Massive, Embedded, Accreting, Protostellar Disks

> Kaitlin Kratter University of Toronto

Collaborators: Chris Matzner (U.Toronto) Mark Krumholz (Princeton/UC Santa Cruz)

> September 12th, 2007 Heidelberg: Massive Star Formation

Disks in Massive Star Formation?

- **Theoretically**: existence of disks is a robust result independent of specific formation mechanism
- fundamental in circumventing accretion barrier of radiation pressure (e.g. Krumholz et al. 2005)
- likely play a role in determining binarity and upper mass cutoff (e.g. Kratter & Matzner, 2006)
- **Observationally**: just beginning to probe proper size and time scales. more soon from ALMA & EVLA

Indebetouw et al. 2003

How can we make useful predictions for these disks as $f(M_*, t)$?

Massive Embedded Disks: what should we expect?

What dominates angular momentum transport?

Do disks fragment? If so, what do they make?

How will these disks appear to ALMA and the EVLA?

Massive Embedded Disks: what should we expect?

How will these disks appear to ALMA and the EVLA?

Krumholz, et al. 2007

Physical Scenario

- Turbulent region (core) begins to collapse
- Cloud pressure and core temperature determine the magnitude of turbulent support
- Net angular momentum determines circularization radius of the infalling material as f(t)

Problem I: high column cores make these phenomena very difficult to observe

Physical Scenario

- Turbulent region (core) begins to collapse
- Cloud pressure and core temperature determine the magnitude of turbulent support
 - Net angular momentum determines circularization radius of the infalling material as f(t)

Problem I: high column cores make these phenomena very difficult to observe

Dimensionless Parameters of Accreting Disks

external, imposed quantities vary with environment, while **local** quantities are derived from physical model within the disk

Environment

Derived

$rac{\dot{M}_{ m in}}{M_{*d}\Omega(R_{ m circ})}$	$\mu = \frac{M_d}{M_d + M_*}$	$Q = \frac{c_s \kappa}{\pi G \Sigma}$	$\frac{\dot{M}_*}{M_d\Omega}$
I. set by core: increase in system mass / orbital time	2. global disk quantity	3. local disk quantity	4. within the disk: orbital times to drain disk

Dimensionless Parameters of Accreting Disks

external, imposed quantities vary with environment, while **local** quantities are derived from physical model within the disk

Environment

Derived

- survey the conditions of intermediate-mass and **massive** star formation
- consider fluctuations of the vector angular momentum in the infall due to realistic turbulence in the collapsing core
- account for dependence of gravitational torques on disk-to-total mass ratio Toomre's Q
- consider possibility that disks **fragment** when sufficiently unstable
- employ a realistic model for irradiation of the disk midplane

KMK, Matzner, & Krumholz, 2007 (submitted)

- survey the conditions of intermediate-mass and **massive** star formation
- consider fluctuations of the vector angular momentum in the infall due to realistic turbulence in the collapsing core
- account for dependence of gravitational torques on disk-to-total mass ratio Toomre's Q
- consider possibility that disks **fragment** when sufficiently unstable
- employ a realistic model for irradiation of the disk midplane

KMK, Matzner, & Krumholz, 2007 (submitted)

- survey the conditions of intermediate-mass and **massive** star formation
- consider fluctuations of the vector angular momentum in the infall due to realistic turbulence in the collapsing core
- account for dependence of gravitational torques on disk-to-total mass ratio Toomre's Q
- consider possibility that disks **fragment** when sufficiently unstable
- employ a realistic model for irradiation of the disk midplane

KMK, Matzner, & Krumholz, 2007 (submitted)

- survey the conditions of intermediate-mass and **massive** star formation
- consider fluctuations of the vector angular momentum in the infall due to realistic turbulence in the collapsing core
- account for dependence of gravitational torques on disk-to-total mass ratio Toomre's Q
- consider possibility that disks **fragment** when sufficiently unstable
- employ a realistic model for irradiation of the disk midplane

KMK, Matzner, & Krumholz, 2007 (submitted)

- survey the conditions of intermediate-mass and **massive** star formation
- consider fluctuations of the vector angular momentum in the infall due to realistic turbulence in the collapsing core
- account for dependence of gravitational torques on disk-to-total mass ratio Toomre's Q
- consider possibility that disks **fragment** when sufficiently unstable
- employ a realistic model for irradiation of the disk midplane

KMK, Matzner, & Krumholz, 2007 (submitted)

Model Components I: Accretion Model

- survey the conditions of intermediate-mass and **massive** star formation
- consider fluctuations of the vector angular momentum in the infall due to realistic turbulence in the collapsing core
- account for dependence of gravitational torques on disk-to-total mass ratio Toomre's Q
- consider possibility that disks **fragment** when sufficiently unstable
- employ a realistic model for irradiation of the disk midplane

KMK, Matzner, & Krumholz, 2007 (submitted)

