevant range 20% < " < 90%. The infall enve-
lope is translucent to this reprocessed radiation, but our estimates

Fig. 1.—Bottom: Temperature T1 of the reprocessing surface in envelopes
lacking outflow cavities. T1 is computed as a function of outer disk period using
the opacitymodel of Semenov et al. (2003). Assumed parameters areM ¼ 0:5M%,
Ṁ ¼ 3 ; 10$6 M% yr$1, T? ¼ 4500 K, and solar metallicity; however, eq. (38)
permits this diagram to be rescaled for other parameters. (The density dependence
of evaporation temperatures has been suppressed for simplicity; lines here are
drawn for 10$10 g cm$3.) Top: Effective opacity !̄ of cool dust to optically thin
thermal radiation from dust of temperature T1.

Fig. 2.—Schematic diagram for irradiation in the presence of an outflow
cavity, in the theory of x 4.2.2. The inflow envelope is excavated within a
particular streamline (eq. [42]; solid line); visible starlight is absorbed near this
innermost streamline and reprocessed into infrared light that illuminates the disk
(dashed arrows).

MATZNER & LEVIN826 Vol. 628

Matzner & Levin, 2005



Problem II: large parameter space to explore 
numerically with MHD + radiation 

Solution:  A global, single zone 
model that incorporates these 
processes can characterize the 

parameter space of disks in HMSF
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No. 2, 1998 MAGNETOROTATIONAL INSTABILITY IN ION-NEUTRAL DISKS 763

FIG. 3.ÈVolumetric rendering of (a) the ion density and (b) the magnitude of the toroidal Ðeld in the Ðducial run at orbit 15. In (a), brightness is a function
of density, whereas in (b) the dark regions correspond to a strong Ðeld. Comparing the two Ðgures shows that the ions lie in thin sheets sandwiched between
regions of strong Ðeld.
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after saturation. Representative values are obtained by time
and space averages ; some of these values are listed in Table
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average magnetic Ðeld energy in the two-Ñuid system lies
below both of the two single-Ñuid limits given by equation

the one appropriate for the ions alone and the one(6),
appropriate to the total density of ions plus neutrals. This
implies that near the critical coupling frequency, the neu-
trals primarily act as a drag to reduce the vigor of the Ðeld
ampliÐcation, the MHD turbulence, and the resulting trans-
port.

Hawley & Stone, 1998
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No. 1, 2001 GRAVITATIONAL INSTABILITY 179

FIG. 4.ÈMap of surface density at t \ 50)~1 in the standard run. Black is low density and red is high density. [See the electronic version of the Journal for
a color version of this Ðgure.]

disks. I will then use the outcome of the numerical experi-
ments to show that long-range correlations in surface
density, which might be expected to develop in the presence
of substantial wave transport, are not present.

Consider a density wave in a razor-thin Keplerian disk.
The disk structure varies only on a scale r, and v(r) > 1. The
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(Shu 1970 ; Goldreich & Tremaine 1979). This is the full
wave energy Ñux. BPÏs ““ anomalous Ñux,ÏÏ by comparison, is
the gravitational component of the energy Ñux measured in
a corotating frame. Shutting o† self-gravity is equivalent to
taking in equation (22). Evidently the wave energyk

cr
] 0

Ñux does not change qualitatively in this limit.
Wave energy Ñuxes may nonetheless be present. If they

are to change disk structure signiÐcantly, however, they

must be of the same order as the turbulent energy Ñux
If I assume that Q D 1,F

E,wave 4 (3/2)a&c
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and and drop factors of order unity, I Ðnd thatk D k
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r) , (23)

the wave energy Ñux is as important as the turbulent energy
Ñux.

To proceed further one can only consider the plausibility
of a large-amplitude, high-m wave propagating over signiÐ-
cant distances in the disk. Here are two arguments against
this. First, a density wave can only propagate a distance
Dr/m before it turns into an acoustic wave In a(k

r
c
s
Z )).

Ðnite thickness disk this corresponds to a wavelength
smaller than a scale height. If the disk is stratiÐed, three-
dimensional e†ects will modify the wave (e.g., Ogilvie &
Lubow 1999), and the wave is likely to steepen, shock, and
dissipate. Second, the gravitoturbulent state contains Ñuc-
tuations that emit, scatter, and absorb waves. If scattering
and absorption are strong, as they are here, coherent signals

Gammie, 2001
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Dimensionless Parameters of 
Accreting Disks

Ṁ∗
MdΩ

µ =
Md

Md + M∗

Environment Derived 

1. set by core: increase 
in system mass / orbital 

time

4. within the disk:
orbital times to drain 

disk

2. global disk 
quantity

7

3.6. Summary of Model
We summarize our model via the flowchart shown in

figure 2, which illustrates a simplified version of the
code’s decision tree. At a given time t we know the
current disk and star mass, and the current angular mo-
mentum and mass infall rates as prescribed in §2.1 and
§2.2. We can calculate Rd and Σd directly, and find the
appropriate stellar luminosity based on its evolution, cur-
rent mass, and accretion rate. Using these variables we
self-consistently solve for the appropriate temperature,
Q, and disk accretion rate as described in §3.2. With
this information in hand, we determine whether the disk
is stable, locally fragmenting, or forming a binary. If
the disk is stable, we proceed to the next iteration. If
Q < 1, then the disk puts mass into fragments according
to equation [23]. If µ > 0.5 we consider binary forma-
tion to have occurred, and the net angular momentum
and disk mass over the critical threshold is placed into
a binary (see §3.5). The simulation is halted at either
5 Myr, or if the entire disk turns into fragments. We
choose 5 Myr as a stopping time for two reasons: first,
the most massive stars in our parameter space are signif-
icantly evolved and have exploded by 5 Myr, and so our
stellar evolution models are no longer sufficient; and sec-
ond, because many other effects begin to dominate the
disks appearance at late stages due to gas-dust interac-
tion and photo-evaporation.

4. EXPECTED TRENDS

Before examining the numerical evolution, it is useful
to make a couple analytical predictions for comparison.

First, can we constrain where disks ought to wander in
the plane of Q and µ? This turns out to depend critically
on the dimensionless system accretion rate

!in ≡
Ṁin

M∗dΩ(Rcirc)
=

Ṁinj3
in

G2M3
∗d

(26)

which is the ratio of the mass accreted per radian of disk
rotation (at the circularization radius Rcirc) to the total
system mass M∗d = M∗ + Md. Since the active inner
disk has a radius comparable to Rcirc, this controls how
rapidly the disk gains mass via infall.

The importance of !in is apparent in the equation gov-
erning the evolution of the disk mass ratio µ:

µ̇

µΩ
=

Ṁin

M∗dΩ

(
1
µ
− 1

)
− Ṁ∗

MdΩ

=
Ω(Rcirc)

Ωd

(
1
µ
− 1

)
!in −

Ṁ∗
MdΩ

. (27)

Since we consider Ṁ∗/(MdΩ) to be a function of µ and
Q, we must know the disk temperature to solve for µ(t).
Regardless, equation (27) shows that larger values of !in
tend to cause the disk mass to increase as a fraction of
the total mass. We may therefore view !in and Q as the
two parameters that define disk evolution – of which !in
is imposed externally and Q is determined locally.

