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Abstract. Protostellar jets are most probably disk winds or stel-
lar winds collimated by rotating magnetospheres. The structure
of these magnetospheres follows from solutions of the Grad—
Schliiter—~Shafranov (GSS) equation for the force-balance be-
tween axisymmetric magnetic surfaces. In this paper, two—
dimensional force—free solutions of the relativistic GSS equa-
tion are numerically obtained for different field topologies of the
underlying magnetosphere. Due to the high rotational periods
observed for T Tauri stars, the light cylinder of rotating pro-
tostellar magnetospheres is within the observed jet radii. This
requires a special relativistic treatment of the GSS equation,
which is solved using the method of finite elements. In this
approach, boundary conditions along the Alfvén surface are au-
tomatically satisfied. The code enables the solution of the GSS
equation in the entire domain between the stellar surface and
the asymptotic jet region.

The magnetosphere which carries the plasma flow is as-
sumed to be generated by the central star. For stellar field
strengths of the order of a kilo—Gauss, a gap between the stellar
surface and the inner edge of the accretion disk opens up. Two
different magnetic field topologies are considered depending
on the behaviour of the magnetic fields near the inner accretion
disk. In the case of accretion disks with high resistivity, a re-
versed field topology is built up along the accretion disk, and the
current exchange between star and disk mainly flows in the in-
ner magnetosphere. This is consistent with high mass—accretion
along the dipolar stellar fields and small mass loss rates through
the wind.

In the case of accretion disks with low resistivity, a screw
pinch topology results, since the accretion disk screens the mag-
netosphere of the star. Smooth field topologies can be calculated
in this case which are collimated into asymptotic cylinders with
radii of a few light cylinder radii. In general, such solutions are
found to have kinks along the Alfvén surface. For a proper ad-
justment of the underlying current distribution and the shape
of the jet boundary, one can find magnetic field configurations
without kinks at the Alfvén surface. In this case, plasma flows
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smoothly through the Alfvén surface. The distribution of the
wind plasma is calculated from particular solutions of the wind
equation.

The paper mainly concentrates on protostellar jets since the
stellar jet phenomenon is predominantly observed for young
stellar objects. The results, however, are also applicable for other
astronomical jets emerging from star—disk systems. In particu-
lar, the problem of magnetic fields with kinks at the light cylin-
der is well known in the context of pulsar magnetospheres. Our
results provide a solution to this longstanding problem.

Key words: magnetohydrodynamics — ISM: jets and outflows
— stars: pre-main-sequence — stars: magnetic field — stars: mass
loss — pulsars: general

1. Introduction to jet formation

Observations show that young stellar objects may consist of
three main components: A protostellar object (a T Tauri star
(TTS) or an IR protostar), an accretion disk and, occasionally,
bipolar outflows in the form of highly collimated high veloc-
ity jets or weakly collimated low velocity molecular flows and
winds (Appenzeller & Mundt 1989; Bertout 1989; Camenzind
1990, hereafter CA; Montmerle et al. 1993). In addition, there is
strong evidence that magnetic fields play an important or even
the dominant role in the evolution and interaction of these com-
ponents.

VLA and VLBI radio observations suggest that these stars
have a dipolar kG magnetic field (André et al. 1988, 1991). The
magnetic structure of the stellar surface is also plausible from
measurements of rotational periods of TTSs: Cold and hot spots
or flares on the surface lead to photometric variations (Bouvier
et al. 1993). This method, however, gives only upper limits for
the magnetic field strength (< 1 kG).

The orientation of the bipolar outflows in star forming re-
gions is found to be mainly parallel to the ambient magnetic
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field direction (Appenzeller & Mundt 1989; Reipurth 1989). As
suggested by Mundt et al. (1990), a magnetic current carrying
jet would be able to explain the observed jet bending due to
the cloud field in the HL Tauri region. Bow shock observations
give estimates of the pre—shock jets magnetic field strength of
the order of 10 uG (Morse et al. 1992, 1993).

The relatively low rotational periods of TTSs can be ex-
plained by a magnetic link between the magnetic star, the ac-
cretion disk and the escaping wind. The field removes angular
momentum from the star and transfers it to the disk and the
jet. Thus, the star can be decelerated efficiehtly on time scales
comparable to its age (CA, Konigl 1991). Further, there is an ob-
servational correlation between the detection of accretion disks
and bipolar outflows: Contrary to classical TTSs, the subclass of
naked TTSs shows neither the signature for the existence of an
accretion disk nor hints to bipolar outflows or jets. A physical
model therefore has to explain simultaneously both accretion
and wind phenomena. Whether classical TTSs and weak line
TTSs are different stages of the same stellar evolutionary track
or follow different tracks is still an open question.

The first theoretical treatment of the scenario of magne-
tized disk winds was given by fundamental papers of Blandford
& Payne (1982) and Pudritz & Norman (1983). However, for
solving the GSS equation they assumed self—similarity (BP) or
another special scaling (PN) which both imply e.g. an infinite jet
radius. Sakurai investigated the GSS equation for a stellar wind
(1985) as well as for a disk wind topology (1987) and showed
that field lines of an initial monopole type geometry will bend
towards the rotational axis.

Camenzind (1986, 1987) developed a fully relativistic de-
scription of hydromagnetic flows in magnetospheres, essen-
tially applicable to any field topology. These results, originally
derived for active galactic nuclei, were extended to a self-
consistent model of protostellar systems (CA, Camenzind et
al. 1994, hereafter CFP), considering the accretion process onto
the star as well as the ejection of plasma in magnetized winds
or jets.

Heyvaerts & Norman (1989) for the Newtonian case and
Chiueh et al. (1991) for relativistic winds showed that magne-
tized winds will collimate along the symmetry axis. Appl &
Camenzind (1993a,b) presented an analytic model of a station-
ary relativistic magnetized jet in the asymptotic regime. This is
the first solution for the relativistic GSS equation with a non-
linear current distribution in the asymptotic domain. The 2D
extension of this solution has not been known.

While the protostellar jet phenomenon is relatively common
and some people consider it as a regular phase during the stel-
lar evolution, jets from evolved stars like neutron stars or white
dwarfs are seldom. Besides the well known famous SS 433 jet
originating from a neutron star (D’Odorico et al. 1991) in a
binary system and accelerating the mass outflow up to relativis-
tic velocities of about 50000kms™', only a few examples are
indicated. This is maybe due to a misalignment between the
rotational axes of the star—disk system and the stellar magneto-
sphere.

C. Fendt et al.: On the collimation of stellar magnetospheres to jets. I

Our goal is the investigation of the jet phenomenon and
therefore we will concentrate in this paper mostly on protostellar
jets since the obervational basis is quite larger.

We will present different numerical solutions of the 2D
force—balance equation which show the collimation process of
a dipolar stellar magnetic field to an asymptotic cylindrical jet
with finite radius. In our basic assumptions, we follow the model
of CFP.

Nevertheless, our results are more general and allow further
application to pulsar magnetospheres or other star—disk systems.
Similar star—disk scenarios are also applied for relativistic pulsar
magnetospheres (e.g. Michel 1991). In particular, the scaling of
the stellar radius and the LC for pulsar magnetospheres is of the
same order as for protostellar systems (see Table 1).

