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Abstract. We have investigated magnetically driven superluminal jets originating from rotating black holes. The
stationary, general relativistic, magnetohydrodynamic wind equation along collimating magnetic flux surfaces has
been solved numerically. Our jet solutions are calculated on a global scale of a spatial range from several to several
1000 gravitational radii. Different magnetic field geometries were investigated, parameterized by the shape of the
magnetic flux surface and the magnetic flux distribution. For a given magnetic flux surface we obtain the complete
set of physical parameters for the jet flow. In particular, we apply our results to the Galactic superluminal sources
GRS 19154105 and GRO 1655—40. Motivated by the huge size indicated for the Galactic superluminal knots of
about 10° Schwarzschild radii, we point out the possibility that the jet collimation process in these sources may
be less efficient and therefore intrinsically different to the AGN. Our results show that the observed speed of more
than 0.9 ¢ can be achieved in general by magnetohydrodynamic acceleration. The velocity distribution along the
magnetic field has a saturating profile. The asymptotic jet velocity depends either on the plasma magnetization
(for a fixed field structure) or on the magnetic flux distribution (for fixed magnetization). The distance where
the asymptotic velocity is reached, is below the observational resolution for GRS 1915+105 by several orders of
magnitude. Further, we find that highly relativistic speeds can be reached also for jets not emerging from a region
close to the black hole, if the flow magnetization is sufficiently large. The plasma temperature rapidly decreases
from about 10'° K at the foot point of the jet to about 10° K at a distance of 5000 gravitational radii from the
source. Temperature and the mass density follow a power law distribution with the radius. The jet magnetic field
is dominated by the toroidal component, whereas the velocity field is dominated by the poloidal component.
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1. Introduction
1.1. Relativistic jets and galactic superluminal motion

Apparent superluminal jet motion originating in the close
environment of a rotating black hole is observationally in-
dicated for two classes of sources concerning mass and
energy output. One class is the family of radio loud ac-
tive galactic nuclei (hereafter AGN). In the AGN standard
model highly relativistic jet motion is explained by mag-
netohydrodynamic processes in a black hole — accretion
disk environment (for a review see Blandford 1990). Jets
are magnetically accelerated and possibly also collimated
by magnetic forces. However, the detailed interaction pro-
cess of the magnetized black hole — accretion disk system
which is believed to lead to the ejection of high velocity
blobs is not yet fully understood.
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The other class are galactic binary systems for which
radio observations have also detected superluminal mo-
tion (see reviews of Fender 2000 or Greiner 2000).
The two most prominent examples are the high energy
sources GRS 1915+105 (Mirabel & Rodriguez 1994) and
GRO 1655—40 (Hjellming & Rupen 1995; Tingay et al.
1995). The de-projected jet speed of both sources is 0.9 ¢
and surprisingly similar, although for GRS 1915+105 also
a higher velocity component has been observed recently
(Fender et al. 1999). GRO 1655—40 is a binary consist-
ing of a 7.02 £ 0.22 Mg black hole and a 2.3 M F-
subgiant (Orosz & Bailyn 1997) at a distance of 3 kpc.
GRS 19154105 is at 10-12 kpc distance (Fender et al.
1999), but the component masses of the presumed binary
are not known. Order of magnitude estimates based on
X-ray variability and QPO properties range from
10-80 My (Morgan et al. 1997; Greiner et al. 1998). As
for the AGN jet sources, observational evidence for a black



C. Fendt and J. Greiner: General relativistic magnetic jets

hole — accretion disk system is found also for the Galactic
superluminal sources. Observations have also indicated
that accretion disk instabilities may be related to jet ejec-
tion (Greiner et al. 1996; Belloni et al. 1997; Mirabel et al.
1998). Therefore, the jet formation process for extragalac-
tic jets and their Galactic counterparts may be the same,
although the mechanism that accelerates and collimates
the GRS 19154105 ejecta is yet unclear (Rodriguez &
Mirabel 1999).

Optical polarization measurements have been obtained
for the microquasar GRO J1655-40 (Scaltriti et al. 1997;
Gliozzi et al. 1998). The polarization angle is approxi-
mately parallel to the accretion disk plane. The amount of
polarization has been found to vary smoothly with the or-
bital phase, being smallest at binary phase 0.7-0.8. It has
been noted that the occasionally observed X-ray dips oc-
cur at the same phase interval (Ueda et al. 1998; Kuulkers
et al. 1998) suggesting that it may be related to either
a thickening of the disk rim at the impact site of the
accretion stream from the companion or the overflow of
this stream above/below the disk. The orbital polarization
modulation rules out a synchrotron origin in the jet, and
implies the presence of electron scattering plasma above
the accretion disk which is asymmetrically distributed or
asymmetrically illuminated. The existence of such scatter-
ing plasma is consistent with the interpretation of the iron
features as observed with ASCA as absorption lines and
edges in a thick, cool torus of column Ny > 10%% cm 2
(Ueda et al. 1998).

The relativistic speed observed for the Galactic super-
luminal sources (~0.9-0.98 ¢ de-projected) corresponds to
a bulk Lorentz factor of v = 2-5 although this number
is not very accurate (e.g. Fender et al. 1999). Therefore,
for any theoretical investigation of these objects at least
special relativity has to be taken into account. If the su-
perluminal motion originates close to a black hole, also
general relativistic effects may become important.

The ejection of matter itself is not a stationary pro-
cess. In GRS 19154105 also repeated emission of knots is
observed (Rodriguez & Mirabel 1999). X-ray and radio ob-
servations suggest that a wide range of ejected mass and
ejection frequency is possible.