Moreover, !in takes characteristic values in broad
classes of accretion flows, such as the turbulent core mod-
els we employ. Suppose the rotational speed in the pre-
collapse region is a fraction fK of the Kepler speed, so
that jin = fKrvK(r) = fK [GrMc(r)]1/2, and suppose

also that the mass accretion rate is a fraction εfacc of
the characteristic rate vK(r)3/G. Then,

!in =
f3

Kfacc

ε2
. (28)

(In this expression, negative three powers of ε appear
because the binding mass is ε times smaller for the disk
than for the core; one of these is compensated by the
reduction of the accretion rate.)

In § 2.1 we adopted the McKee & Tan (2003) model for
massive star formation due to core collapse of a singular,
turbulent, polytropic sphere in initial equilibrium. Their
equations (28), (35), and (36) imply

facc = 0.84(1− 0.30kρ)
(

3− kρ

1 + H0

)1/2

(29)

within 2%, where 1 + H0 $ 2 represents the support due
to static magnetic fields (Li & Shu 1996). (Note, their
equation [28] is a fit made by McKee & Tan 2002 to the
results of McLaughlin & Pudritz 1997.)

KM06 predicted the turbulent angular momentum of
these cores; our parameter fK equals (θjφj)1/2 in their
paper. Their equations (25), (26), and (29) imply

fK =
0.49

φ1/2
B

(1− kρ/2)0.42

(kρ − 1)1/2
, (30)

with excursions upward by about 50% and downward by
about a factor of three expected around this value; here
φB $ 2.8 represents the magnetic enhancement of the
turbulent pressure. All together, we predict

!in =
0.10

ε2φ3/2
B

(
3− kρ

1 + H0

)1/2

(
1− kρ

2

)1.26

(kρ − 1)3/2
(1− 0.30kρ)

→0.02
(

0.5
ε

)2

(31)

where the evaluation uses 1 + H0 → 2, φB → 2.8, and
kρ → 1.5.

Importantly, !in is a function of (1 + H0), φB , ε, and
kρ, but not the core mass. We therefore expect similar
values of !in to describe all of present-day massive star
formation, at least insofar as these other parameters take
similar values. Suppose, for instance, that the formation
of 10M" and 100M" stars were both described by the
same !in. According to equation (27), the difference in µ
between these two systems would be controlled entirely
by the thermal effects that cause them to take different
values of Q.

A few additional expectations regarding Q itself can
be gleaned from the analytical work of Matzner & Levin
(2005) and KM06:

- The Toomre parameter remains higher than unity
for low-mass stars (! 2M") in low-column cores
(Σc,0 & 1), but falls to unity during accretion for
massive stars and for low-mass stars in high-column
cores;

- A given disk’s Q drops during accretion, reach-
ing unity when the disk extends to radii beyond
∼ 150 AU (in the massive-star case), or to peri-
ods larger than ∼460 yr (in the case of an optically
thick disk accreting from a low-mass, thermal core).

external, imposed quantities vary with 
environment, while local quantities are 

derived from physical model within the disk

Q =
csκ

πGΣ

3. local disk 
quantity
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3.6. Summary of Model
We summarize our model via the flowchart shown in

figure 2, which illustrates a simplified version of the
code’s decision tree. At a given time t we know the
current disk and star mass, and the current angular mo-
mentum and mass infall rates as prescribed in §2.1 and
§2.2. We can calculate Rd and Σd directly, and find the
appropriate stellar luminosity based on its evolution, cur-
rent mass, and accretion rate. Using these variables we
self-consistently solve for the appropriate temperature,
Q, and disk accretion rate as described in §3.2. With
this information in hand, we determine whether the disk
is stable, locally fragmenting, or forming a binary. If
the disk is stable, we proceed to the next iteration. If
Q < 1, then the disk puts mass into fragments according
to equation [23]. If µ > 0.5 we consider binary forma-
tion to have occurred, and the net angular momentum
and disk mass over the critical threshold is placed into
a binary (see §3.5). The simulation is halted at either
5 Myr, or if the entire disk turns into fragments. We
choose 5 Myr as a stopping time for two reasons: first,
the most massive stars in our parameter space are signif-
icantly evolved and have exploded by 5 Myr, and so our
stellar evolution models are no longer sufficient; and sec-
ond, because many other effects begin to dominate the
disks appearance at late stages due to gas-dust interac-
tion and photo-evaporation.

4. EXPECTED TRENDS

Before examining the numerical evolution, it is useful
to make a couple analytical predictions for comparison.

First, can we constrain where disks ought to wander in
the plane of Q and µ? This turns out to depend critically
on the dimensionless system accretion rate

!in ≡
Ṁin

M∗dΩ(Rcirc)
=

Ṁinj3
in

G2M3
∗d

(26)

which is the ratio of the mass accreted per radian of disk
rotation (at the circularization radius Rcirc) to the total
system mass M∗d = M∗ + Md. Since the active inner
disk has a radius comparable to Rcirc, this controls how
rapidly the disk gains mass via infall.

The importance of !in is apparent in the equation gov-
erning the evolution of the disk mass ratio µ:

µ̇

µΩ
=

Ṁin

M∗dΩ

(
1
µ
− 1

)
− Ṁ∗

MdΩ

=
Ω(Rcirc)

Ωd

(
1
µ
− 1

)
!in −

Ṁ∗
MdΩ

. (27)

Since we consider Ṁ∗/(MdΩ) to be a function of µ and
Q, we must know the disk temperature to solve for µ(t).
Regardless, equation (27) shows that larger values of !in
tend to cause the disk mass to increase as a fraction of
the total mass. We may therefore view !in and Q as the
two parameters that define disk evolution – of which !in
is imposed externally and Q is determined locally.

Moreover, !in takes characteristic values in broad
classes of accretion flows, such as the turbulent core mod-
els we employ. Suppose the rotational speed in the pre-
collapse region is a fraction fK of the Kepler speed, so
that jin = fKrvK(r) = fK [GrMc(r)]1/2, and suppose

also that the mass accretion rate is a fraction εfacc of
the characteristic rate vK(r)3/G. Then,

!in =
f3

Kfacc

ε2
. (28)

(In this expression, negative three powers of ε appear
because the binding mass is ε times smaller for the disk
than for the core; one of these is compensated by the
reduction of the accretion rate.)

In § 2.1 we adopted the McKee & Tan (2003) model for
massive star formation due to core collapse of a singular,
turbulent, polytropic sphere in initial equilibrium. Their
equations (28), (35), and (36) imply

facc = 0.84(1− 0.30kρ)
(

3− kρ

1 + H0

)1/2

(29)

within 2%, where 1 + H0 $ 2 represents the support due
to static magnetic fields (Li & Shu 1996). (Note, their
equation [28] is a fit made by McKee & Tan 2002 to the
results of McLaughlin & Pudritz 1997.)

KM06 predicted the turbulent angular momentum of
these cores; our parameter fK equals (θjφj)1/2 in their
paper. Their equations (25), (26), and (29) imply

fK =
0.49

φ1/2
B

(1− kρ/2)0.42

(kρ − 1)1/2
, (30)

with excursions upward by about 50% and downward by
about a factor of three expected around this value; here
φB $ 2.8 represents the magnetic enhancement of the
turbulent pressure. All together, we predict
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1− kρ

2
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0.5
ε

)2
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where the evaluation uses 1 + H0 → 2, φB → 2.8, and
kρ → 1.5.

