Latest MPIA Science Highlights

The latest research results at MPIA

List is filtered with:

reset filter
Teaser 1507206533

Astronomers discover unusual spindle-like galaxies  

October 12, 2017
Galaxies are majestic, rotating wheels of stars? Not in the case of the spindle-like galaxies studied by Athanasia Tsatsi (Max Planck Institute for Astronomy) and her colleagues. Using the CALIFA survey, the astronomers found that these slender galaxies, which rotate along their longest axis, are much more common than previously thought. The new data allowed the astronomers to create a model for how these unusual galaxies probably formed, namely out of a special kind of merger of two spiral galaxies. The results have been published in the journal Astronomy & Astrophysics. [more]
Teaser 1506496706

Bringing the building blocks of life down to Earth, from space

October 02, 2017
Astronomers from McMaster University and the Max Planck Institute for Astronomy have completed calculations that lead to a consistent scenario for the emergence of life on Earth, based on astronomical, geological, chemical and biological models. In this scenario, life forms a mere few hundred million years after Earth’s surface was cool enough for liquid water; the essential building blocks for life were formed in space during the formation of the solar system, and delivered to warm little ponds on Earth by meteorites. The new results have been published in the Proceedings of the US National Academy of Sciences. [more]
Teaser 1503584939

Heavy stellar traffic, deflected comets, and a closer look at the triggers of cosmic disaster

August 31, 2017
As stars pass close by our solar system, they can nudge comets from the distant Oort cloud into the inner regions around the Sun. Thus, stellar encounters are an important factor in determining the risk of large cosmic impacts on Earth. Now, Coryn Bailer-Jones from the Max Planck Institute for Astronomy has used data from the ESA satellite Gaia to give the first systematic estimate of the rate of such close stellar encounters. Every million years, up to two dozen stars pass within a few light-years of the Sun, making for a near-constant state of perturbation. The results have been published in the journal Astronomy & Astrophysics. [more]
Teaser 1503585047

Odd planetary system around fast-spinning star doesn't quite fit existing models of planet formation

July 06, 2017
Astronomers have discovered a rare, warm, massive Jupiter-like planet orbiting a star that is rotating extremely quickly. The discovery raises puzzling questions about planet formation – neither the planet's comparatively small mass nor its large distance from its host star are expected according to current models. The observations that led to the discovery were made using the SPHERE instrument at ESO's very large telescope. The article describing the results has been accepted for publication in the journal Astronomy & Astrophysics. [more]
Teaser 1495531188

Newly discovered fast-growing galaxies could solve cosmic riddle – and show ancient cosmic merger

May 24, 2017
Astronomers have discovered a new kind of galaxy in the early universe, less than a billion years after the Big Bang. These galaxies are forming stars more than a hundred times faster than our own Milky Way. The discovery could explain an earlier finding: a population of suprisingly massive galaxies at a time 1.5 billion years after the Big Bang, which would require such hyper-productive precursors to grow their hundreds of billions of stars. The observations also show what appears to be the earliest image of galaxies merging. The results, by a group of astronomers led by Roberto Decarli of the Max Planck Institute for Astronomy, have been published in the 25 May issue of the journal Nature. [more]
Teaser 1494935779

First radio detection of lonely planet disk shows similarities between stars and planet-like objects

May 18, 2017
First radio observations of the lonely, planet-like object OTS44 reveal a dusty protoplanetary disk that is very similar to disks around young stars. This is unexpected, given that models of star and planet formation predict that formation from a collapsing cloud, forming a central object with surrounding disk, should not be possible for such low-mass objects. Apparently, stars and planet-like objects are more similar than previously thought. The finding, by an international team led by Amelia Bayo and including several astronomers from the Max Planck Institute for Astronomy, has been published in Astrophysical Journal Letters. [more]
Teaser 1494256831

Discovery in the early universe poses black hole growth puzzle

May 11, 2017
Quasars are luminous objects with supermassive black holes at their centers, visible over vast cosmic distances. Infalling matter increases the black hole mass and is also responsible for a quasar's brightness. Now, using the W.M. Keck observatory in Hawaii, astronomers led by Christina Eilers have discovered extremely young quasars with a puzzling property: these quasars have the mass of about a billion suns, yet have been collecting matter for less than 100,000 years. Conventional wisdom says quasars of that mass should have needed to pull in matter a thousand times longer than that – a cosmic conundrum. The results have been published in the May 2 edition of the Astrophysical Journal. [more]