- survey the conditions of intermediate-mass and **massive** star formation
- consider fluctuations of the vector angular momentum in the infall due to realistic turbulence in the collapsing core
- account for dependence of gravitational torques on disk-to-total mass ratio Toomre's Q
- consider possibility that disks **fragment** when sufficiently unstable
- employ a realistic model for irradiation of the disk midplane

KMK, Matzner, & Krumholz, 2007 (submitted)

Model Components II: Heating & Cooling

$$\sigma T^4 = \left(\frac{8}{3}\tau_R + \frac{1}{4\tau_P}\right)F_v + F_{\rm irr}$$

accretion + irradiation contribute significantly to disk heating even at high \dot{M}

irradiation model accounts for optically thin & thick regimes for two cases:

Model Components II: Heating & Cooling

$$\sigma T^4 = \left(\frac{8}{3}\tau_R + \frac{1}{4\tau_P}\right)F_v + F_{\rm irr}$$

accretion + irradiation contribute significantly to disk heating even at high \dot{M}

irradiation model accounts for optically thin & thick regimes for two cases:

during core accretion -- envelope reprocessing

after core accretion -- radiating dust layer

Chiang & Goldreich, 1997

- survey the conditions of intermediate-mass and **massive** star formation
- consider fluctuations of the vector angular momentum in the infall due to realistic turbulence in the collapsing core
- account for dependence of gravitational torques on disk-to-total mass ratio Toomre's Q
- consider possibility that disks **fragment** when sufficiently unstable
- employ a realistic model for irradiation of the disk midplane

KMK, Matzner, & Krumholz, 2007 (submitted)

- survey the conditions of intermediate-mass and **massive** star formation
- consider fluctuations of the vector angular momentum in the infall due to realistic turbulence in the collapsing core
- account for dependence of gravitational torques on disk-to-total mass ratio Toomre's Q
- consider possibility that disks **fragment** when sufficiently unstable
- employ a realistic model for irradiation of the disk midplane

KMK, Matzner, & Krumholz, 2007 (submitted)

Model Components III: Outer disk braking

- survey the conditions of intermediate-mass and **massive** star formation
- consider fluctuations of the vector angular momentum in the infall due to realistic turbulence in the collapsing core
- account for dependence of gravitational torques on disk-to-total mass ratio Toomre's Q
- consider possibility that disks **fragment** when sufficiently unstable
- employ a realistic model for irradiation of the disk midplane

KMK, Matzner, & Krumholz, 2007 (submitted)

Evolution of Q and μ

Evolution of Q and μ

Evolution of Q and μ

Characteristics of a 15 M_{\odot} star

• Disk properties:

 $T_d \approx 100 \mathrm{K}$ $R_d \approx 200 \mathrm{AU}$ $\Sigma_d \approx 50 \mathrm{g/cm}^2$ $\mu \approx 0.35$

- Detectable?
 - ALMA: yes (< 2-3 Kpc)
 - EVLA: yes (< 0.5 Kpc) (Krumholz et al, 2007)

Observed disk around Ceph A HW 2: Patel et al. 2005, Torrelles et al 2007*, & Jimenez-Serra et al 2007 measure similar characteristics

*see poster

Observational Classification

with masses $> 8 M_{\odot}$ should be detectable with ALMA (d \sim few Kpc) and EVLA (d ~0.5 Kpc)

Disks with $\mu > 0.2$ around stars Type II disks should have strong spiral arms (m=1,2) which are easy to find in surveys by observing the disk morphology in the continuum

Type I

- < 10⁴ yrs
- stable (local & global)
- small disk mass

Type II

- 10⁴-10^{5.5} yrs
- core mass dependence
- stability:
 - spiral vs fragmentation
- significant disk mass
- Type III

- >10^{5.5} yrs
- higher Q
- small disk mass

Observational Classification

with masses $> 8 M_{\odot}$ should be detectable with ALMA (d \sim few Kpc) and EVLA (d ~0.5 Kpc)

Disks with $\mu > 0.2$ around stars Type II disks should have strong spiral arms (m=1,2) which are easy to find in surveys by observing the disk morphology in the continuum

Type l

- < 10⁴ yrs
- stable (local & global)
- small disk mass

Type II

- 10⁴-10^{5.5} yrs
- core mass dependence
- stability:
 - spiral vs fragmentation
- significant disk mass
- Type III

- >10^{5.5} yrs
- higher Q
- small disk mass

Conclusions

- Massive, rapidly accreting disks: Type II
 - Occur during the deeply embedded, Class 0 phase
 - Md ~ $.3M_*$ for much of accretion, with R_d ~ 200-400 AU
 - Local instability and fragmentation persists for $\sim 10^5$ years
 - Strong spiral arm structure should produce observable, non-Keplerian motion
 - Outer disk temperatures exceed 100K for stars > 10 M_{\odot}
 - Outer disk peak column densities ~50 g/cm²
- Binary formation through disk fission for cores > 30 M_{\odot}
 - Core angular momentum profile has strong influence
- Environmental variables (Σ_c, T_c) do not qualitatively change these conclusions