Importantly, !in is a function of (1 + H0), φB , ε, and
kρ, but not the core mass. We therefore expect similar
values of !in to describe all of present-day massive star
formation, at least insofar as these other parameters take
similar values. Suppose, for instance, that the formation
of 10M" and 100M" stars were both described by the
same !in. According to equation (27), the difference in µ
between these two systems would be controlled entirely
by the thermal effects that cause them to take different
values of Q.

A few additional expectations regarding Q itself can
be gleaned from the analytical work of Matzner & Levin
(2005) and KM06:

- The Toomre parameter remains higher than unity
for low-mass stars (! 2M") in low-column cores
(Σc,0 & 1), but falls to unity during accretion for
massive stars and for low-mass stars in high-column
cores;

- A given disk’s Q drops during accretion, reach-
ing unity when the disk extends to radii beyond
∼ 150 AU (in the massive-star case), or to peri-
ods larger than ∼460 yr (in the case of an optically
thick disk accreting from a low-mass, thermal core).
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Ṁin(t), J̇in(t)

infall update

Md ↑, Jd ↑

global disk properties

Md, Jd,M∗

Initial Conditions
M∗0,Md0, Jd0

find thermal 
& mechanical 
equilibrium

    viscous heating

  irradiation

    radiative cooling

internal disk 
properties

Q, Ṁ∗
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between these two regimes in order to build a model ap-
plicable to intermediate and high mass star formation.

The MRI and local gravitational components are best
described by the Shakura & Sunyaev (1973) parameter α,
defined such that the effective kinematic viscosity is ν =
αcsH where H = cs/Ω is the scale height. In a steady
disk α is related to the mass accretion rate through

Ṁ∗,MRI =
3αc3

s

GQ
. (12)

We assume the disk is sufficiently ionized to support
magnetic turbulence, and we represent the MRI with the
constant value

αMRI ∼ 10−1.3. (13)
The appropriate value of this parameter is rather uncer-
tain; see Pessah et al. (2007) for a synthesis of recent
work, and Hueso & Guillot (2005) for a recent considera-
tion of observational constraints in low-mass protostellar
disks. Gravitational torques exceed those from the MRI
for most of the accretion phase; we discuss the influence
of αMRI in § 5.4

Our prescription for the local gravitational instabil-
ity is based on the work of Gammie (2001), who per-
formed simulations of razor-thin, accretion disks with an
imposed cooling. These simulations represent the limit
µ→ 0, for values of Q which approach unity from above,
and are most directly applicable to quasar disks. For rel-
atively slow cooling, Gammie demonstrates a regime of
steady gravity-induced turbulence. Angular momentum
transport in this regime is quite local, with an effective
value of α that is directly proportional to the cooling
rate. If cooling is too rapid (cooling time < 3Ω−1), how-
ever, the disk fragments. The disk viscosity is highest,
α # 0.3, at the boundary of fragmentation. Since this
maximum is achieved when Q # 1, and since Q must be
close to unity for local instability to exist at all, we take

αloc =






0, 1.4 < Q;
0.3 1.4−Q

0.4 , 1 < Q < 1.4;
0.3 Q < 1

(14)

We arbitrarily assume αloc maintains its maximum value
for Q < 1; in fact our simulations do not enter this regime
because of our treatment of fragmentation (§ 3.4). The
mass accretion rate that would be induced by local in-
stabilities alone can be worked out from equation (12):

Ṁ∗,loc

MdΩ
=

3αlocQ2

8
Md

M∗
. (15)

Note that the coefficient in this formula is dependent on
the chosen profile for Σd.

The global component of our model is meant to ac-
count for the fact that massive disks will develop gravi-
tational torques even when Q is significantly above unity.
The simulations by Laughlin et al. (1997) and Laughlin
& Rozyczka (1996) reveal the behavior of the global in-
stability in this regime. These authors model a range
of µ and Q values using global, two-dimensional simu-
lations, and prevent fragmentation by imposing an adia-
batic equation of state. The growth and saturation of spi-
ral modes in these simulations, and the resulting torques,
depend on the disk mass but are rather insensitive to Q.

Laughlin et al. (1998) show that a single, loosely-
wound mode of azimuthal wavenumber m = 2 dominates

the dynamics of these disks, with m = 4 modes limited
to relatively low amplitude. The scale of the spiral pat-
tern is therefore comparable to the disk radius Rd rather
than the scale height H. Since pressure gradients act on
length scales ∼ H, their role in these global spiral modes
is relatively minor; this may explain the insensitivity to
Q, since H ∝ Q for a disk of fixed mass. Motivated by
these observations we make a linear fit to the dimension-
less accretion rate as a function of disk to system mass
in the aforementioned simulations:

Ṁ∗,glob
MdΩ

= .0152µ− .0004. (16)

This prescription is equivalent to the turbulence model
proposed by Richard & Zahn (1999) and Duschl et al.
(2000), if the parameter β in the Duschl et al. model is
considered a function of the disk mass fraction. Equation
(16) agrees well with the more recent work of Lodato &
Rice (2005), in that both imply αglob # 10−1.3. These
authors consider a more restricted parameter space, but
use more complex heating and cooling prescriptions –
though they too prevent local fragmentation.

Putting this together, we model mass transport in the
disk as the harmonic mean of our three transport terms:

Ṁ∗,tot =
(
Ṁ2
∗,loc + Ṁ2

∗,glob + Ṁ2
∗,MRI

)1/2
(17)

where ṀMRI is obtained using equation [12]. Note that
because we have mined numerical simulations to acquire
equations [14] and [16], our total accretion rate is not
a simple power law in Q and µ. The global transport
scales linearly in µ and not at all with Q; local transport
scales as µ2 and Q3 (two powers from equation [15] and
one from equation [14]; MRI transport purely scales as
equation [15] because αMRI is assumed constant. Figure
1 illustrates our model for the dimensionless accretion
rate Ṁ∗/(MdΩ) as a function of Q and µ. We draw at-
tention to several key features of the plots. First, note
that at low Q there is a tongue-like feature that increases
in intensity with increasing disk mass. This is due to the
strong dependence of the locally-induced accretion rate
on both Q and mass ratio (Ṁ goes as the square of both).
The insensitivity of the accretion rate to Q for Q > 1.4
is visible in the more vertical tilt of the contours of fig-
ure [1] at high Q. The stronger diagonal tilt of contours
at high Q and µ represents the transition to dominance
of αMRI over the gravitational instabilities in determin-
ing transport rates, as indicated by the two patterned
regions. The fact that the dimensionless accretion rate
takes numerical values of 10−3.5 to 10−1.5 implies that
massive disks drain on timescales ranging from about
ten to about a thousand orbits, with a hundred orbits
being typical. We note the edges of our parameter space
are defined by two types of disk fragmentation: at low
Q, we demand that the disk form fragments in the tra-
ditional model of the Toomre (1964); at high µ when
the disk mass is too large, we extract matter and angu-
lar momentum from the disk and create a binary. The
boundary µ = 0.5 is conservatively large as it is difficult
to imagine disks much more massive than their central
stars remaining coherent for more than one orbit.

3.2. Disk Thermal Equilibrium
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count for the fact that massive disks will develop gravi-
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lations, and prevent fragmentation by imposing an adia-
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ral modes in these simulations, and the resulting torques,
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considered a function of the disk mass fraction. Equation
(16) agrees well with the more recent work of Lodato &
Rice (2005), in that both imply αglob # 10−1.3. These
authors consider a more restricted parameter space, but
use more complex heating and cooling prescriptions –
though they too prevent local fragmentation.