Though the galactic jet sources are nearby, they are
not better resolved spatially because the distance ratio
between AGN and microquasars is smaller than their
mass ratios. Nevertheless, an important implication may
also come from the observed size of the superluminal
knots which are observationally resolved. In the case of
GRS 19154105 the characteristic dimension of the “jet”
is 35 mas, equivalent to 7 10*® cm at a distance of 12.5kpc
(Rodriguez & Mirabel 1999). We emphasize that such
a knot size corresponds to ~10° Schwarzschild radii for
Rs = 1.510% (M /5 M)cm! This is a huge factor and may
be in distinctive difference to the AGN jets. Similarly,
the VLBA data show the core as a collimated jet down
to a distance of 10 AU from the central source with an
opening angle of <10° (see Mirabel & Rodriguez 1999)
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corresponding to 107 (M /5 Mg) Schwarzschild radii. The
length of the radio jet is about 100 AU.

However, when interpreting the observed emission re-
gion, one has to keep in mind that this region may not rep-
resent the jet flow itself, but some part of another, larger,
structure. For example, in some extragalactic jet sources
there is indication that the knots travel along helical tra-
jectories, believed to be prescribed by a large-scale heli-
cal magnetic field of an almost cylindrically collimated jet
(Zensus et al. 1995; Camenzind & Krockenberger 1992).

In GRO 1655—40 the motion of the radio knots is com-
plicated and requires (at least) precession between differ-
ent ejections (Hjellming & Rupen 1995). The knot struc-
tures in GRS 19154105 remained fixed implying that the
whole knot moves with the same speed without spatial
diffusion and with an axial velocity profile more or less
constant.

Based on minimum energy arguments and only rel-
ativistic electrons responsible for the synchrotron radia-
tion in the knots of GRS 19154105, Rodriguez & Mirabel
(1999) derive a magnetic field strength of about 50 mG
to 7mG, the decrease resulting from the expansion of
the knot. They also estimate the rest mass of a knot of
>1023 g, and together with (steady) photon luminosity of
~3 10%8 ergs~!, exclude radiation as driving mechanism
for the knots.

1.2. Theory of magnetic jets

From the introductory remarks it is clear that a quanti-
tative analysis of superluminal motion must take into ac-
count both magnetohydrodynamics (hereafter MHD) and
(general) relativity.

The first theoretical formulation of the electromagnetic
force-equilibrium in Kerr space-time around rotating black
holes was given by Blandford & Znajek (1977) and Znajek
(1977), who discovered the possibility of extracting rota-
tional energy and angular momentum from the black hole
electromagnetically.

Camenzind (1986, 1987) formulated a fully relativistic
stationary description of MHD flows, basically applicable
to any field geometry. The structure of such collimating jet
magnetospheres in the case of Kerr space time was pre-
sented by Fendt (1997). Solutions of the so-called wind
equation in Kerr geometry (see below) considering the
stationary plasma motion along the magnetic field were
obtained by Takahashi et al. (1990), however, mainly dis-
cussing the accretion flow onto the black hole.

While the asymptotic structure of the propagating jets
becomes more and more understood with the help of time-
dependent magnetohydrodynamical, also relativistic, sim-
ulations (e.g. Nishikawa et al. 1997; Mioduszewski et al.
1997; Hardee et al. 1998), the process of jet formation itself
and the collimation of the outflow region is a task still too
complex for numerical simulations. The involved length
scales and gradients require a high resolution in grid size
and time stepping. Koide et al. (1998) were first to perform
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general relativistic MHD simulations of jet formation close
to the black hole. In their model, the interaction of an ini-
tially cylindrical magnetic field with a Keplerian accretion
disk results first in an inflow of matter towards the black
hole. This accretion stream interacts with the hydrostatic
corona around the black hole giving rise to a relativis-
tic gas pressure driven jet. At larger radii a magnetically
driven wind is initiated from the accretion disk. The sim-
ulations were performed for less than two rotations of the
inner disk (corresponding to less than 0.02 rotations of
the disk at the outer edge of the grid). Although these re-
sults of the first fully general relativistic MHD simulations
look indeed very exciting, some objections can be raised
about the underlying model. The initial condition applied
is that of a hydrostatic corona around a black hole, an as-
sumption which is not compatible with the boundary of a
black hole horizon. Such a configuration is not stable and
will immediately collapse. Recently, the authors extended
their work applying an initial coronal structure in steady
infall surrounding a non-rotating black hole (Koide et al.
1999). They find a two-layered jet consisting of a magnet-
ically driven jet around a gas-pressure driven jet. In addi-
tion, Koide et al. (2000) considered the quasi-steady infall
of the corona around a Kerr black hole. They find that
jet formation seems to differ for co-rotating and counter-
rotating disks. The jet ejection tends to be easier in the
latter case with a jet origin much closer to the hole. Also,
a new feature of another magnetically driven (though sub-
relativistic) jet appears within the gas-pressure driven jet.
The computations were lasting over a few inner disk or-
bits. Therefore, the observed events of mass ejection could
still be a relict of the initial condition and may not be
present in the long-term evolution. Clearly, it would be
interesting to perform the Koide et al. simulations for a
longer time and look whether the mass ejection contin-
ues over many disk orbits, whether the simulation evolves
into a final stationary state (as e.g. in Ouyed & Pudritz
1997; Fendt & Elstner 2000), or whether the jet forma-
tion retains its unsteady behavior which could explain the
emission of superluminal knots observed in the relativistic
jets.