One may question the special relativistic treatment of the
protostellar jet magnetohydrodynamics remembering that the
observed jet velocities of about 400 kms™! (Mundt et al. 1987,
1990; Reipurth 1989) are clearly non—relativistic. We argue that
the application of relativity could never be wrong since it is the
more general theory and it also allows for a smooth transition
towards the Newtonian limes. However, one has to make use of
the right parameters.

In fact, there a two major aspects to involve relativity (see
also Sect. 3). The first one is coming from the model assumption
of a global stellar magnetosphere and the observed rotational
periods of the order of days (Bouvier et al. 1990, 1993). Then,
the derived light cylinder (LC, where the rotational velocity of
the rigidly rotating stellar magnetic field lines equals the speed
of light) is of the order of the observed jet radii of about 10'> cm
(Mundt et al. 1987, 1990). The rapid rotation (compared e.g. to
the sun) generates electric fields which cannot be neglected. The
LC, on the other hand, has no direct influence either on the GSS
Eq. (8) or on the dynamics of the moving plasma since the “de-
coupling” of the plasma from the field lines due to inertial forces
already happens at the Alfvén surface (see Sect. 2). Because we
finally assume a force—free ansatz for the GSS equation, where
the Alfvén surface becomes identical to the LC, we were able.to
use the regularity condition (Sect. 2.4) as a boundary condition
at the LC.

The second argument supporting a relativistic treatment is
the fact that the plasma loading rate from the disk or the stel-
lar surface into the magnetosphere is not uniform for different
flux surfaces. The value for a single flux surface may greatly
differ from the observed mass loss rate as a mean across the jet.
Low mass loss rates (equivalent to a high plasma magnetization)
imply high plasma velocities which may be in the relativistic
regime. The numerical investigation of the dynamics of the mass
flow is the subject of a forthcoming paper (Fendt & Camenzind
1994).

The structure of the paper is as follows. In Sect.2 we re-
call some basic equations of the theory of relativistic magneto-
spheres and discuss important properties of the GSS equation.
In Sect. 3 we present the model on which our numerical calcula-
tions are based. In Sect. 4 we introduce the method of finite ele-
ments for the GSS equation. Some numerical details are pointed
out in Appendix A. We present our numerical results in Sect. 5
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and discuss solutions with different topologies and jet parame-
ters. A result concerning not only protostellar jets but generally
the theory of global relativistic magnetospheres is discussed in
Appendix B.

2. MHD description of magnetospheres

The basic equations describing a magnetohydrodynamic
(MHD) configuration under the assumptions of axisymmetry,
stationarity and ideal MHD are well known (e.g. Chandrasekhar
1956). Thus, we only briefly review the basic points following
the derivation given by Camenzind (1987, 1990). Throughout
the paper we use cylindrical coordinates (R, ¢, Z), respectively
(z, ¢, z) in units of light cylinder radii Ry..

The magnetospheric structure follows from the force—
balance perpendicular to the flux surface. The projection of the
equation of motion perpendicular the field lines provides the
GSS equation. The projection parallel to the field, i.e. the wind
equation, gives the properties of the plasma flow: energy, ve-
locity, density and Mach-number. Both equations have to be
solved simultaneously.

Michel’s magnetization parameter oy measures the strength
of the magnetic flux in terms of the inertial mass flow in the wind
(Michel 1973b). For low oy inertial effects may influence the
structure of the magnetosphere. Then the GSS equation and the
wind equation have to be solved simultaneously to get a self—
consistent solution. High magnetic flux reduces the GSS equa-
tion to the force—free pulsar equation (Scharleman & Wagoner
1973), where the Alfvén surface coincides with the LC.

MHD conservation laws for the energy F, the angular mo-
mentum L, the mass flow per flux tube 17 and the angular velocity
of the field lines QF can be derived from the equation of motion.
Therefore, these quantities are only functions of the flux surface
¥ alone. In the force—free limit this holds also for the integral
poloidal current I(J).

Since in our model all the field lines are anchored in a small
central region around the protostar, we assume a constant an-
gular velocity of the field lines equal to the angular velocity of
the protostar
QF (@) = QF = const. = Q, 1
For simplicity, we further assume that gas pressure is negligible
in the magnetosphere, i.e. we are dealing with a cold plasma
flow.

2.1. The cross—field force-balance

Introducing the magnetic flux function,

q::-zl—W/Bp-dA, RBp =V Aey, ©)

Ampére’s law leads to the Grad—Schliiter—Shafranov equation

47

1 |
RV {ﬁvqf} = s 3)
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The spatial part of the relativistic equation of motion,

1
(U-V)(MU)=PeE+ZJ'/\B “

with the spatial part of the 4—velocity u, normalized to the speed
of light, and the specific enthalpy p, is then projected perpen-
dicular to the magnetic flux surface. This provides the toroidal
current,

1
Ejd’D = ’)’nR(a\pE—Qa\pL)

+

R
B3 + M*B}) 9y (Inn) + R PO ®

el

where D = 1 — M? — z2. pgy denotes the Goldreich—Julian
charge density,

_ VU . V(RXQF)
por = 4w ReRy,

which is a consequence of the electric field, ', = (R/RL) Bp.
This is only negligible for R << Ry .
The relativistic Alfvén—Mach number is given by

4run?
M2=——;‘i, )

with the proper particle density n. D can be absorbed in the
divergence term on the 1.h.s. and, normalizing with

R,Z & Ryx,RL 2z,
Vo UV,
RBy & (Yma/RUT,

EL & uE,ulL,

©

one finally ends up with the modified GSS equation

ZV - (% W) = —é% (OyE — QL)
—i (T% + M?|V¥[?) By (Ino) . (8)
o denotes the inverse coupling to the inertial current,
\I,%nax =5 10—7M_1—10RI:215\I/rznax,25 ’ )

7= 2]\.41'3[03% Jet,
and is equal to Michel’s magnetization parameter o.

The GSS—equation has some important properties:

(1) The source term on ther.h.s. of the GSS equation is highly
nonlinear.

(ii) Within the fast magnetosonic surface the GSS equation
is elliptic but changes its character to a hyperbolic type outside.

(iii) Further, we have a free boundary problem since we do
not know a priori the shape and the location of the jet radius.