Putting this together, we model mass transport in the
disk as the harmonic mean of our three transport terms:

Ṁ∗,tot =
(
Ṁ2
∗,loc + Ṁ2

∗,glob + Ṁ2
∗,MRI

)1/2
(17)

where ṀMRI is obtained using equation [12]. Note that
because we have mined numerical simulations to acquire
equations [14] and [16], our total accretion rate is not
a simple power law in Q and µ. The global transport
scales linearly in µ and not at all with Q; local transport
scales as µ2 and Q3 (two powers from equation [15] and
one from equation [14]; MRI transport purely scales as
equation [15] because αMRI is assumed constant. Figure
1 illustrates our model for the dimensionless accretion
rate Ṁ∗/(MdΩ) as a function of Q and µ. We draw at-
tention to several key features of the plots. First, note
that at low Q there is a tongue-like feature that increases
in intensity with increasing disk mass. This is due to the
strong dependence of the locally-induced accretion rate
on both Q and mass ratio (Ṁ goes as the square of both).
The insensitivity of the accretion rate to Q for Q > 1.4
is visible in the more vertical tilt of the contours of fig-
ure [1] at high Q. The stronger diagonal tilt of contours
at high Q and µ represents the transition to dominance
of αMRI over the gravitational instabilities in determin-
ing transport rates, as indicated by the two patterned
regions. The fact that the dimensionless accretion rate
takes numerical values of 10−3.5 to 10−1.5 implies that
massive disks drain on timescales ranging from about
ten to about a thousand orbits, with a hundred orbits
being typical. We note the edges of our parameter space
are defined by two types of disk fragmentation: at low
Q, we demand that the disk form fragments in the tra-
ditional model of the Toomre (1964); at high µ when
the disk mass is too large, we extract matter and angu-
lar momentum from the disk and create a binary. The
boundary µ = 0.5 is conservatively large as it is difficult
to imagine disks much more massive than their central
stars remaining coherent for more than one orbit.

3.2. Disk Thermal Equilibrium

αMRI = const

(
Ṁ2

∗,loc + Ṁ2
∗,glob + Ṁ2

∗,MRI

)1/2

Ṁ∗,tot =

log
(

Ṁ
MdΩ

)
dynamical times to drain 

the disk

4

between these two regimes in order to build a model ap-
plicable to intermediate and high mass star formation.

The MRI and local gravitational components are suit-
ably described by the Shakura & Sunyaev (1973) param-
eter α, defined such that the effective kinematic viscos-
ity is ν = αcsH where H = cs/Ω is the scale height.
In a steady disk α is related to the mass accretion rate
through

Ṁ∗,MRI =
3αc3

s

GQ
. (12)

We assume the disk is sufficiently ionized to support
magnetic turbulence, and we represent the MRI with the
constant value

αMRI ∼ 10−1.3. (13)

The typical value of αMRI is rather uncertain; see Pessah
et al. (2007) for a synthesis of recent work, and Hueso &
Guillot (2005) for a recent consideration of observational
constraints in low-mass protostellar disks. Gravitational
torques exceed those from the MRI for most of the ac-
cretion phase; we discuss the influence of αMRI in § 5.5

Our prescription for the local gravitational instabil-
ity is based on the work of Gammie (2001), who per-
formed simulations of razor-thin, accretion disks with an
imposed cooling. These simulations represent the limit
µ→ 0, for values of Q which approach unity from above,
and are most directly applicable to quasar disks. For rel-
atively slow cooling, Gammie demonstrates a regime of
steady gravity-induced turbulence. Angular momentum
transport in this regime is quite local, with an effective
value of α that is directly proportional to the cooling
rate. If cooling is too rapid (cooling time < 3Ω−1), how-
ever, the disk fragments. The disk viscosity is highest,
α # 0.3, at the boundary of fragmentation. Since this
maximum is achieved when Q # 1, and since Q must be
close to unity for local instability to exist at all, we take

αloc =






0, 1.4 < Q;
0.3 1.4−Q

0.4 , 1 < Q < 1.4;
0.3 Q < 1

(14)

We arbitrarily assume αloc maintains its maximum value
for Q < 1; in fact our simulations do not enter this regime
because of our treatment of fragmentation (§ 3.4). The
mass accretion rate that would be induced by local in-
stabilities alone can be worked out from equation (12):

Ṁ∗,loc

MdΩ
=

3αlocQ2

8

(
Md

M∗

)2

. (15)

Note that the coefficient in this formula is dependent on
the chosen profile for Σd.

The global component of our model is meant to ac-
count for the fact that massive disks will develop gravi-
tational torques even when Q is significantly above unity.
The simulations by Laughlin et al. (1997) and Laughlin
& Rozyczka (1996) reveal the behavior of the global in-
stability in this regime. These authors model a range
of µ and Q values using global, two-dimensional simu-
lations, and prevent fragmentation by imposing an adia-
batic equation of state. The growth and saturation of spi-
ral modes in these simulations, and the resulting torques,
depend on the disk mass but are rather insensitive to Q.

Laughlin et al. (1998) show that a single, loosely-
wound mode of azimuthal wavenumber m = 2 dominates

the dynamics of these disks, with m = 4 modes limited
to relatively low amplitude. The scale of the spiral pat-
tern is therefore comparable to the disk radius Rd rather
than the scale height H. Since pressure gradients act on
length scales ∼ H, their role in these global spiral modes
is relatively minor; this may explain the insensitivity to
Q, since H ∝ Q for a disk of fixed mass. Motivated by
these observations we make a linear fit to the dimension-
less accretion rate as a function of disk to system mass
in the aforementioned simulations:

Ṁ∗,glob
MdΩ

= .0152µ− .0004. (16)

This prescription is equivalent to the turbulence model
proposed by Richard & Zahn (1999) and Duschl et al.
(2000), if the parameter β in the Duschl et al. model is
considered a function of the disk mass fraction. Equation
(16) agrees well with the more recent work of Lodato &
Rice (2005), in that both imply αglob # 10−1.3. These
authors consider a more restricted parameter space, but
use more complex heating and cooling prescriptions –
though they too prevent local fragmentation.

Putting this together, we model mass transport in the
disk as the harmonic mean of our three transport terms:

Ṁ∗,tot =
(
Ṁ2
∗,loc + Ṁ2

∗,glob + Ṁ2
∗,MRI

)1/2
(17)

where ṀMRI is obtained using equation [12]. Note that
because we have mined numerical simulations to acquire
equations [14] and [16], our total accretion rate is not
a simple power law in Q and µ. The global transport
scales linearly in µ and not at all with Q; local transport
scales as µ2 and Q3 (two powers from equation [15] and
one from equation [14]; MRI transport purely scales as
equation [15] because αMRI is assumed constant. Figure
1 illustrates our model for the dimensionless accretion
rate Ṁ∗/(MdΩ) as a function of Q and µ. We draw at-
tention to several key features of the plots. First, note
that at low Q there is a tongue-like feature that increases
in intensity with increasing disk mass. This is due to the
strong dependence of the locally-induced accretion rate
on both Q and µ (Ṁ goes as the square of both). At
higher values of Q, the contours become steeper, partic-
ularly as mu decreases. The nearly vertical contours at
low µ are a result of the global gravitational instability,
while the curvature towards higher µ shows the domi-
nance of the MRI (the MRI surpasses the global insta-
bility at high µ as the former grows quadratically rather
than linearly in µ. The white and black patterned regions
show the transition from gravitational to MRI dominated
transport. The fact that the dimensionless accretion rate
takes numerical values of 10−3.5 to 10−1.5 implies that
massive disks drain on timescales ranging from about ten
to about a thousand orbits, with a hundred orbits being
typical. We note the edges of our parameter space are
defined by two types of disk fragmentation: at low Q, we
demand that the disk form fragments in the traditional
model of Toomre (1964); at high µ when the disk mass
is too large, we extract matter and angular momentum
from the disk and create a binary. The boundary µ = 0.5
is conservatively large as it is difficult to imagine disks
much more massive than their central stars remaining
coherent for more than a few orbits.
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Fig. 1.— The effective accretion rate log (Ṁ/MdΩ) from all
three transport components of our model. The more vertical fea-
tures show the dominance of the global instability in transport at
higher values of Q and lower values of µ. Similarly the horizontal
”tongue” at low Q outlines the region in which local instability
dominates accretion. The patterned regions at the top indicate
where the accretion rate induced by αMRI begins to dominate.
The MRI appears more dominant at higher disk masses due to our
assumption of a constant α: equation [15] illustrates that a con-
stant α will cause higher accretion rates at higher values of mu.
The global instability, which scales only linearly with µ cuts off
more slowly at lower values. The MRI rate remains comparable to
the global rate for the most occupied range of our parameter space
of µ < 0.35.

We have now specified the rate at which the disk ac-
cretes onto a central star as a function of Q and µ. How-
ever, this does not fully specify the accretion rate, be-
cause while µ may be directly computed from our “prim-
itive” variables Md, M∗, and Jd, the Toomre stability pa-
rameter Q cannot be, because it depends on the sound
speed cs and thus the temperature within the disk. We
can determine this by requiring that the disk be in ther-
mal equilibrium.

To compute the disk’s thermal state, we follow the ap-
proach of KM06, in which disks are heated by a combi-
nation of stellar irradiation and viscous dissipation due
to accretion. In equilibrium, the disk midplane formula
satisfies the approximate relation

σT 4 =
(

8
3
τR +

1
4τP

)
Fv + Firr, (18)

where Fv is the rate of viscious dissipation per unit area
in the disk, Firr is the flux of starlight (whether direct or
reprocessed) onto the disk surface, and τR,P = κR,P Σ/2
are the Rosseland and Planck optical depths to the mid-

plane. The viscous dissipation per unit area is

Fv =
3ṀΩ
8π

, (19)

and we compute the opacities using the Semenov et al.
(2003) model for κR,P (T ): in particular, we use their
homogeneous-aggregate dust model with normal sili-
cates, calculated at the appropriate density.

Low-mass stars’ luminosities are accretion-dominated
in the main accretion phase, but those above about 15
M" reach the zero-age main sequence (ZAMS) while
still accreting. To include both accretion luminosity and
other sources in our calculation of Firr, we use the proto-
stellar evolution code of Krumholz & Thompson (2007),
based on the McKee & Tan (2003) protostellar evolution
model, to compute the luminosity L∗ of the central star
as a function of its accretion history. The model includes
contributions to the protostellar luminosity from accre-
tion on the stellar surface, Kelvin-Helmholtz contraction,
and, once the temperature rises high enough, deuterium
and then hydrogen burning.

During the infall, dust within the infall envelope re-
processes starlight and casts it down on the disk. By
performing ray tracing within an inflow envelope with
a central outflow cavity, Matzner & Levin (2005) deter-
mine the fraction of light received by the disk assuming
the infall envelope is optically thick to the stellar radia-
tion, and optically thin to its own IR re-radiation: they
find

Firr =
0.1

ε0.35

L∗
4πR2

d

. (20)

The weak dependence on the accretion efficiency ε arises
from a picture in which the outflow clears a fraction
1 − ε of the core, so that infall streamlines originate
from regions separated from the axis by angles θ such
that cos θ > ε. Recently Rodŕıguez et al. (2005) have
observed an outflow near an O-type protostar with an
opening angle of approximately 25◦; this is in reasonable
agreement with the model chosen here, since infall occurs
at wider angles.

Once the core has accreted entirely and the envelope
can no longer re-process starlight, we make an (unreal-
istically) abrupt switch to a model in which Ṁin = 0.
The star continues to acquire mass from the disk, which
represents a non-negligible reservoir. From this point on
we calculate Firr in the manner of Chiang & Goldreich
(1997). We first identify the fraction of L∗ intercepted
by the surface which is optically thick to stellar pho-
tons, assuming for this purpose that H ∝ R9/7 and that
the dust density is a Gaussian, of scale height H, in the
height above the midplane. We also calculate the equi-
librium temperature of dust in this reprocessing layer.
We then calculate Firr as that fraction of the reprocessed
radiation which is reabsorbed by the disk, allowing for
the possibility that the disk will be optically thin at the
relevant wavelengths. We find the reprocessing height is
slightly larger than a scale height (1.5H being typical),
with more massive disks reprocessing at farther above
the midplane due to their higher column density.

Though negligible during the accretion phase, we also
include a background radiation field due to the cloud and
the cosmic microwave background. This prevents disks
from becoming unrealistically cold at large radii and late
times.

accretion + irradiation contribute 
significantly to disk heating even at 
high  Ṁ

irradiation model accounts for optically thin 
& thick regimes for two cases:



Model Components II: Heating & Cooling

5

lo
g

(
Ṁ
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ṀM RI∼ ṀGI
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Fig. 1.— The effective accretion rate log (Ṁ/MdΩ) from all
three transport components of our model. The more vertical fea-
tures show the dominance of the global instability in transport at
higher values of Q and lower values of µ. Similarly the horizontal
”tongue” at low Q outlines the region in which local instability
dominates accretion. The patterned regions at the top indicate
where the accretion rate induced by αMRI begins to dominate.
The MRI appears more dominant at higher disk masses due to our
assumption of a constant α: equation [15] illustrates that a con-
stant α will cause higher accretion rates at higher values of mu.
The global instability, which scales only linearly with µ cuts off
more slowly at lower values. The MRI rate remains comparable to
the global rate for the most occupied range of our parameter space
of µ < 0.35.

We have now specified the rate at which the disk ac-
cretes onto a central star as a function of Q and µ. How-
ever, this does not fully specify the accretion rate, be-
cause while µ may be directly computed from our “prim-
itive” variables Md, M∗, and Jd, the Toomre stability pa-
rameter Q cannot be, because it depends on the sound
speed cs and thus the temperature within the disk. We
can determine this by requiring that the disk be in ther-
mal equilibrium.

To compute the disk’s thermal state, we follow the ap-
proach of KM06, in which disks are heated by a combi-
nation of stellar irradiation and viscous dissipation due
to accretion. In equilibrium, the disk midplane formula
satisfies the approximate relation

σT 4 =
(

8
3
τR +

1
4τP

)
Fv + Firr, (18)

where Fv is the rate of viscious dissipation per unit area
in the disk, Firr is the flux of starlight (whether direct or
reprocessed) onto the disk surface, and τR,P = κR,P Σ/2
are the Rosseland and Planck optical depths to the mid-

plane. The viscous dissipation per unit area is

Fv =
3ṀΩ
8π

, (19)

and we compute the opacities using the Semenov et al.
(2003) model for κR,P (T ): in particular, we use their
homogeneous-aggregate dust model with normal sili-
cates, calculated at the appropriate density.