1.3. Aim of the present study

In this paper, a stationary magnetic jet flow along a given
magnetic flux surface is investigated in the context of gen-
eral relativity. Due to the stationary approach, we cannot
treat any time-dependent phenomena. Our emphasis is to
trace the large scale behavior of the flow from it’s origin
close to the black hole to large distances. This is an es-
sential point in particular for the Galactic superluminal
sources because of the possible huge spatial extension of
the jets compared to the central black hole. The station-
ary model allows for a global treatment of the jet flow, i.e.
an investigation over a large range of magnitudes for den-
sity and magnetic field strength. This is not yet feasible
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with time-dependent MHD codes presently available. In
particular, we address the following topics.

— For a given geometry of the magnetic field, which are
the resulting jet dynamical parameters as velocity, den-
sity or temperature?

— How important are the effects of general relativity?
Does the superluminal flow indeed originate very close
to a black hole?

— From the investigation of different field geometries we
expect some hints to the jet opening angle and the
length scale of the collimation process.

The structure of this paper is as follows. In Sect. 2, basic
equations for relativistic magnetospheres are reviewed in
the context of Kerr metrics. In Sect. 3, the model under-
lying our numerical calculations is discussed. We present
our numerical results in Sect. 4 and discuss solutions with
different geometry and jet parameters. We summarize our
paper in Sect. 5.

2. Description of a MHD flow in Kerr metric

Under the assumptions of axisymmetry, stationarity and
infinite conductivity, the MHD equations reduce to a set
of two basic equations describing the local force-balance
across the field and along the field (for references, see, e.g.,
Blandford & Znajek 1977; Thorne et al. 1986; Camenzind
1986, 1987; Okamoto 1992; Beskin & Pariev 1993; Beskin
1997).

The trans-field or Grad-Shafranov equation determines
the field structure, whereas the wind equation describes
the flow dynamics along the field. Due to the stationar-
ity assumption, certain conservation laws apply. The total
energy density, the total angular momentum density, the
mass flow rate per flux surface and the iso-rotation param-
eter are conserved quantities along the surfaces of constant
magnetic flux (Camenzind 1986).

In this paper the motion of a magnetized plasma is cal-
culated from the wind equation. The plasma moves along a
prescribed axisymmetric magnetic flux surface which orig-
inates in a region close to a rotating black hole.

2.1. Space-time around rotating black holes

The space-time around a rotating black hole with a mass
M and angular momentum per unit mass a is described
using Boyer-Lindquist coordinates with the line element

ds? = a2dt? — &% (dp — wdt)? — (p?/A) dr? — p*db?, (1)

where t denotes the global time, ¢ the angle around the
axis of symmetry, 7,0 similar to there flat space counter-
part spherical coordinates, and where geometrical units
¢ = G =1 have been applied (see Appendix A for further
definitions). The horizon of the Kerr black hole is located
at rg = M 4+ VM? — a2. We will normalize all radii to
gravitational radii r, = ru(a = M) = M. The angular
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velocity of an observer moving with zero angular momen-
tum (ZAMO) is w = (d¢/dt)zamo, corresponding to the
angular velocity of the differentially rotating space. The
lapse function is o = (d7/dt)zamo describing the lapse
of the proper time 7 in the ZAMO system to the global
time t.

2.2. Description of the electromagnetic field

In the 3+1 split of Kerr space time (Thorne et al. 1986)
the electromagnetic field B, FE, the current density 7, and
the electric charge density p. can be described very simi-
lar to the usual expressions, if measured by the ZAMQO’s
according to the locally flat Minkowski space. These local
experiments then have to be put together by a global ob-
server for a certain global time using the lapse and shift
function for the transformation from the local to the global
frame.

With the assumption of axisymmetry a magnetic
flux surface can be defined measuring the magnetic flux
through a loop of the Killing vector m = &%V,

U(r,0) = %/BpmiA,

corresponding to the magnetic flux through an area
7(r sin#)? around the symmetry axis (in the limit of
Minkowski space).

With the assumption of a degenerated magnetosphere,
||B]? — |E]?| >> |E - B| ~ 0 an “angular velocity of
field lines” can be derived from the derivative of the
time component of the vector potential Qp = Qp (V) =
—2mc(dAp/d¥). We will denote this quantity with the
term “iso-rotation parameter”.

1
B, = VUAm, (2)

2.3. The wind equation

It has been shown that a stationary, polytropic, general
relativistic MHD flow along an axisymmetric flux surface
U(r,0) can be described by the following wind equation
for the poloidal velocity u, = yvp/c,

EN\? koko + 0um2ko M2 — ky M4
2 02 m 2 4

1= —on (= NG
up+ o (M) (k0+amM2)2 ( )
where
ko = 93302 + 29030 + goo,

L
k2 = l_QFﬁy
L L2

ky = — <933 + 2903E +900ﬁ) / (965 — googss)

(Camenzind 1986; Takahashi et al. 1990). The Alfvén
Mach number M is defined as M? = 4pnu?/ Bg, with the
proper particle density n, the specific enthalpy p, and a
poloidal magnetic field Bp = By/(900) + 903§2F), rescaled
for mathematical convenience. The quantity oy, stands for
the sign of the metric (we have chosen oy, = —1, see
Appendix A). For a polytropic gas law with the index