(iv) At the Alfvén surface, D = 0, the GSS equation has
a critical surface which originally is introduced by the toroidal
current js. The location of the Alfvén surface has to be cal-
culated from the wind equation. The requirement of regularity
leads to a condition on the magnetic field component parallel
to the surface D = 0. This corresponds to an inhomogeneous
Neumann condition at boundaries on the Alfvén surface (see
below).
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2.2. The force—free limit

The force—free limit is characterized by a vanishing inertia, o —
00. In this limit, the GSS equation, Eq. (3), reduces to the pulsar
equation originally derived by Scharlemann & Wagoner (1973),

1

1 4
—joD=-— = I0gl 10
JJeD = = [0l + pa (10

R
Ry’
with D = 1 — 2. Now the Alfvén radius is identical to the LC,
xa = 1. The poloidal current I(¥) = (¢/ 2))RB¢ flows within
the flux surfaces,
I(\IJ):/jP-dA. an
It becomes a free function and governs now the structure of the
magnetosphere. With the normalization

I & I I, (12)
Eq. (3) can be written dimensionless,
D 1
zV - {_EV\IJ} =—ag -1 8\;[11 . (13)
x z
g1 is the coupling constant for the poloidal current,
412, R? Imax 252 -2
g1= Czn\‘;; =4( 1015A) R{ 15V rax 25 - (14)

max

The coupling constant also measures the contribution of the
poloidal currents to the toroidal current density in terms of the
Goldreich—Julian current density. This can be seen from Eq. (10)
by comparing the (normalized) terms of the r.h.s.,

JoI I0gI

LeL g 15
jsar VU Va2 1
The normalized quantities 7" and I are related via
T? =g I, (16)

2.3. Plasma motion along the magnetic surfaces

The motion of the plasma along the flux surface is described by
the wind equation. In the cold wind limit this equation simplifies
to an implicit polynomial in the poloidal velocity up = yvp/c

-of degree of 4

4
> A B, L,®,0)uf =0,
m=0

an

(Camenzind 1986, 1987), where the coefficients A,, depend
explicitly on the magnetization o, the flux tube function ® =
BpR? and on the constants of motion, '

EW) = y-0oT,
1
L(Y) = OF (zup — o T) ,

(18)
19)
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with the same normalization as in Eq. (8).

At each radius z, the wind Eq. (17), as a polynomial of
degree of 4, may have four different solutions up x(z), k = 1...4.
We were looking for the branch of a physical wind solution
up(z), which starts at zero velocity at the injection radius and
passes, monotonically accelerating, the Alfvén point and the
fast magnetosonic point. This solution determines the energy of
the plasma flow.

2.4. The role of the Alfvén surface
Evaluating Eqgs. (8) or (13) at the Alfvén surface, = = x5 gives

ov zA vD

o= wDl7 " TvD (20)
where J denotes the r.h.s. of Eqgs.(8) or (13) and n the unit
vector normal to the Alfvén surface.

This regularity condition has to be satisfied by all field lines
passing this surface. Thus, Eq. (20) provides a boundary condi-
tion for integration domains with boundaries on the Alfvén sur-
face. Therefore, it is possible to solve the GSS independently on
domains within and outside x4, as already mentioned by other
authors (Scharlemann & Wagoner 1973; e.g. Michel 1991).

It is important to note that the regularity condition also gives
a condition on the shape of the jet boundary at z,4. Since the jet
boundary has to follow the outermost flux surface (by defini-
tion), its slope isrestricted by the regularity of this surface ¥ = 1.
However, the slope of the field lines is not fully determined, be-
cause the regularity requirement yields only a condition on the
magnetic field component parallel to the Alfvén surface, while
the slope of the poloidal field is defined by both components of
Bp.

3. The star-disk—jet system

Our astrophysical model for protostellar magnetospheres con-
sists of three main components (see Fig. 1 and CA, CFP):

3.1. The stellar object

The central protostellar object carries a dipolar magnetosphere
of about 1000 G. This field strength can be derived from obser-
vations of X-ray flares (Montmerle et al. 1993), optical peri-
odicity (Bouvier et al. 1990, 1993) and radio data (André et al.
1988, 1991) as well as from theoretical arguments treating the
accretion process (CA, Konigl 1991) or a fully convective pro-
tostellar dynamo process (CFP). Stellar rotational velocities are
typical of the order of 20km s™! at a stellar radius R, ~ 3Rp
(Bouvier 1990), the derived rotational periods are in agreement
with other results of direct detections of the order of days (Bou-
vier et al. 1993). Then, the LC is located at R;, ~ 10'> cm or
Ry, ~ 5000R,.

Like fast rotating pulsar magnetospheres the protostellar
magnetosphere cannot be in vacuum: Due to the fast rotation the
electric field parallel to the flux surface E) exceeds the gravi-
tational force by a large factor and will therefore create a space
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charge pgy until the magnetic field lines become equipotentials
again (Michel 1991). For a typical TTS this factor can be es-
timated to 10! (for protons), demonstrating the necessity of a
relativistic treatment of protostellar magnetospheres. Numerical
calculations of Neukirch (1993) show that plasma will populate
the magnetosphere until the charge density approaches pgj in
the plasma filled region where E | is then screened out.

Nevertheless, the density of a stellar wind of typical mass
loss rates observed for TTS is much larger than the Goldreich—
Julian charge density. This allows for a magnetohydrodynamic
description of the problem.

One may wonder about how a stellar magnetic field is able
to continuously influence the plasma flow far out to thousands
of stellar radii. This would question our very basic model as-
sumption of the global jet magnetosphere as a collimated stel-
lar magnetic field. Besides the fact that most of the disk wind
models considered in the literature also assume the closest cir-
cumstellar environment as the jet origin as well (e.g. Pelletier
& Pudritz 1992), we refer to the solar magnetic field which is
known to extend to the distance of about 70 AU, a value near
the observed protostellar jet radii.

Observations show that the gas outflow consists of hot and
ionized components even at distances of several hundreds of AU
from the stellar object. Temperatures of about 10* K and typical
electron densities of about 10* cm~2 are derived in the stellar
wind (e.g. Edwards et al. 1987) as well as in the asymptotic jet
(e.g. Mundt et al. 1990). The ionized gas couples to the mag-
netic field. However, the cooling of the expanding flow is strong
(Hartmann & Raymond 1989) and the physical mechanism re-
heating the gas far from the star is not yet clearly known. Safier
(1993) suggested ambipolar diffusion as a robust mechanism
heating the gas and calculated ionization fractions of ~ 0.1 — 1
at distances of ~ 100 — 1000 AU from the star. Although his
result is based on a model assumption different to ours (i.e. a
self-similar disk wind) it strengthens our MHD assumption of
a ionized plasma flow coupled to a far reaching magnetosphere.
For our results this assumption has to be finally reconfirmed by
the calculation of the parameters of the plasma dynamics and
the energy dissipation of the plasma flow.

3.2. The accretion disk

The interaction of the accretion disk with the stellar magnetic
field produces a gap (Gosh & Lamb 1978, CA). The inner radius
of the disk R;, is determined by pressure equilibrium between
the stellar magnetic field and the accretion flow of the disk. An
accretion rate M, of the order of 10“7M@yr‘I (Beckwith et
al. 1990) provides R;, ~ 3R, for stellar fields B, ~ kG.

The maximum poloidal current driven through the disk can
be estimated to I ~ 105 A (CA). Whether such a strong
current will flow up into the asymptotic jet or will be concen-
trated mainly into the innermost part of the magnetosphere is
not known a priori. Observations indicate that the net jet current
may be smaller by a factor of ~ 1000 (see below).

For a disk with high resistivity, the protostellar magnetic
field will penetrate the disk. This will lead to a reversed field

795

pinch in asymptotic regime (model ARP). A concentration of
field lines at the innermost part of the disk is required to satisfy
our assumption of a constant angular velocity of field lines.

For a disk with low resistivity, the stellar dipole is closed
only in the gap between star and disk. All field lines reaching
the asymptotic regime originate from the stellar surface leading
to an asymptotic monotonous flux distribution (model AMP).