Low-mass stars’ luminosities are accretion-dominated
in the main accretion phase, but those above about 15
M" reach the zero-age main sequence (ZAMS) while
still accreting. To include both accretion luminosity and
other sources in our calculation of Firr, we use the proto-
stellar evolution code of Krumholz & Thompson (2007),
based on the McKee & Tan (2003) protostellar evolution
model, to compute the luminosity L∗ of the central star
as a function of its accretion history. The model includes
contributions to the protostellar luminosity from accre-
tion on the stellar surface, Kelvin-Helmholtz contraction,
and, once the temperature rises high enough, deuterium
and then hydrogen burning.

During the infall, dust within the infall envelope re-
processes starlight and casts it down on the disk. By
performing ray tracing within an inflow envelope with
a central outflow cavity, Matzner & Levin (2005) deter-
mine the fraction of light received by the disk assuming
the infall envelope is optically thick to the stellar radia-
tion, and optically thin to its own IR re-radiation: they
find

Firr =
0.1

ε0.35

L∗
4πR2

d

. (20)

The weak dependence on the accretion efficiency ε arises
from a picture in which the outflow clears a fraction
1 − ε of the core, so that infall streamlines originate
from regions separated from the axis by angles θ such
that cos θ > ε. Recently Rodŕıguez et al. (2005) have
observed an outflow near an O-type protostar with an
opening angle of approximately 25◦; this is in reasonable
agreement with the model chosen here, since infall occurs
at wider angles.

Once the core has accreted entirely and the envelope
can no longer re-process starlight, we make an (unreal-
istically) abrupt switch to a model in which Ṁin = 0.
The star continues to acquire mass from the disk, which
represents a non-negligible reservoir. From this point on
we calculate Firr in the manner of Chiang & Goldreich
(1997). We first identify the fraction of L∗ intercepted
by the surface which is optically thick to stellar pho-
tons, assuming for this purpose that H ∝ R9/7 and that
the dust density is a Gaussian, of scale height H, in the
height above the midplane. We also calculate the equi-
librium temperature of dust in this reprocessing layer.
We then calculate Firr as that fraction of the reprocessed
radiation which is reabsorbed by the disk, allowing for
the possibility that the disk will be optically thin at the
relevant wavelengths. We find the reprocessing height is
slightly larger than a scale height (1.5H being typical),
with more massive disks reprocessing at farther above
the midplane due to their higher column density.

Though negligible during the accretion phase, we also
include a background radiation field due to the cloud and
the cosmic microwave background. This prevents disks
from becoming unrealistically cold at large radii and late
times.

accretion + irradiation contribute 
significantly to disk heating even at 
high  Ṁ

Given an optically thin emission at the reprocessing temper-
ature T1, the effective opacity for the second reprocessing event
is given by

!̄ ¼
R
!"2!"1B" T1ð ÞR
!"1B" T1ð Þ

; ð39Þ

where !"1 is the opacity law at the reprocessing radius and !"2 is
that for cool dust near Rd . Figure 1 shows T1 and !̄ for a given
model; notably, !̄ ’ 15 cm2 g$1 for a wide range of parameters,
dropping only for especially large disk radii [and especially low
values of !sph(Rd)].

Integrating the flux through the disk at Rd from the sky in-
tensity of reradiated light (assuming optically thin second re-
processing), we find that the flux of this radiation at the disk
radius Rd is given by equation (34) if

fF ¼ 0:28!̄!sph; ð40Þ

giving fF ’ 1/16 for typical parameters. Using this result to cal-
culate the irradiation temperature of an optically thick disk in
equation (34), we find that it falls below the critical temperature
for local fragmentation at the outer disk edge only if

period >
7400 f 1:69p

f
3=4
j

!̄

10 cm2 g$1

!cl

165 M% pc$2

! "3=4

;
T?

4500 K

! "
10 K

Tc

! "9=4

yr ð41Þ

there; this is comparable to the characteristic maximum period
in x 2.2.

Note that we have taken " ¼ 100% here, since the absence
of the outflow cavity implies that all of the material is accreted

onto the star. This raises the critical disk temperature to about
22 K.

4.2.2. Outflow Cavity

Amore realistic calculation must account for the region along
the axis that is cleared by the jet. An outflow cavity warms the
disk by providing more direct illumination than is available other-
wise. To calculate this, we must specify the shape of the outflow
cavity.
Note, first, that the wind ram pressure is expected generically

to vary as 1/(r 2 sin2# ) with distance and angle # from the axis
(Matzner & McKee 1999). Inflow ram pressure scales as r$5/2

from the centrifugal radius to the edge of the inflow. We see on
comparison that inflow dominates close to the star and near the
equator, and the wind dominates far from the star and near the axis.
By this reasoning, Matzner & McKee (2000) divided the initial
core into accreting and ejected angles depending on the velocity
imparted by the wind impulse to gas at the edge of the core. Our
parameter " is simply the accreted mass as a fraction of the ini-
tial mass.
By the same logic, gas that is not cast away by the wind is

destined to fall inward, and its motion is less and less affected by
the wind ram pressure as it does. Therefore, we are justified in
approximating the shape of the outflow cavity as an unperturbed
streamline in the infall solution of Terebey et al. (1984). The
streamline in question is roughly the one that divides infall and
outflow in the Matzner & McKee (2000) theory. For the case of
a spherical initial core, then, the initial angle of this streamline
is given by

cos #0 ¼ ": ð42Þ

(We assume a spherical core for the remainder of this sec-
tion.) This streamline strikes the disk at a radius sin2(#0)Rd ¼
(1$ "2)Rd .
Geometrically, a fraction " of the starlight strikes the cavity

inner edge because the remaining 1$ " is cleared by the out-
flow.However, smaller " leads to a broader outflow cavity, which
causes a greater portion of the reprocessed starlight to reach
the disk. After performing ray-tracing calculations of reradia-
tion from the inner edge of the infall, using a geometry like that
shown in Figure 2, we find that fF is adequately described by
0.1"$0.35 in the relevant range 20% < " < 90%. The infall enve-
lope is translucent to this reprocessed radiation, but our estimates

Fig. 1.—Bottom: Temperature T1 of the reprocessing surface in envelopes
lacking outflow cavities. T1 is computed as a function of outer disk period using
the opacitymodel of Semenov et al. (2003). Assumed parameters areM ¼ 0:5M%,
Ṁ ¼ 3 ; 10$6 M% yr$1, T? ¼ 4500 K, and solar metallicity; however, eq. (38)
permits this diagram to be rescaled for other parameters. (The density dependence
of evaporation temperatures has been suppressed for simplicity; lines here are
drawn for 10$10 g cm$3.) Top: Effective opacity !̄ of cool dust to optically thin
thermal radiation from dust of temperature T1.

Fig. 2.—Schematic diagram for irradiation in the presence of an outflow
cavity, in the theory of x 4.2.2. The inflow envelope is excavated within a
particular streamline (eq. [42]; solid line); visible starlight is absorbed near this
innermost streamline and reprocessed into infrared light that illuminates the disk
(dashed arrows).
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FIG. 2.ÈSED for the Ñared blackbody disk. At mid-IR wavelengths,
At longer wavelengths,L l P l~2@3. L l P l3.