311

I' = n/m, the wind Eq. (3) can be converted into a poly-
nomial equation,

2n+2m )
Z Ai(z; 0,9, Qp; E, L, 0y) u;,/m =0, (4)
i=0

(Camenzind 1987; Englmaier 1993; Jensen 1997), where
the coefficients A; are now defined as functions of the nor-
malized cylindrical radius « = R/r, (see Appendix B).
The shape of the axisymmetric magnetic flux surface
U is prescribed as function z(x;¥). The flux function
® = \/=gB, describes the opening of the flux tube. The
faster ® decreases the faster magnetic energy is converted
into kinetic energy. We define the dimensionless magne-
tization parameter! at the “injection” point z, following
Takahashi et al. (1990),
o7

Oy = 47rmplp* ’ (5)
measuring the Poynting flux in terms of particle flux
I, = \/—gnup, where my is the particle mass (here the
proton mass). The magnetization determines the maxi-
mum energy available for plasma acceleration and thus de-
termines also the asymptotic poloidal velocity. The other
wind parameters are total energy density F, total angular
momentum L, and the iso-rotation parameter Qg. The non
relativistic limit of Eq. (4) has been solved numerically by
Kudoh & Shibata (1995, 1997).

We choose the polytropic index I' = 5/3 for a hot rel-
ativistic proton-electron plasma (a hot electron-positron
plasma would imply ' = 4/3). Then, at each radius x
the polynomial Eq. (4) has 2n + 2m = 16 solutions. Some
of these mathematical solutions have no physical mean-
ing, e.g. because ug is negative. The remaining physical
solutions form a bunch of different curves in the up(x)-
diagram representing different solution branches (see our
solution S1 in Appendix C, Fig. C.1). The unique branch
of the “wind” solution starts at a small radius with small
velocity continuing outwards with increasing velocity. For
an other parameter choice also “accretion” branches can
be found, starting from a large radius with small veloc-
ity and continuing inwards with increasing velocity (not
shown in Fig. C.1).

However, not for all parameters E,L,o there exist
physical solutions which are continuous functions of x and
therefore defined along the whole flux surface. It is well
known that at the magnetosonic points the wind Eq. (3)
becomes singular (see Camenzind 1986; Takahashi et al.
1990). Regularity of the solution requires a flow velocity
equal to the speed of the MHD waves in order to obtain
a smooth (self-consistent) transition at the magnetosonic

! Note that this definition for the magnetization varies
from the original Michel magnetization parameter om =
@3 /4w fucRE, where @y is the magnetic flux, fu the mass
flux and Ry, the light cylinder. Usually, the general relativistic
equations are normalized to the gravitational radius, whereas
the special relativistic equations are normalized to the light
cylinder.
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points. In order to match astrophysical boundary condi-
tions we fix the following parameters,

— the “injection” radius, x4, the location where the mat-
ter couples to the magnetic field. This radius also de-
termines the iso-rotation parameter Qp;

— the “injection” velocity ups = up(x4), defining the ini-
tial kinetic energy;

— the Alfvén radius x s, which fixes the total angular mo-
mentum of the flow.

The critical wind solution for a given flux surface can then
be found by varying the flow parameters in Eq. (4). Due
to numerical convenience, we vary

— the sound speed cs; at the injection radius, defining the
initial density (or gas pressure and temperature);

— the magnetization parameter at the injection point
0, (V) = D2/ (4mmp o).

In turn, the condition of a regular flow at the magne-
tosonic points fixes the sound speed and magnetization
and, thus, jet mass flow rate and temperature.

3. The model assumptions
3.1. The model in general

Observationally the jet phenomenon of AGN, young stel-
lar objects and microquasars is always connected to the
signatures of an accretion disk. We therefore assume a
similar disk-jet scenario for the jet formation in Galactic
superluminal jet sources. In general our model geometry
follows the standard model for jet formation in AGN (cf.
Blandford 1990).

Two typical length scales enter the problem. (i) The
gravitational radius ry measures the influence of gravity on
the metric. (ii) The asymptotic light cylinder Ry, describes
the influence of rotation on the electrodynamics.

3.2. The central black hole

The black hole mass and angular momentum determine
the geometry of space. Since we use dimensionless equa-
tions normalized to the gravitational radius, our results
scale with the mass of the black hole. For parameter es-
timates we assume a black hole mass of 5 My which is
about the value inferred for the galactic superluminal
sources. The angular momentum a as the other black
hole parameter is not known for any of the relativistic
jet sources. Interpretation of the high effective temper-
atures of the accretion disk as well as the stable QPO
frequency (as Thirring-Lense effect) suggests that a 2 0.9
for GRS 1915+105 and GRO 1655—40 (Zhang et al. 1997).
Theoretically, one may expect a rapidly rotating black
hole because of angular momentum conservation during
the collapse and also accretion of angular momentum from
the accretion disk (King & Kolb 2000). Here, we choose
a = 0.8, a value which is not extreme, but clearly dif-
ferent to Schwarzschild metric. The rotation rate of the
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Fig. 1. Model geometry applied for our numerical calculations.
The poloidal field structure is prescribed as magnetic flux sur-
faces with different opening angle. The flux surfaces have dif-
ferent foot point radii along the accretion disk (not visible).
The central source is a black hole implying that general rela-
tivistic effects have to be taken into account. The toroidal field
follows from the solution of the wind equation

black hole is defined as Qu = w(ry) = a/(2Mry). The
Kerr parameter a does not influence the solution of the
wind equation directly. However, for rotating black holes
the marginally stable orbit rys is closer to the horizon,
Tms = 67 for a = 0 and rpg ~ rg for a ~ 1 (This is the
case for a co-rotating disk. For a retrograde disk rotation
Tms =~ 97y for a ~ 1). Therefore, assuming that the jet
magnetic field is anchored just at the marginally stable
orbit, for a rapidly rotating black hole the maximum an-
gular velocity of the jet foot points increases by a factor
of 63/2/2 = 7.4. Correspondingly, the light cylinder radius
of the jet moves inward by the same factor.