The injection mechanism for jet plasma is quite different in
the two scenarios:

(1) In a field topology of model ARP, we are dealing with
a classical disk wind: Plasma will be flung out along field lines
emanating from the disk beyond the corotational radius. In this
scenario, the plasma flow is mainly concentrated in the outer
flux surfaces of the jet. In the asymptotic region, the jet will be
hollow.

(2) In atopology of model AMP, the mass injection happens
similar to a stellar wind. Plasma will flow in all flux surfaces
reaching from the stellar surface to the asymptotic regime. In
addition, disk material may enter the wind regime by Rayleigh—
Taylor or Kelvin—Helmholtz instabilities.

In comparison, the first mechanism provides a higher mass
flow, while the other will accelerate more efficiently due to the
fast rotation of the foot points of the flux tubes.

Both topological configurations allow for mass infall along
the dipolar loops which close onto the stellar surface. Numerical
calculations treating this accretion scenario are presented by
Paatz & Camenzind (1994).

3.3. The asymptotic jet

Heyvaerts & Norman (1989) have shown that jets carrying a
poloidal current collimate asymptotically to a cylindrical ge-
ometry. Indeed, highly collimated outflows with velocities of
the order of 400 kms™" are observed.

The observed protostellar jet radii are of the order of 10! cm
(Mundt et al. 1987, 1990) and are therefore of the order of the
LC. As already declared, this observational constraint motivates
a relativistic treatment despite the small velocities of the New-
tonian stellar system.

The asymptotic jet further is determined by the distribu-
tion of the integral poloidal current as well as the strength of
the current. In our calculations we use a nonlinear distribution
derived in the asymptotic jet equilibrium (Appl & Camenzind
1993b). From energy equilibrium arguments in the jet, Mundt
et al. (1990) derived a toroidal magnetic field of 60 G, which
implies a poloidal current Iy =~ 10'2 A. As mentioned above,
this value is smaller by a factor of 1000 than currents derived in
the accretion disk' It should be noted that there exist examples
where, similarly, the mass flow in the jet, derived from obser-
vations to Mjey ~ 107'°Mgyr~' (Mundt et al. 1987) and the
accretion rate in the disk differ by nearly the same factor. In
general, the mass loss rates into the jets are discussed to may
be higher more than two. orders of magnitude (e.g. Konigl &
Ruden 1993). Then, the plasma magnetization would change
by the same order of magnitude. But this does not influence the
results presented in this paper because of the force—free assump-
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/
Model ARP

»

Fig. 1. Model of the innermost region of a protostellar jet source. The central protostellar object, a classical TTS or an embedded IR source, is
surrounded by a stellar dipolar magnetic field and an accretion disk. The asymptotical topology of the field (here indicated as poloidal field lines
or axisymmetric flux surfaces) is determined by the assumption of the resistivity in the disk (see text). The sketch shows on the L.h.s. the AMP
topology and on the r.h.s. the ARP topology, respectively. Arrows indicate the direction of the mass flow (filled bubbles). Mass infall along the
dipolar field lines leads to an accretion ring on the stellar surface at high latitudes. Picture taken from Fendt (1994)

Table 1. Comparison of characteristic parameters of stellar magnetospheres and jets. Rotational periods P and stellar radii R. of TTS taken
from Bouvier et al. (1993), jet radii Rj from Mundt et al. (1987, 1990)

R, P oF Ry Riju
in Rg; ins™! incm in AU in R, incm in R, in R
TTS <3 190 7.3107° | 4.110" 28 ~2000 | ~1-1010" ~5-5010° ~2-10
590 1.5107° | 2.110° 138~ 15000
DG Tau 2.1 693 1.15107° | 2.610° 174 17800 4210 29000 1.6
Pulsars | ~ 107% | 130 2r | 4810° 32107%  ~ 4800
Sun 1.0 2594 29107% | 1.110% 700 1.510°
tion for the magnetosphere. It will, however, strongly affect the  while in model AMP

properties of the wind flow in the magnetosphere and will be
considered in a forthcoming paper where we investigate the dy-
namics of the plasma as a function of the mass loss rate (Fendt
& Camenzind 1994).

3.4. Boundary conditions

The computations have to satisfy the following boundary con-
ditions.

(1) Along the protostellar surface the flux function is given
by a dipolar magnetic field (Dirichlet boundary).

(2) ¥(0, z) = 0 on the rotational axis.

(3) The gap between the stellar surface and the inner edge of
the disk is represented by a homogeneous Neumann boundary
condition 0, ¥ = 0.

(4) ¥ satisfies a Dirichlet condition along the disk surface.
In model ARP the stellar magnetic field will enter the disk with

Zin

W @, 1)) = Ve (22) " 2 4, @1

W gisk (2, h(z)) = const. = Wy (Tin, 0). (22)

Given by the high power in Eq. (21), the foot points of the flux
surfaces are concentrated to the innermost region. This allows
for the assumption of a rigid rotation of the magnetosphere.
For radii of the order of several x;, the curve (z, h(x)) denotes
the surface of the disk, while for x > x, it just describes
the jet boundary and we fix ¥(z, h(x)) similar as in the disk
region. The function h(x) has to be well adjusted to the regularity
requirement (s. Appendix B).

(5) Atthe upper boundary (z, z,:) We assume that the jet has
been collimated into a cylindrical shape. Thus, we use either ho-
mogeneous Neumann conditions or the analytic solution of the
asymptotic jet equilibrium as a Dirichlet condition. When the
outer and inner domain are calculated separately, then Dirich-
let conditions are required at the upper boundary. Otherwise it
would not be possible to fix the flux in this domain.

(6) For integration domains with boundaries on the Alfvén
surface no boundary condition has to be given there. In our fi-
nite element approach the regularity condition is automatically
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satisfied. Like the homogeneous Neumann condition the regu-
larity condition is a natural boundary condition on D = 0 in the
sense that the surface integral (s. Eq. (29)) does not contribute.
The accuracy of this surprising result is assured by different
numerical tests.

3.5. The current distribution

For the integral poloidal current in model AMP we use the
asymptotic analytical solution for relativistic pinches given by
Appl & Camenzind (1993b),

_ —bU
I(0) = 11# .

— @3

The strength of the current, g, and the shape of the profile (b < 1
diffuse pinch, b >> 1 sharp pinch ) control the magnetic structure
and the kinematics of the jet. They determine in particular the
asymptotic jet radius and velocities. Here we choose g; and b
such that it yield a jet radius of a few LC radii.

The jet possesses a core—envelope structure (Appl & Ca-
menzind 1993b). In the asymptotic profiles of ¥(x), I(z) the
so called core radius a plays the role of a typical length scale.
For z << a magnetic flux and poloidal current increase with
radius. For £ >> a the poloidal current approach a constant
value, corresponding to a vanishing current density. Thus, the
current flow is concentrated within the core radius. As shown
by Appl & Camenzind (1993b), the same holds for the Poynting
flux. High g; ~ 10* will lead to core radii a of several stellar
radii. In this case the jet is a sharp pinch, while for a weaker
coupling the core radius becomes of the order of the jet radius
and a diffuse pinch results.