A schematic of how the stellar radiation is reprocessed is
illustrated in The radiation penetrates the disk toFigure 3.
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the superheated dust layer at visual wavelengths is q
V

B
The infrared optical depth is smaller still ;a B 0.4R*/a.

qIR B av
s
.

The superheated dust radiates equal amounts of IR radi-
ation into the inward and outward hemispheres. The
outward-directed radiation is similar to that of a dilute
blackbody. Where the disk is opaque to blackbody radi-
ation at

T
i
B T

e
21@4 B

Aa
4
B1@4AR*

a
B1@2

T* , (12a)

the inward-directed radiation is thermalized at that tem-
perature. The outer boundary of this region is denoted by

Just outside the interior is optically thin to its ownath. ath,
radiation but still opaque to radiation from the superheated

FIG. 3.ÈRadiative transfer in the passive disk. Stellar radiation strikes
the surface at an angle a and is absorbed within visible optical depth unity.
Dust particles in this Ðrst absorption layer are superheated to a tem-
perature About half of the emission from the superheated layerT

ds
.

emerges as dilute blackbody radiation. The remaining half heats the inte-
rior to a temperature T

i
.

surface ; in these regions, the interior temperature is deter-
mined by thermal balance to be

T
i
B
A a

4v
i
i
V

&
B1@4AR*

a
B1@2

T* . (12b)

At still greater radii, the encased material is transparent
both to its own radiation and to radiation from the surface ;
the internal temperature here is given by

T
i
B
Aav

s
2

v
i

B1@4
T
ds

B
Aav

s
4v

i

B1@4AR*
a
B1@2

T* . (12c)

The SED for the radiative equilibrium disk is computed
from

L l \ 8n2l
P
ai

ao
daa

P
~=

=
dz

dql
dz

e~qlBl(T ) , (13)

where measures optical depth from z to O along the axisqlperpendicular to the disk midplane.

2.3.1. Flat Geometry
Once again, we consider the Ñat disk, but now under

conditions of radiative equilibrium. The appropriate
expression for the e†ective temperature is given by equation

For our Ðducial Ñat disk, AU. Runs of and(4). ath B 50 T
dsas functions of a are displayed inT

i
Figure 4.

The SED for the Ñat, radiative equilibrium disk as calcu-
lated from is displayed in Its appear-equation (13) Figure 5.
ance is similar to that of the SED for the Ñat blackbody
disk. Over most of the IR, it is dominated by radiation from
the optically thick interior. The surface layer radiates more
than the interior shortward of 6 km; however, there its
contribution is hidden by that from the central star. Most of
the radiation longward of a millimeter comes from the
outer, optically thin part of the disk. This accounts for the
drop of the SED below the extrapolation of the n \ 4/3
power law.

2.3.2. Hydrostatic Equilibrium
Now we investigate the disk model in which both vertical

hydrostatic equilibrium and radiative transfer are treated in
a self-consistent fashion. The Ñaring geometry is governed

FIG. 4.ÈTemperature proÐles of the Ñat and Ñared radiative equi-
librium models. The dust temperature of the superheated layer is inde-T

dspendent of disk geometry. Expressions for and are provided in theT
ds

T
itext. The Ñat disk is truncated at AU (to facilitate comparisona

o
\ 270

with the Ñared models), before the third temperature regime is reached.

Chiang & Goldreich, 1997
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Model Components III: 
             Outer disk braking

6

Our cloud irradiation serves as a stand-in for one ne-
glected heat source in clusters: irradiation from sur-
rounding stars. This effect is likely important for (a) very
dense regions, and (b) late times when disk radii stretch
out to 104 AU. Due to the wide variance in the strength
of this effect, we do not address heating by neighbors
here. There is also a minor heating due to the accretion
shock that feeds the disk; however, KM06 have argued
that this is negligible in general.

While our background heating is only important at
late times, we do not report results for t >5 Myr as this
exceeds the lifetimes of most disks, even the low-mass
ones (Jayawardhana et al. 2006). The uncertainties in
our procedure therefore have little effect on the results
we obtain.

We have now fully specified the conditions of thermal
and mechanical equilibrium for this disk, and we can use
them to compute the accretion rate. Equations (17) and
(18) constitute two equations for the unknowns Q and
Ṁ∗. For any given Md, M∗, and Jd, we may solve them
to determine Ṁ∗. This in turn also specifies the rate of
change of the disk mass

Ṁd = Ṁin − Ṁ∗. (21)

Note that Md and M∗ can also be modified by disk frag-
mentation and binary formation, as described in § 3.4
and § 3.5.

3.3. An Outer Disk and the Braking Torque
When describing standard steady-state disks, one im-

plicitly assumes that when angular momentum is trans-
ported radially, it travels out to large radii in an insignifi-
cant amount of mass. In our current model, we effectively
keep track of an “inner” disk: the portion containing the
majority of the mass. We allow for a small amount (2%)
of material raining in from the core to be carried out with
the angular momentum.

The disk’s angular momentum is then equal to that of
the infalling material, in addition to the amount already
in the disk, minus some portion which has been trans-
ferred to this outer disk. The disk loses a fraction bj of
its angular momentum and a small amount of mass on
the viscous timescale τv = Md/Ṁ∗, so long as it is still
accreting:

J̇d = jinṀin − bj

(
Ṁin

Ṁ∗

)
Ṁin

Md
Jd. (22)

As above, subscript “in” denotes newly accreted matter.
The factor (Ṁin/Ṁ∗) is roughly unity in the main accre-
tion phase, but goes to zero when accretion stops. We
thus assume the outer disk only applies a torque when it
gains matter from the inner disk. Without accretion the
outer disk has no effect, and the inner disk is free to ex-
pand at constant Jd. This model also reproduces power
law growth of the inner disk once accretion shuts off, in
agreement with standard viscous disk models. We con-
sider this a conservative approach, considering that we
do not treat effects like photoionization that might re-
move material from the inner and outer disk, especially
in massive stellar clusters..

We consider bj = 0.5 to be typical; in this case an ac-
creting disk loses about half its angular momentum each

viscous time. Since the disk sheds mass at the same rate,
this allows its radius to remain comparable to the circu-
larization radius of the infalling material. Although our
choice of bj is somewhat arbitrary we demonstrate that
our parametrization makes the disk evolution somewhat
independent of this value. See §5.5.1 for discussion.

3.4. Disk Fragmentation

Since we have now computed Ṁd, Ṁ∗, and J̇d, our
model is almost complete. However, as demonstrated by
both previous analytic work (KM06) and numerical sim-
ulations (Krumholz et al. 2007b), our parameter space
extends deeply into the regime where disk fragmentation
is expected. We must account for this in our evolution
model. It is not our intent to follow the detailed evolu-
tion of the fragments formed, nor their mass spectrum;
we are interested primarily in how they help the disk reg-
ulate Q. We assume local fragmentation occurs when Q
drops below unity. To determine how much mass goes
into fragments each time step, we first define a critical
density, Σd,c:

Σd,c =
csΩ

πGQcrit
. (23)

This is the density necessary for the disk to return to
stability: we choose Qcrit = 1. Because fragmentation is
expected to occur over an orbital time, we define Σ̇frag
to be the rate at which mass goes into fragments, or:

Σ̇frag = −(Σd − Σd,c)Ω, (24)

so that in an orbital time, the disk has fragmented
enough to restore stability.