In addition to the well-known special relativistic light
cylinder, the differential rotation of the space w leads to
the formation of a second light surface. At this position
the “rotational velocity” of the field lines relative to the
ZAMO equals the speed of light (see Blandford & Znajek
1977). The position of the two light surfaces @y, is defined
by & = (fac/(Qr — w))?, where the + (—) sign holds
for the outer (inner) light surface with Qp > w (Qp < w).
However, these light surfaces have no direct implication for
the MHD flow. In the limit of a strong magnetization, the
MHD Alfvén surfaces (for inflow and outflow) approach
the corresponding light surfaces.

3.3. The accretion disk

X-ray observations of GRS 1915+105 detected strong in-
tensity variations indicating major instabilities of an ac-
cretion disk (Greiner et al. 1996). Belloni et al. (1997) find
that the highly variable X-ray spectra could be explained
if the inner disk is alternatively removed and replenished
due to a thermal-viscous instability. Simultaneous X-ray
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and infrared observations of GRS 1915+105 revealed evi-
dence for a disk—jet interrelation (Eikenberry et al. 1998;
Mirabel et al. 1998). The observed flares in the X-ray and
IR bands have a consistent offset delay of ~30min indi-
cating an origin from the same event.

The accretion rate in GRS 19154105 and
GRO J1655—40 can be determined from the observed
X-ray luminosities (e.g. Greiner et al. 1998). Depending
on the chosen efficiency (5% in non-rotating versus 42%
in maximally rotating black holes) the accretion rate
ranges between 1-9 10~7 My, yr~! (GRS 1915+105) and
0.8-7 1078 My yr—! (GRO J1655—40), respectively.

From the theoretical point of view an accretion disk
surrounding the black hole is the essential component con-
cerning magnetic jet formation. It is considered to be re-
sponsible for the following necessary ingredients for jet
formation, propagation, and collimation.

— The generation of the magnetic field. In contrast to
stellar jets the magnetic field of jets from black holes
cannot be supplied by the central object but has to be
generated by the surrounding accretion disk. Dynamo
action in general relativistic accretion disks were dis-
cussed by Khanna & Camenzind (1996a, 1996b) and
Brandenburg (1996);

— The mass loading of the jet. The accreting material be-
comes partly diverted into the jet. Evidently, no mass
outflow is possible from the black hole itself, in dif-
ference to a stellar wind. The (non-relativistic) self-
similar accretion-ejection mechanism was investigated
by Ferreira (1997);

— The electric current system. Differential rotation of the
disk is also responsible for driving the poloidal electric
current system in the jet magnetosphere. Such a cur-
rent extracts angular momentum from the disk and
eventually allows for mass accretion into the central
object.

3.4. Model parameters for the wind motion
3.4.1. The magnetization parameter

The leading parameter for the wind solution along a fixed
poloidal field is the magnetization parameter (5). Re-
normalization to astrophysical units gives

2 .2 4
— () (g
cMiet(¥)\ T

P2 B2 R}

— 0
cMiet ()12

o« (T)

- drmplpy

where J\ijet(\Il) ~ 47rmpn*cup*Rf is the jet mass flux en-
closed by an area of radius R,. A first order estimate of the
magnetization can be derived from the disk equipartition
field strength. Then, with a reasonable assumption on the
jet mass flow rate related to the disk accretion rate, this
gives the jet magnetization. Although the equipartition
field strength is model-dependent, the different models
(e.g. either advection dominated disk or standard disk, ei-
ther Kramer’s opacity or Thomson scattering) give rather
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similar results. A self-similar @dvection dominated disk
model with the accretion rate M,.. gives
R\
()
T'g

1 .
-5 M i Macc

Beq ~2510° G o, ( ) :
5 Mo YA

where Mg = 1.1 1077(M/5 Mgy)Mgyr~" is the
Eddington luminosity and awis is the viscosity pa-
rameter (see e.g. Narayan et al. 1998). In compar-
ison, an optically thin standard accretion disk with
Thomson opacity gives Beq =~ V8mP = /81aT*/3 =~
1.8 108 G a/?(M/5 M)~Y/2(R/ry)~3/4 (see Blandford
1990). Note that these estimates are only valid within cer-
tain limits of the accretion rate and the disk radius. Using
the advection dominated disk model equipartition field
strength, we obtain the following estimate for the mag-
netization at the injection radius,

() — 16— (2 (Ve (N (8)
7 B Qlyis 5M® Macc Tg

A comparison with the original Michel magnetization pa-
rameter o must take into account a factor (rg/Ry,)?. The
magnetization parameter derived from the field distribu-
tion in a standard accretion disk model (see above) will
give a similar result. We emphasize that we do not “ap-
ply” a certain disk model (e.g. the ADAF model) in our
computations. However, a comparison in the context of
accretion disk theory just puts our wind parameters on a
safer ground. Note, that neither the ADAF model nor the
standard disk model takes into account the influence of
magnetic fields. Moreover, the ADAF estimates as cited
in Eq. (7) rely on the self-similar assumption. Compared to
the standard disk, by definition, the matter in the ADAF
disk would be rapidly advected possibly influencing also
the wind ejection. However, such a detailed treatment is
beyond the scope of this paper and may only be considered
in numerical simulations investigating the disk-jet interac-
tion itself (Koide et al. 1998, 1999, 2000)

ol
wlon

3.4.2. The magnetic field distribution

The normalized magnetic field distribution
scribed by

is pre-

—the shape of the field line, z(x); R
—the magnetic flux distribution, ®(x)=P(x)\/—g/(p?A).