In the case of model ARP I(¥) is required to have a maxi-
mum, since the topological transition between the dipolar type
magnetosphere to a cylindrical jet provides a singular sheet and
a critical flux surface ¥, with jp(¥,) = 0. We therefore use

2
I(¥) = ¢? (;) e 72/ Wer, (24)

cr

4. Numerical techniques
4.1. Finite element solver

The GSS equation is solved by means of the method of finite ele-
ments (Camenzind 1987). For this purpose we multiply Eq. (13)
by atest function N (Galerkin ansatz) and integrate over the 2D
plasma domain G applying Green’s identity. We end up with
the weak form of the GSS equation,

2VN-VQdeZ:/JNdeZ+/2Na—\deS, (25)
R R on
G

G oG

where n now denotes the unit vector perpendicular to the bound-
ary 0G.

The plasma domain G is discretized in a set of isoparametric
curvilinear 8-node elements of the serendipity class (Schwarz
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1984). The discretization has to be fine enough to resolve the
star—gap—disk system. With a 64 x 64 element grid, we were able
to scale Ry, to 100 R, and Rj.; < 1000 R,. In Fig. 8 (Appendix
A) we show an example of a grid used in our computations.
Within each element the flux function ¥ is expanded as

WR,Z)= Y WO NG ). 26)

\Ilge) denote the magnetic flux at the nodal point ¢ of the element
(e) and (¢, n) are rectilinear coordinates on the normalized ele-
ment. The shape function N; is unity at each node ¢ and varies
quadratically with ¢ or n on the edge of the element. Other
physical quantities as R, Z, j, can be expanded in the same
way. Since the Lh.s. of Eq. (13) changes sign on the Alfvén sur-
face x4, one coordinate line of the numerical grid has to follow
the surface D = 0 in order to allow a coordinate transformation
from the physical curvilinear element grid (z, z) to the normal-
ized element the (¢, n).

Following the Galerkin scheme we select the shape func-
tions NV; as test function and finally obtain a system of nonlinear
equations for ¥ at all nodal points,

A(D) ¥ = b(¥D), 27)

with the integrals on each grid element

A9 = [ 2 (a.N, 0.N, +0,N, 0.N,) ded 28
ij—G;(mixj"'zizj)wza (28)

and

© _ © D

b, = N; J® dxdz + — N; 0, ¥ ds. 29)

G. aD T

Each component of Eq.(27) corresponds to the force equilib-
rium between neighbouring nodal points of each element. In-
version of matrix Eq. (27) yields the solution ¥ on the nodal
points. The expansion (26) provides the solution in any point
(z, 2).

The gradient of ¥ follows from the derivation of Eq. (26)

8

e =3 WOVN ). (30)
Since we are using quadratic elements, the gradients will not be
necessarily continuous at the element boundary. This is impor-
tant for solving the wind equation, where the flux tube function
® = 1 |VT| is used. For that purpose one has to smooth the flux
tube function such that the gradient becomes continuous.

The finite element solver allows for a calculation on the
entire jet domain as well as for a separate computation inside
and outside the Alfvén surface, respectively. The calculation
on the entire domain requires only an inner Dirichlet boundary
condition on ¥, while in the case of a separate calculation we
need an additional Dirichlet condition for the outside domain.
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4.2. Numerical tests

We found several possibilities to test the accuracy of our numer-
ical technique in the force—free limit.

At first, appropriate boundary conditions provide a solution
to the classical pulsar equation (s. Fig. 9a, Appendix A). Com-
parison with the exact result from Michel (1973b), derived with
a totally different method shows practically no deviation in the
field line configuration. The value of the critical flux surface as
well as the cusp angle coincide perfectly. Note that we have not
used a boundary condition at the LC: The homogeneous Neu-
mann condition as a natural boundary condition is automatically
satisfied.

In asecond test, we transformed the exact monopole solution
derived by Michel (1973a) to a monopole type distribution more
comparable to the model topology AMP,

I =1-1%,

U(z,z) =1 (€2))

- (z2 + 22)1/2’

and, using this analytical result as boundary condition, we found
exactly the same distribution over the whole regime (s. Fig. 9b,
Appendix A). The solver is absolutely stable in the regime
around the LC where the calculated distribution of ¥ as well
as VW is continuous and show no kinks. In this example, the
calculation was performed on the entire integration domain. A
composition of separate solutions for the regime within and out-
side the LC gives the same result. Again, the regularity condition
was automatically satisfied without any boundary condition at
the LC.

In a third test, we compared the numerical calculation with
the analytic 1D asymptotic solution of Appl & Camenzind
(1993b). We solved the GSS equation in a rectangular domain
along the asymtotic jet using homogeneuous Neumann condi-
tions at the upper and lower boundary. Then, the 2D solution
coincides with the 1D analytical distribution. This behavior can
also be seen in the asymptotic regime of the astrophysical so-
lutions, where the solver perfectly finds the analytic result even
when Neumann boundary conditions instead of Dirichlet are
prescribed.

5. Results and discussion

We now present solutions for the wind and the magnetosphere.
In a first approximation the magnetosphere, i.e. the GSS equa-
tion has been traced in the force—free limit. As an initial appli-
cation, the wind equation is solved along a certain force—free
flux surface. That inertial forces do not strongly influence the
structure of the magnetosphere could be derived from results of
Sakurai (1985, 1987) which show only a weak collimation of
a monopolar magnetic field by inertial forces. The force—free
limit holds for a small plasma loading. Though our calculations
are not entirely self—consistent, these are the first calculations
of a collimated jet of finite radius from a dipolar stellar magne-
tosphere.

As already mentioned in Sect. 2.2, the Alfvén surface of the
force—free magnetosphere is identical with the LC. The Alfvén
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surface of the plasma flow depends on the magnetization of
the plasma as well as on the structure of the underlaying mag-
netosphere and would be located somewhere within the LC.
In order to calculate this surface from the solution of the wind
equation, areasonable first guess about the structure of the mag-
netosphere is needed. The only way to treat the problem, is to
combine the results of the mGSS equation and the wind equa-
tion in an iterative way until our final goal, a self—consistent
solution of the non force—free mGSS equation, is obtained. The
collimated force—free jet magnetosphere presented in this paper
provides an excellent initial solution for the iteration process
mentioned above. In a forthcoming paper (Fendt & Camenzind
1994) we will investigate the dynamics of the plasma flow in
the collimated magnetosphere presented here. This will include
the calculaton of the critical surfaces as well as the derivation
of some kinematic properties of the asymptotic jet.

A fundamental problem for the calculation of relativistic
force—free magnetospheres is introduced by the singularity of
the GSS equation. As known from the treatment of pulsar mag-
netospheres, global solutions which extend beyond the LC, are
found to show kinks at the LC (Ingraham 1973; Pelizzari 1974;
Sulkanen & Lovelace 1990; Michel 1991). Obviously, it is not
possible to solve the wind equation along such a kinky flux
surface. Thus, it became a major prospect of this work to find
global solutions of the GSS equation which are well behaved at
the LC.

Indeed, in the case of model topology AMP, we found so-
lutions without kinks at the LC. The procedure and a possible
physical explanation of this finding is described in Appendix
B. It is important to note that in our solutions the regularity at
the LC determines the shape and the location of the jet radius
Rjet(Z )

5.1. The central domain

Figure 2 shows subsets of the innermost part around the stellar
object of solutions for both model topologies. As introduced in
Sect. 3.2, the disk bondary condition determines the topology
of the entire magnetosphere.