For simplicity, we assume that while fragments con-
tribute to the mass of the disk, they do not enter in
Toomre’s stabilty parameter Q except insofar as they
contribute to the binding mass. (One could consider a
composite Q: Rafikov 2001). Nor do we follow the mi-
gration of fragments in the disk. Rather we allow them
to accrete onto the central star at the rate

Ṁ∗,frags = φfMfragΩ, (25)

with φf = 0.05. The assumption is simply that some
fraction of the fragments accrete each orbit. Fragments
form preferentially at large distances from the star, and
thus only a small amount of the fragment mass will make
it into the central star each orbit. Changing this param-
eter by an order of magnitude only marginally alters the
disk evolution.

In this model we make the important assumption that
disks will always fragment to maintain stability, and al-
low accretion to proceed. While this is likely a good
assumption based on the existence of massive stars that
appear to have formed via disk accretion, the persistence
of rapid accretion during fragmentation has not been sat-
isfactorily demonstrated in a numerical simulations. See
§7.3.

3.5. Binary Formation
A majority of stars, especially massive stars, are found

in binary and multiple systems. Though we present a
very simplified scenario for star formation, we do account
for the possibility that a single secondary star will form
if Md > M∗, that is, if the disk grows unphysically large
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−1• Disk properties:

• Detectable?

• ALMA: yes ( < 2-3 Kpc)

• EVLA:  yes (< 0.5 Kpc) 
(Krumholz et al, 2007)

Td ≈ 100K

Σd ≈ 50 g/cm2
Rd ≈ 200AU

µ ≈ 0.35
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Fig. 1.—Left: Contour map of the integrated ammonia emission of the (4, 4) transition (blue contours) in the velocity range from !7.5 to !2.6 km s (beam!1

!1.1!, this Letter; see Fig. 2) superposed on the CH3CN contour map (red contours) obtained by Comito et al. (2007) within the same velocity range (beam
!0.8!). Cross indicates the position of HW 2 (Curiel et al. 2006). Right: Contour map (black contours) of the continuum emission at 335 GHz obtained with the
SMA toward Cep A HW 2 (this Letter). Beam size p 0.37! is indicated in the panel. Contour levels are !0.5, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 # 58 mJy beam!1.
Superposed on this map the SO2 structure found with the VLA by Jiménez-Serra et al. (2007) is also shown (white contours; beam !0.37!).

was done using the asteroid Ceres and the quasar 3C 111. Con-
tinuum datawere obtained from the line-free regions of the spectral
band of the two sidebands. Weather was excellent during the
observations with relative humidity of ∼20% and t ∼225 GHz

(∼0.22 at 335 GHz), measured at the nearby Caltech Sub-0.06
millimeter Observatory. The track was ∼8 hr long with an on-
source integration time of ∼4.2 hr. varied from 220 toTsys, DSB
500 K. The visibility data were calibrated and mapped using the
Berkeley Illinois Maryland Array’s Miriad package. We estimate
an uncertainty of ∼20% in the absolute flux scale in the SMA
data and an uncertainty of∼0.1! in absolute astrometry. Finalmaps
were obtained by combining the two configurations (extended-
"very extended) and the two sidebands. Two continuum sources
are detected with a beam size of 0.37!, one coincident with HW
2 ( Jy beam ) and another one with HW 3c!1S ! 0.6(335 GHz)

( Jy beam ), which is located ∼3! south from HW!1S ! 0.1(335 GHz)

2. The continuum emission around HW 2 shows (Fig. 1) an elon-
gated structure with a deconvolved size of ! ′′ ′′0.62 # 0.35
( AU; ) and total flux density of !2 Jy450# 250 P.A. ! 120!
(brightness temperature K) (similar to the flux densityT ! 100B

measured with a beam size of !0.75! by Patel et al. 2005). A
weak feature (6 j level, mJy beam!1) located ∼1! northj ! 7
from the peak of the elongated structure is also observed. The
implications of these high angular resolution continuum obser-
vations are discussed in § 3. An analysis of the SMA spectral line
data combining the two configurations will be presented in a forth-
coming paper by Patel et al.

2.2. VLA Ammonia

We have reanalyzed the NH3(3, 3) and NH3(4, 4) line data
(l1.3 cm) observed by Torrelles et al. (1999), who reported
detection of the lower transition but nondetection of the higher
one. These observations were carried out with the VLA of the

NRAO8 in the C configuration and 4IF spectral line mode,
allowing us to observe simultaneously the two transitions with
a spectral resolution of !0.6 km s and covering a velocity!1

range of ! (covering only the!1 !130 km s ≤ V ≤ 8 km sLSR

main hyperfine component of these transitions; see Ho &
Townes 1983). More details of these observations are given in
Torrelles et al. (1999). The recalibration of the observations
was performed using the new recommended procedure of
NRAO for reducing high-frequency VLA data. The continuum
emission contribution from HW 2 to the spectral line data was
subtracted. Emission from both transitions is detected in the ve-
locity range from !!13.6 to !2.6 km s with a beam size of!1

∼1!. The integrated flux density images in this range are consistent
with those reported by Torrelles et al. (1999) [NH3(3, 3)] and
Brogan et al. (2007) [NH3(4, 4)], showing a rather complex struc-
ture around HW 2. However, more simple structures are differ-
entiated from integrated intensity maps made in two different
velocity ranges, from !13.6 to !8.1 km s and from !7.5 to!1

!2.6 km s . In the former range of integration, a distinct!1

spatially “isolated” ammonia core is identified in both transi-
tions, spatially coinciding with the hot core reported by Martı́n-
Pintado et al. (2005) in SO2 ∼0.5! to the east of HW 2
(Fig. 2). This core is also seen in CH3CN (Comito et al. 2007).
On the other hand, an elongated core centered on HW 2 is
distinguished in the !7.5 to !2.6 km s range (more prom-!1

inent in the NH3(4, 4) transition; Fig. 2). This structure has a
similar orientation as the CH3CN and SO2 structures reported
by Patel et al. (2005) and Jiménez-Serra et al. (2007), respec-
tively, within the same velocity range, although the ammonia
structure is about 2 times larger (∼2!). In addition, the ammonia
emission in the !7.5 to !2.6 km s range shows a velocity!1

pattern that is roughly consistent with the pattern observed in
SO2 by Jimenez-Serra et al. (2007); that is, the gas of the

8 The National Radio Astronomy Observatory is a facility of the National
Science Foundation operated under cooperative agreement by Associated Uni-
versities, Inc.

Observed disk around 
Ceph A HW 2: Patel et al. 
2005,  Torrelles et al 2007*, & 

Jimenez-Serra et al 2007 
measure similar characteristics

Torrelles et al, 2007

Evolutionary track 
through Q and μ 

*see poster
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Conclusions
• Massive, rapidly accreting disks:  Type II

• Occur during the deeply embedded, Class 0 phase

• Md ~ .3M* for much of accretion, with Rd ~ 200-400 AU

• Local instability and fragmentation persists for ~105 years

• Strong spiral arm structure should produce observable, non-
Keplerian motion

• Outer disk temperatures exceed 100K for stars > 10 

• Outer disk peak column densities ~50 g/cm2

• Binary formation through disk fission for cores > 30

• Core angular momentum profile has strong influence

• Environmental variables (          ) do not qualitatively change these 
conclusions

M!

M!

Σc, Tc