We apply different functions for z(z) and ®(z) in order to
investigate the influence of collimation, rotation and mag-
netic flux distribution on the acceleration of matter. One
example is z(x) = 0.1(z—x0)%/° describing an almost coni-
cal surface with only a slight collimation (see Fig. 2). Here,
x defines the intersection of the field line with the equa-
torial plane, with x(y somewhat smaller than x,. The idea
behind this choice is that the matter is expected to couple
to the jet magnetic field above the accretion disk (with
z(xy) > 0). An example for the magnetic flux distribution
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Table 1. Comparison of leading parameters for the wind solution. Magnetic flux distribution 1G] / ®,, shape of the poloidal
field line z(z), iso-rotation parameter Qr, sound speed at the injection radius csx, magnetization at the injection radius oy,
cylindrical Alfvén radius xa, cylindrical injection radius z., total energy E, normalized to mpc? normalized total angular
momentum L = L /E, asymptotic velocity tpeo, and angular momentum parameter of the black hole a. Other Parameters are:
I'=5/3, upx = 0.006 (S3-S9), upx = 0.17 (S3q, S3u2), upx = 0.21 (S3u3)

prescribed calculated
i)/‘i)* z(x Qp Cox Ox TA Ty E L Upoo a
S3 ~1 01(z —20)*® 0035 005165 979.4 22931 83 27887 20.04 2531 0.8
S3c2  ~1 0.1(z — xo)3/2 0.035 0.0529 1356 22.931 8.3 2.764 19.95 2.58 0.8
S4 ~z /2 0.1(x — 0)/° 0.035 0.049 2380 22931 83 27879 20.04 260 0.8
S4b  ~zTl/? 0.1(x — 0)/® 0.014 0.0390 14 680 57.0 15.3 2.6730 47.07 248 0.8
S9 ~z T2 0.1(z — 20)%/? 0.035 0.05165 2777  22.92 83 27572 19.93 257 0.8
S3q  ~1 0.1(z — 20)%/® 0.14 0.31 480  5.83 33 8917 6616 848 08
S3u  ~1 0.1(x — 20)%/° 0.14 0.27 100 5.33 33 316 569 296 08
S3u2  ~1 0.1(z — 20)%/° 0.14 0.27 82.5  5.33 3.3 4.66 6.35 455 1078
S3u3  ~1 0.1(x — 0)/° 0.14 0.27 205.7  5.33 3.3 4.65 6.35 448 1078
200 [ 1210 3.4.3. The plasma temperature
3 3 1 The temperature distribution along the field line follows
I I | a polytropic gas law, T = T, (n/n,)" ~'. In our approach
150 - - — 1.5%10 ) * * : pp
- - 1 the temperature at the injection radius x, is determined
i i i by choosing the sound speed at this point, cgy,
2 100 - B Lo
N 2 2
: A : r, -1 ( e ) T (9)
| | | Tr r—-1-¢2 ks
50 |- L  xron . Lo .
L L i For typical parameters applied in our calculations, cg =
- - ] 0.05, T' = 5/3 this gives a gas temperature of the disk
I i sS4 | corona of about 1.5 10'° K at a jet injection radius z, =
o5 o ‘5X‘10‘3 B 8.3. This temperature is in rough agreement with the disk
x x temperature of the advection dominated accretion disk

Fig. 2. Projected magnetic flux surface. Shape of the poloidal
field line/flux surface as function z(x) for the solutions S4 (and
S4b, S3, S1) and S9 (and S3c2)

is ®(2) = (z/x,)"1/2, resulting in magnetic flux function
() decreasing with radius faster than a monopole where
O(z) =1.

Prescribing both the flux distribution and the shape
of the flux surface does not over-determine the problem.
The magnetic flux function ® describes the opening of the
magnetic flux tubes. With z(x), the shape of the flux sur-
face chosen, the choice of the flux function just defines
the position of the “other” flux surfaces. In a fully self-
consistent approach, the field structure is determined by
the solution of the Grad-Shafranov equation. Such solu-
tions are not yet available.

models at small radii (Narayan et al. 1998). A smaller z,
requires a higher sound speed parameter implying a higher
temperature 7.

3.4.4. The iso-rotation parameter 2p

The iso-rotation parameter Qg (V) of the field line is de-
termined from the position of the injection radius z,. This
choice corresponds to the interpretation often applied for
Qp as the “angular rotation of the field lines”. Here, we
assume that the field lines are anchored in a Keplerian
disk, Qr ~ Opisk ~ Qx(zx). The angular velocity of
the last stable circular orbit around a Kerr black hole is
Qr(zy) ~ i(xi/z + a)~! (the & stands for co-rotation
or retrograde rotation, respectively). For a radial position
not too close to the black hole, the angular velocity in
the accretion disk follows its Newtonian value. Close to a
black hole Qg is limited due to the “rotation of space” w.
An injection radius z, = 8.3 gives Qp = 0.04 which is
about 0.1 Qg for ¢ = 0.8.
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Fig. 3. Solution S3. Properties of the critical wind solution
along a given flux surface (see parameters in Table 1). The
small window shows the solution branches around the slow
magnetosonic point enlarged. The wind branch is the one with
increasing velocity. The critical (magnetosonic) points are lo-
cated at the intersections of the two solution branches (see
Appendix C for details). Top: poloidal velocity cup (in c).
The asymptotic jet velocity of u, = 2.5 is reached after about
x = 10%. Middle: normalized proper particle density n (thick
line) and temperature T in K (thin line). Below: normalized
poloidal (thick line) and toroidal (thin lines) field strength,
By, By. Note that the injection radius is z. = 8.3
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4, Results and discussion

We now discuss our numerical solutions of the general rel-
ativistic magnetic wind equation for different field geome-
tries and input parameters. With the prescribed poloidal
field our solution is uniquely defined by the conditions
along the jet foot point and the condition of regularity
across the magnetosonic points. Due to the stationarity
assumption and the prescription of the field distribution,
the spatial range of the computation is in principle not
limited in radius. This is essential if one considers the
huge size of Galactic superluminal jets in terms of the size
of the central object.