Despite the different injection mechanisms for the wind
plasma, the flux tubes bridging the inner edge of the accre-
tion disk with the stellar surface, are quite similar. We therefore
expect no significant difference in the accretion process. How-
ever, mass inflow in model ARP seems to reach a higher stellar
latidude implying a smaller extent of the polar accretion ring”.

One may expect that the force—free assumption may break
down at first in this regime due to the high accretion mass flow
Myee =~ 100]\@1 and that a self—consistent calculation of the
accretion may deform the dipolar structure quite strongly. How-
ever, for the accretion flow along a dipolar magnetosphere of
pulsars (Lamb 1989) or protostars (Paatz & Camenzind 1994) it
is known, that it remains sub—Alfvénic. Thus, the accretion pro-
cess would stay magnetically dominated and the configuration
in the innermost part of our solution would be reasonable.
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Fig. 3a and b. Magnetic flux distribution ¥(z, z) for model toplogy AMP with different jet radii. The jet boundaries are adjusted until the kinks
at the LC disappear. Parameters: a b = 1.0, core radius a = 2.29, zje, =3.0, g1 = 1.9; b b = 1.5, a = 1.07, zje, = 2.0, g1 = 2.0. Contour levels:
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5.2. Model topology AMP

The results for the model topology AMP benefit from the knowl-
edge of the solution in the asymptotic regime because we were
able to fix the jet radius for large 2. Further, with the use of the
asymptotic flux distribution it is possible to solve the GSS equa-
tion outside the LC independently and investigate the matching
problem (s. Appendix B).

The fundamental parameters of solutions of this model
topology are given with

— the asymptotic jet radius Tje
— and the parameter b of the current distribution.

These parameters determine the coupling gi, respectively the
strength of the poloidal current. While the asymptotic solution
is principally defined for a wide range of b, zje, g, we find only
solutions to a quite limited set of parameters. This may result
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from restricted numerical resolution and the choice of the start-
ing configuration for the iteration process. For asymptotic jet
radii of several LC we are restricted to 1 < b < 5. Then g; is of
order of unity. To get solutions with higher coupling one has to
use the low b solution as starting configuration and therefore, a
further iteration process in the parameter b is necessary. This is
in general very time consuming due to the exponential charac-
ter of the current distribution. Additionally, it does not exactly
conserve the analytic equilibrium solution ¥(z), although the
iteration process in each b—step converges.

Figure 3 shows solutions with asymptotic radii zjex =
3.0,2.0 and b = 1.0,1.5. The 2D structure of both solutions
is quite similar. The conical distribution of the flux surfaces
asymptotically changes to a cylindrical geometry. The collima-
tion process happens fast within a distance of ~ 0.3 x;., along
the jet axis. This is consistent with observations showing that
many protostellar jets optically appear already collimated.

The results of Sakurai (1985, 1987) show that even for so-
lutions which take into account the plasma inertia, a fast self—
collimated magnetic field structure could hardly be obtained.
We therefore conclude that the plasma inertia does not strongly
influence the structure of the magnetosphere and the solutions
presented in this paper do well describe the magnetic field in
a protostellar jet. We believe that fast collimated jet solutions
only could be obtained with a fixed outer jet boundary.

The fixed outer jet boundary may interpreted as given by
a pressure equilibrium between the jet and the surrounding in-
terstellar medium. In this sense the fast collimation is due to
the pressure of the molecular cloud. Therefore, protostellar jets
seem not to be self—ollimated, but pressure—collimated. The
cylindrical shape would correspond to a constant pressure in
the molecular cloud. However, for a discussion of the collima-
tion process itself one has to consider the gas pressure of the jet
and the surrounding medium as well as the interacting forces
between them. We address this question to a future paper. The
asymptotic collimation of a force—free jet is subject of the work
of Appl & Camenzind (1993a,b).

The initial opening angle in the presented solutions is 65°.
Since the slope of the inner jet boundary is not a free function
but follows from the regularity condition respectively from the
poloidal current distribution, we interpret the inner part of the
above solutions as a free expanding wind or jet, whose boundary
is solely determined from the force equilibrium inside the jet.

The coupling constant in both solutions is quite similar
and corresponds to a maximum poloidal current of I, =~
3.510'9 A. The strength of the toroidal magnetic field at the
jet boundary in the asymptotic region is By = 4.6 uG while
that of the poloidal field is B, = 1.4 uG. This is in agreement
with estimates of the pre~bow—shock magnetic field strengths
following observations of HH 111 or HH 34 (Morse et al. 1992,
1993). Zeeman OH measurements for the interstellar magnetic
field in the HL Tau region give similar results (Kazes & Crutcher
1986).

Figure 4 shows the 2D distribution of the source term of the
GSS equation, J = (g;/x)I I’, of the poloidal and toroidal field
strengths, the pitch angle o = arctan(B,/By) and the magnetic
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pressure p = (1/87)(B3(1—x?)+B3) for the solution presented
in Fig. 3a. Interestingly, the source term J(x, z) shows a distri-
bution topologically different from the magnetic flux function
U(x, z). This is due to the nonlinear current distribution I(¥)
which provides a maximum in the toroidal current density j(¥)
as well as a maximum in the toroidal field strength. As pointed
out above, this corresponds to a core—envelope structure in the
asymptotic regime:

Figure 5 shows magnetic field configurations with a topo-
logical structure different from the solution in Fig. 3a. In the so-
lution shown in Fig. 5a the kinks at the LC could be removed by
a variation of the jet boundary in radial extent leading to a kind
of recollimation of the flux surfaces. This solution converges to
the same asymptotic jet equilibrium as shown in Fig. 3a, since
the asymptotic jet radius and the parameter b for the current
distribution are the same.

The solution in Fig. 5b is calculated for a concentrated dis-
tribution of the poloidal current, b = 4.5, resulting in a concen-
tration of the magnetic flux in the inner part of the asymptotic
jet. This kind of solutions could only be obtained by iteration
from small b and the kinks at the LC could not be fully removed.
The concentration of magnetic flux is described by the core ra-
dius a of the flux distribution (s. Sect. 3.5). The current flow as
well as the Poynting flux are concentrated within the jet core
(App! & Camenzind 1993b). While the solutions in Fig. 3 only
show a weak core—envelope structure with core radii of 76%,
respectectively 53% of the jet radii, the magnetic flux in the
solution in Fig. 5b is concentrated within 11% of the jet radius.
Note that we have used the same contour levels in the Figs. 3 and
5. Since the current distribution corresponds to the mass flow
in the jet, a concentrated current distribution will correspond to
a concentrated mass flow or high densities, respectively high
velocities in the inner part of the jet. Thus, this topology is of
particular interest for the interpretation of the observed emis-
sion line structure with small radial extension in the jet of DG
Tau (Kepner et al. 1993; Solf & Béhm 1993).