New astronomical survey to monitor the entire sky

May 03, 2017
A new sky survey, the Sloan digital Sky Survey V (SDSS-V) has received funding from the Alfred P. Sloan Foundation, allowing the survey to go ahead in 2020. The survey is led by Juna Kollmeier of the Carnegie Institution for Science, with project scientist Hans-Walter Rix of the Max Planck Institute for Astronomy. SDSS-V will be the first survey on Earth to take spectra of objects across the entire sky, and will do so repeatedly.  This will create an immense treasure trove of data that allows for detailed statistical studies of astronomical objects and their variability. [more]
Teaser 1492769167

Ripples in Cosmic Web Measured Using Rare Double Quasars

April 27, 2017
Astronomers believe that matter in intergalactic space is distributed in a vast network of interconnected filamentary structures known as the cosmic web. Nearly all the atoms in the Universe reside in this web, vestigial material left over from the Big Bang. A team led by researchers from the Max Planck Institute for Astronomy have made the first measurements of small-scale fluctuations in the cosmic web just 2 billion years after the Big Bang. These measurements were enabled by a novel technique using pairs of quasars to probe the cosmic web along adjacent, closely separated lines of sight. They promise to help astronomers reconstruct an early chapter of cosmic history known as the epoch of reionization. The results are being published in the April 28 edition of the journal Science. [more]
Teaser 1488968507

Atmosphere around low-mass Super-Earth detected

April 06, 2017
Astronomers have detected an atmosphere around the super-Earth GJ 1132b. This marks the first detection of an atmosphere around a low-mass Super-Earth, in terms of radius and mass the most Earth-like planet around which an atmosphere has yet been detected. Thus, this is a significant step on the path towards the detection of life on an exoplanet. The team, which includes researchers from the Max Planck Institute for Astronomy, used the 2.2 m ESO/MPG telescope in Chile to take images of the planet’s host star GJ 1132, and measuring the slight decrease in brightness as the planet and its atmosphere absorbed some of the starlight while passing directly in front of their host star. [more]
Teaser 1487230126

Radio astronomers tune in to the star formation channel

February 21, 2017
Some galaxies produce copious amounts of new stars. Others are less productive. Now, a team of astronomers led by Fatemeh Tabatabaei (Instituto de Astrofisica de Canarias) has developed a method to measure the rate at which galaxies form new stars, using radio observations. The scientists made use of a sample of 52 nearby galaxies that were observed with the Effelsberg 100-m radio telescope at different wavelengths. Star formation rates are a key property of galaxies, and changes in the average star formation rate are an important aspect of the overall evolution of our universe. [more]
Teaser 1486469047

Probing the three-dimensional structure of a protoplanetary disk

February 07, 2017
Astronomers have detected three-dimensional structures in the protoplanetary disk around the young star TW Hydrae. Their pioneering reconstruction uses both the light reflected by dust and light emitted by certain gas molecules to reconstruct the disk’s physical structure – a step forward from previous images of such disks that could not distinguish density variations from chemical or thermodynamic patterns. The pattern, a ring-shaped gap, could either indicate the presence of a planet or instabilities that could form a planet. [more]
Teaser 1475071945

Spiral arms in protoplanetary disk: They're not just for galaxies any more

September 29, 2016
Astronomers have found distinct spiral arms in the disk of gas and dust surrounding the young star Elias 2-27. While similar features have been observed on the surfaces of such disks before, this is the first time they have been identified within the disk, where planet formation takes place. Structures such as these could either indicate the presence of a newly formed planet, or else create the necessary conditions for a planet to form. As such, the results are a crucial step towards a better understanding how planetary systems like our Solar system came into being. The results have been published in the journal Science. [more]
Teaser 1474462380

Reconstructing the cosmic history of star formation: ALMA takes stock of the fuel for star formation in distant galaxies

September 22, 2016
A study by a large international team led by Fabian Walter of the Max Planck Institute for Astronomy, using the millimeter telescope ALMA, has traced the raw building blocks of star formation back in time to an era about 2 billion years after the big bang, yielding clues as to the history of star formation in our universe. The study targeted one of the best studied regions of the sky: the Hubble Ultra Deep Field (HUDF), first imaged in depth by the Hubble Space Telescope in 2003/2004. This is the first time a millimeter wave image that includes spectral information has been taken of this portion of the HUDF, sufficient to show galaxies whose light took up to 11 billion light years to reach us.  [more]
Teaser 1471848835

Planet Found in Habitable Zone Around Nearest Star

August 24, 2016
Astronomers have discovered a planet orbiting the nearest star outside our solar system, Proxima Centauri. The planet, designated Proxima Centauri b, is in the habitable zone of its star, where liquid water could exist. The discovery is the result of a patient search using the radial velocity method, which searches for tiny wobbles of a star caused by an orbiting planet. In addition to newly acquired data, the analysis uses spectra taken by MPIA astronomer Martin Kürster and colleagues between 2000 and 2007. [more]
 
loading content