In general, we show that the acceleration of plasma
from regions close to a black hole to the speed of 0.92c¢
observed for Galactic superluminal motion is possible to
achieve. Depending on the poloidal magnetic field distri-
bution, the asymptotic speed of the jet is reached at a
radius of about 100 gravitational radii.

For comparison the leading parameters for our astro-
physical solutions are summarized in Table 1. For illus-
tration, we show the example solution S1 demonstrat-
ing the typical features of the wind solution branches in
the case of super- or sub-critical parameters (Fig. C.1,
Appendix C). The meaning of our figures is explained in
detail in Appendix C.

4.1. The wind solution — a collimating relativistic jet

The time scale for the superluminal GRS 1915+105 jet is
at least one month until the blobs become invisible in ra-
dio light. Mirabel & Rodriguez (1994) estimated that the
ejection event for a blob lasts about 3 days. This time
period would correspond to a value of Qp = 0.016 (for
M =5 Mg) and an injection radius of about z, ~ 15. The
orbital period of the foot points rotating at the marginally
stable orbit (for ¢ = 0.8) is an order of magnitude less. The
time scale derived for the intervals between the emission of
jet knots is much larger as the period of the marginally sta-
ble orbit. The true location of the jet origin not yet known.
Therefore, we suggest that the jet foot point should be lo-
cated outside the marginally stable orbit in order to main-
tain a jet flow for some time. For the first set of solutions
we chose a foot point radius of z, = 8.3 or z, = 15.3.

The fact that the kinematic time scale of the blobs is at
least 10 times larger than the time scale for the generation
of the blobs supports the assumption of stationarity in our
calculations. Clearly, on the long-term time evolution the
presence of the blobs them self tells us that the jet flow is
time-dependent.

Compared to the other solutions in this sample with
x, = 8.3, solution S3 is weakly magnetized (Fig. 3). The
initial opening angle of the magnetic flux surface is large
(Fig. 2). The magnetic flux function ®(z) is constant along
the field line. The asymptotic poloidal velocity of u, = 2.5
is reached beyond a radius # ~ 10® (corresponding to a
distance from the black hole of z(x) ~ 4 108).
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Figure 3 also shows the distribution of other dynam-
ical variables. The poloidal field strength B, decreases
with the opening of the magnetic flux surfaces. While the
poloidal field distribution is prescribed in our approach,
the toroidal magnetic field profile is a result of compu-
tation and therefore determined by the critical wind so-
lution. At the injection point the toroidal field strength
is about two times smaller than the poloidal component.
Outside the Alfvén radius the toroidal field becomes much
larger than the poloidal component. For large radii the
magnetic field helix is dominated by the toroidal compo-
nent. In this region we find the toroidal field component
following a power law distribution d(log B4) ~ d(logz).
Therefore, in the asymptotic part the poloidal electric cur-
rent is almost constant I ~ zBg ~ const. In relativistic
MHD electric —fields cannot be neglected. The electric field
orientation is perpendicular to the magnetic flux surfaces
and the field strength is |[E 1| = (R/Ry1)Bp. Therefore,
the electric field is dominating the poloidal magnetic field
outside the light cylinder.

Density and temperature are interrelated by the poly-
tropic gas law. At the injection point the gas tempera-
ture T~ 10'° K (Fig. 3). The proper particle density
at the injection point n, depends from the choice of the
mass flux (in units of the magnetic flux). Therefore, the
calculated density profile n(z) may be applied to dif-
ferent mass flow rates (as long as the magnetization o,
is the same). Density and temperature decrease rapidly
along the field line following the polytropic expansion.
For x 2 30 the proper particle density follows a power
law n/n, = 4 10722z~ 18, At = ~ 1000 the gas tempera-
ture is about 10% K. Therefore we can estimate the size of
a X-ray emitting region of about several 10007, in diam-
eter. For the example of GRS 19154105 this corresponds
to 3.5 1079 arcsec. It would be interesting to calculate the
X-ray spectra of such an relativistically expanding high
temperature gas distribution.

Solution S3c2 has the same distribution of the mag-
netic flux function ® as solution S3. The magnetic flux
surfaces, however, are collimating more rapidly. The de-
rived critical wind solution has a higher magnetization,
although the terminal speed and the total energy density
E(T) of the S3c2 solution is similar to S3. Because of the
higher magnetization type S3c2 jet solutions have a cor-
respondingly lower mass flow rate. The asymptotic speed
is reached already at about x = 1000 equivalent to a dis-
tance from the central black hole of about z = 3200.