5.3. Application: cold wind flow

In this section we give examples for the solution of the wind
equation along a particular flux surface our model AMP con-
figuration (s. Fig. 3a). We demonstrate the dependency of the
velocity on the plasma magnetization and point out some in-
teresting aspects of the steady plasma motion. However, we
emphasize that the derived absolute values of the plasma veloc-
ity could hardly be applied for protostellar jets. In general, they
are too high, a fact which is introduced by the strong magneti-
zation of the plasma in our solutions. As shown in Eq. (9), the
magnetization of protostellar jets is of the order of o ~ 1077,
Due to numerical reasons, in particular because of the scaling
of the stellar radius and the LC, we were not able to calculate a
wind with such a low magnetization yet. A more detailed dis-
cussion of protostellar jet velocities including a 2D treatment
of the plasma dynamics will be the subject of a subsequent pa-
per (Fendt & Camenzind 1994). We note that the asymptotic
velocity distribution across the jet could only be derived from a
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Fig. 5a and b. Magnetic flux configuration ¥(z, z) with a recollimation structure (a) and a highly pronounced core-envelope structure (b).
Parameters: a b = 1.0, a = 2.29, Tje = 3.0, g1 = 1.9; b b= 4.50, a = 0.32, zje: = 3.0, g1 = 2.2. Contour levels as in Fig.3

2D treatment, since the finite jet radius prevents an asymptotic
consideration R — oo. Additionally, it would hardly be possi-
ble to find the adequate critical wind solution in the 1D limit.
This solution, which passes the critical magnetosonic surface
smoothly, is extremly sensitive on the total energy of the flow
E(D).

Figure 6a shows the wind solution in the high o—limit. In
this case we have a quasi self—consistent solution, since the
back reaction of the inertial plasma flow onto the guiding flux
surface can indeed be neglected. Low o—parameter solutions are
shown in Figs. 6b,c,d. The physical wind flow is represented by
that branch of the critical solution which starts with vanishing
poloidal velocity at the injection radius of the field line iy =
0.01 and then passes, with increasing velocity, the Alfvén point
and the fast magnetosonic point. In the figure, those are defined
by the points of intersection of the two solution branches.

Contrary to cold monopole configurations (e.g. Camenzind
1986) in our topology with a determined asymptotic jet radius
the fast magnetosonic point moves inwards from infinity to a
certain radius M-

In the high o—limit, where magnetic forces dominate inertial
forces, the narrowing of the flux tube beyond gy confines the
plasma like in a magnetic bottle. The converging field lines de-
celerate the plasma. No steady physical solutions reaching the
asymptotic radius were found. The deceleration takes place un-
til the plasma velocity equals the magnetosonic velocity again,
indicating possible shocks at this point. Stationarity will break
down and instabilities will arise. Of course the derived asymp-
totic poloidal wind velocity in the high o limit is relativistic,
far from the observational value for protostellar jets and are
applicable to neutron star jets (e.g. SS433).

For low ¢ the plasma inertia is able to drive the wind to the
asymptotic domain. The critical points move inwards. The sit-
uation is no more force—free. Figure 6d shows a wind solution
with a terminal speed of several thousand kms™'. The mag-
netization is o = 107>, We expect that the terminal speed of a
plasma flow with a magnetization o = 1078 is of the order of the
observed protostellar jet velocities. Again we like to note that
the magnetization of the plasma may be different along different
flux surfaces. This depends on the mass injection at the foot-
points of the field lines. For a low density plasma flow, which
may presumably take place along the innermost flux surfaces,
the terminal speed may be indeed very high. The question of rel-
ativistic protostellar jet velocities was discussed e.g. by Kundt
(1993).

Comparing the solutions to different o—parameters, it can
be seen that the high o flows are predominantly accelerated in
the region around the magnetosonic point, while acceleration
in the low o case occurs to a large part previous to the Alfvén
point. The latter corresponds to a centrifugal acceleration due
to rigid rotation of plasma and magnetosphere. This behavior is
also mirrored in Fig. 6¢c where we show the toroidal velocity as
a function of the radius. The toroidal velocity u increases like
ug ~ x until the Alfvén point. Here it decouples from a rigid
rotation but still moves along the field lines.

The high o solution demonstrates the general character of
the acceleration process as a magnetically driven wind: The high
magnetic energy reservoir allows for acceleration far beyond
the Alfvén radius. It is possible to convert more Poynting flux
into the kinetic energy of the low density plasma, and thus the
asymptotic velocity drastically increases.
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For a solution of the hot wind equation along flux surfaces
similar to our configuration we refer to the results of Paatz &
Camenzind (1994).

5.4. Model topology ARP

The results for the more ambitious model topology ARP are
discriminated by the lack of a suitable starting configuration.
When we start the iteration process with the solver that takes
implicitly the Goldreich—Julian charge density into account, the
procedure only converges in limited cases depending on the
choice of g and ¥,,. The poloidal current has to be small in
the regime = >> x;,. Low g generally provide a weak current,
while a set of high g; ~ 10* and high ¥, ~ 0.4 concentrates
the current in the innermost part of the magnetosphere.

This current concentration may be compatible with a high
mass accretion rate in the innermost part of the magnetosphere,
in difference to the observed low mass flow in the jets. Indeed,
using the current distribution Eq. (24), we found that the critical
flux surface most far extending from the star is ¥ = 0.4667,
which is exactly the surface bridging the inner disk boundary
with the star.

However, for a weak poloidal current the regularity condi-
tion implies that all field lines have to pass the LC with vanishing
slope. This seems to contradict the scenario of a collimated jet
in the force—free limit. Figure 7 shows an example of a solution
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Fig. 7. Magnetic flux surface configuration in the regime within the
LC in model ARP topology. Parameters: g1 = 100, ¥, = 0.41667.
Contour levels: 107", n =2,8,0.3
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to model ARP with a current distribution concentrated within
a critical flux surface which originates at z. =~ x;,. Field lines
crossing the LC will close in the outside regime, neglecting the
upper jet boundary condition. Further, we were not able yet to
solve the matching problem for this topology. This would re-
quire, as discussed above, a good estimate about the shape of
the jet boundary as well as the current distribution along the flux

surfaces.
I

6. Conclusion |

In this work we presented numerical solutions of the relativistic
2D force balance equation for winds driven by strongly magne-
tized protostellar systems. We discussed two different models
for a system containing a star surrounded by an accretion disk
of different resistivity. The resulting field configuration allows
simultaneously for wind outflow and mass accretion towards the
central star. This is consistent with the observed link between
the existence of outflows and the appearance of an accretion
disk in the spectrum of these sources.

The open dipolar topology (model AMP) turns out to be
most promising for the formation of jets. Even in the force—free
limit, which neglects the inertia of the flowing wind, a fast colli-
mation of a stellar dipolar magnetosphere towards a cylindrical
jet structure with a finite asymptotic radius is possible. Many
protostellar jets show opening angles of only a few degrees.
These examples a well covered by jet solutions of nearly con-
stant jet radius for Z > R;.. Newtonian jets extending beyond
the light cylinder are therefore in agreement with the observed
protostellar jet radii.

In these solutions, the flow is poorly collimated near the cen-
tral star. We found an initial opening angle of the flow of 65°.
This angle is determined by the regularity condition. The shape
of the asymptotic jet boundary in our solution can be interpreted
as given by pressure equilibrium with the ambient pressure dis-
tribution. Thus, we conclude that the initially free expanding jet
is collimated by the pressure of the ambient molecular cloud.

The open dipolar topology also allows for jet collimation
with moderate poloidal currents. The current strength of about
10'"! A is in agreement with observational results of the jet bend-
ing and with equipartition arguments between the asymtotic jet
and the ambient molecular cloud. A weak current corresponds
to a flat current distribution. Since the mass flow per flux tube is
directly correlated with the current distribution, these fast col-
limated, flat current distribution configurations would imply a
homogeneous mass flow across the jet’s diameter.

Using the force—free magnetic structures, we solved the
wind equation along a certain surface near the edge of the jet
for different magnetizations.

Solutions with a high magnetization are suitable to describe
outflows driven by objects like SS 433, while protostellar jets
with terminal velocities of 400 km s™' may obtained for mod-
erate magnetizations o ~ 1078, In this case, the Alfvén point
moves inwards away from the L.C to a region of several tens of
stellar radii.

C. Fendt et al.: On the collimation of stellar magnetospheres to jets. I

In the case of reversed field topologies (ARP) we obtain
convergence only for a very low coupling constant g; or for
a current distribution concentrated near the innermost part of
the magnetosphere. Although the last point is compatible with
an accretion flow along the innermost field lines, the suitable
regularity condition requires a vanishing slope of all field lines
passing the LC. Therefore, a force—free jet extending beyond
the LC is not possible.
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Appendix A: numerical details

In this first part of the Appendix we point out some significant
details of our numerical procedure.

Figure 8 shows an example of the numerical grid applied
to a calculation simultaneously on the whole integration do-
main. The star—gap—disk system and the LC (optionally) are
considered with a higher spatial resolution. For the scientific
calculation we used a 64 x 64 finite element grid, respectively
12544 nodal points in the case of elements of the serendipity
class. For a calculation on seperated domains we are able to
apply this resolution for each integration domain.

In Fig. 9 we show numerical test solutions of our finite el-
ement solver (s. Sect. 4.2). Figure 9a exactly mirrors Michels
(1973b) current—free solution of the classical pulsar equation de-
rived with a totally different method. Figure 9b shows a monopol
type configuration equivalent to the analytic solution Eq. (31).
This solution, calculated from corresponding boundary condi-
tions, is well behaved at the LC.

Appendix B: the matching problem

Due to the singularity in the GSS equation, the solution inside
and outside the LC decouple and the regularity requirement
provides a boundary condition at the LC. In general, global
force—free solutions which extend beyond the LC, do not match
up or show kinks at the LC. This matching problem is well
known in the context of pulsar magnetospheres, but is not solved
yet(Ingraham 1973; Pelizzari 1974; Sulkanen & Lovelace 1990;
Michel 1991).

Obviously, it is hardly possible to solve the wind equation
along such kinky flux surfaces and therefore, it became one of
the essential points of this work to construct force—free mag-
netic field configurations, which are well behaved at the LC.
In the following we describe the procedure which allowed us
to gain well behaved solutions and discuss a possible physical
interpretation.

In the case of the model topology AMP, the knowledge of
the upper boundary condition, which represents the asymptotic
jet, enables us to investigate independently the solutions inside
and outside the LC. In Figure 10 we compare two solutions with
the same shape of the jet boundary, but calculated seperately,
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Fig. 8. a Example of a 32 x 32 grid applied to a calculation simultaneously on the whole integration domain. The disk height satisfies z(z) ~ z°,
b Subset of the innermost part of a full grid. Star, gap and disk are resolved
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Fig. 9a and b. Numerical test solutions. a Dipolar field topology, contour levels: 0.15, 0.4, 1.0, 1.4, 1.592, 1.7. b Monopol type configuration,

contour levels as in Fig. 3

respectively simultaneously on the inner and outer integration
domain. We see that for any jet boundary, solution Fig. 10b is
not steady at the LC, while solution Fig. 10a shows kinks at the
LC.

From the work of Appl & Camenzind (1993a) we know that
in the 1D asymptotic regime the solution ¥(z) for given I(¥) is
completely determined by the regularity condition. In particular,
the jet radius Rje, is determined, since it is a parameter of the
current distribution. But this argument cannot solely be applied

for the jet boundary in a 2D regime, since I(¥) is fixed by the
asymtotic jet radius and is not anymore a function of the jet
boundary Rje(Z).

Therefore, we conjecture that in the 2D regime one may
either adjust the shape of the jet boundary to a given current
distribution, until the inner and outer solution match — or alter-
natively, to a given shape of the boundary, i.e. for prescribed
outer boundary conditions, a corresponding current distribution
can be found, but in general will have kinks. In other words:
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Fig. 10a and b. Magnetic flux distribution ¥ (z, z) for model toplogy AMP for an ambiguous jet boundary. The solutions are calculated on the
entire jet domain (a) and on seperate domains (b) inside and outside the LC. Parameters: b = 2.0, core radius a = 1.19, zj, = 3.0, g1 = 1.28.

Contour levels as in Fig. 3
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Fig. 11a and b. Influence of the current distribution or of the boundary conditions on the matching problem. Performation of the monopole type
solution (Fig. 9b) by a alteration of the current strength by 10% (a) and the outer boundary condition from Dirichlet to homogeneous Neumann

(b). Contour levels as in Fig. 9b

For a given current distribution, we have to match the shape
of the jet boundary to the inner boundary condition. Or, for a
fixed boundary, the solver gives the corresponding force—free
distributions in ¥ and I(\).

As a demonstration of this boundary adjustment process, we
show in Fig. 11 the performation of the analytic monopole type
solution Eq. (31) (s. Fig. 9b): If we change the outer boundary
condition from Dirichlet (satisfying a monopole solution) to

homogeneous Neumann or vary the strength of the current, e.g.
by a factor of 10%, we drastically influence the behavior of the
solution around the LC.

For certain parameter sets b and xje, i.e. for certain current
distributions I(¥), we found suitable jet boundaries providing
AMP configurations with vanishing kinks at Ry . Note that I(¥)
also influences the location of the jet boundary for x < 1 (Sect.
2.4).
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To obtain a physical interpretation of the kinks we recall the
interrelation between the magnetic pressure, ~~ Bﬁ,, the poloidal
current, I ~ R By, and the toroidal magnetic field. In this
scheme the adjustment process corresponds to an adjustment
of the pressure distribution in the domains inside and outside
the LC, since a variation of the jet boundary corresponds to a
variation of the jet volume and thus of the pressure.

An alternative explanation of the kinks may be the break
down of the force—free assumption at the LC. Since | ~ zBp,
currents I; could be expected, implying I # I(¥). This would
correspond to an additional current sheet. But, since the solution
has to fulfill the force—free assumption by definition of Eq. (11),
the flux surfaces, which follow the I = const. lines, will have
kinks. From this point of view, the discontinuity of field lines
in separatly calculated integration domains can be closed by an
additional current at the LC, because it implies an additional
magnetic flux via Ampere’s law. In a calculation on the entire
integration domain, the continuity requirement is intrinsically
introduced.

The introduction of a singular current sheet was already dis-
cussed by Ingraham (1973), while Sulkanen & Lovelace (1990)
claimed that such global solutions were unphysical and that
the choice of I(¥) has been specified without physical basis
yet. However, we note that we selected /(W) from the physical
asymptotic force equilibrium and that the fact that the poloidal
current I(W) is a function of the flux surface is not violated by
definition of our numerical technique.
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