Solution S9 relies on the same magnetic flux surface
as S3c2. As a difference to S3c2, the magnetic flux func-
tion decreases with radius implying a (spatially) faster
magnetic field decay. As a consequence, the jet reaches its
asymptotic velocity of u, = 2.57 even at about z = 100.
The derived flow magnetization is higher compared to
S3c¢2 and S3 balancing the fast decay of the magnetic field
distribution and we obtain the same asymptotic speed.
This is interesting because it proves that not only the mag-
netization, but also the distribution of the magnetic flux
along the field line determines the asymptotic speed.
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Note that solution S9 reaches the same asymptotic
speed as S3c2 only because of its higher magnetization.
Indeed, a solution similar to S9, but having the same mag-
netization o, = 1356 as for S3c2, only reaches an asymp-
totic speed of up = 1.81 (not shown). Also, such a solution
would be only very weakly magnetized in the asymptotic
regime as the normalized flow magnetization changes as
o ~ 1/\/z for the & ~ 1 solutions or o ~ 1/z for the
® ~ 1/x solutions?, respectively. Similarly, in compari-
son, the asymptotical toroidal magnetic field is weaker by
some orders of magnitude (a factor ten at x = 1000). In
all the solutions presented in this paper the asymptotic jet
is dominated by the kinetic energy. For the solutions with
the large injection radius z, = 8.3, the magnetic energy
is being converted into kinetic energy almost completely
already at a radius of about several 100 gravitational radii.

Solution S4 has the same magnetic flux distribution as
S9, however, the field line is only weakly collimating. The
asymptotic jet speed and the magnetization parameter is
about the same. Only, the initial acceleration is weaker
because the magneto-centrifugal mechanism works less ef-
ficient in the field with a smaller opening angle.

Solution S4b has essentially the same field distribution
as S4, but the injection radius is chosen larger. Therefore,
the iso-rotation parameter Qp is decreased by a factor of
(8.3/15.3)3/2. As a result, a critical wind solution with
a comparable asymptotic speed could be obtained only
for a very high plasma magnetization. This proves that
highly relativistic jets can be expected even if the jet is
not emerging from a region close to the black hole. Such a
solution is feasible if the mass flow rate in the jet decreases
with radius faster than the field strength (or flux distribu-
tion). The question remains whether such field strengths
can be found at this position.

We summarize the results of this section. The asymp-
totic speed is determined by the plasma magnetization
and the distribution of the magnetic flux along the field
line. The shape of the magnetic flux surface determines the
velocity profile along the field, thus, the position where the
asymptotic velocity is reached. Highly relativistic outflows
can be obtained even if the jet foot point is not very close
to the black hole. However, in this case a high plasma
magnetization is necessary. But this seems to be in con-
tradiction to the accretion disk theory (see below).

4.2. The role of the magnetization

The magnetic acceleration of jets and winds can be un-
derstood either as a consequence of converting Poynting
flux (magnetic energy) to kinetic energy or due to Lorentz
forces along the poloidal field line. In general, the higher

2 However, in the hot wind equation it is not possible to
change only one single parameter in order to obtain a new set
of critical wind solutions. In the case discussed above, with
the decreased magnetization (i.e. an increased mass flow rate),
the Alfvén radius is correspondingly smaller (here, xa = 21.11
compared to za = 22.93 for S9).
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Fig. 4. Wind solutions S9 (upper left), S3c2 (lower left), S4 (upper right), S4b (lower right). Branches of poloidal velocity auyp
along the field line in units of the speed of light. For the solution parameters see Table 1. See caption of Fig. 3 for further

explanation

the plasma magnetization the more energy can be trans-
formed into kinetic energy of the wind. It has been shown
theoretically for a cold wind that the relation between
magnetization and asymptotic velocity is that of a power
law, upoo ~ on/3, for conical outflows (Michel 1969) and
for collimating flows (Fendt & Camenzind 1996), if the
flux distribution is the same, respectively. However, both
papers do not consider gravity (and no general relativistic
effects). The new solutions presented in this paper are in
general agreement with those results in the sense that a
higher magnetization leads to a higher velocity. However,
we are dealing with the hot wind equation and cannot de-
rive a power law distribution from Table 1, since the other
wind parameters may vary between the different solutions.
In difference to the cold wind solutions the magnetization
is not a free parameter. Instead, it is fixed by the regular-
ity condition at the magnetosonic points.

The wind magnetization is determined by the disk
properties at the jet injection points along the disk sur-
face. For a standard thin disk model that the ratio of
the mass flow rate in the jet to the disk accretion rate
is about 1% (Ferreira 1997). The observational data for
various jet-disk systems are consistent with this theo-
retical value. The accretion disk magnetic flux can be

estimated assuming equipartition between magnetic field
pressure (energy) and gas pressure (thermal energy) in the
disk (see Sect.3.4.1). From Eq.(7) we find an equiparti-
tion field strength of about Beq ~ 5 108 G, if awis ~ 0.1
and R, = 10r,. Equation (8) then defines an upper
limit for the plasma magnetization at the injection ra-
dius, o, = 5 104, for ]\./[J-e‘E ~ 0.1 Myee. Such a value is in
general agreement with our solutions (Table 1). The maxi-
mum equipartition field strength estimated with the above
given formulae can be much larger for Galactic black hole
jet sources as for AGN (see Eq. (7)). For a low black hole
mass (with a smaller horizon) the disk comes closer to the
singularity and therefore becomes hotter.

Again, we note that our estimate for the magneti-
zation comes from comparison of different disk models
(Sect. 3.4.1). However, this does not mean that we apply
a certain disk model for our computations.

Finally, we come back to the wind solutions S4 and
S4b. As already mentioned, these solutions demonstrate
that the jet origin must not be necessarily close to the
black hole. One may think that a strong magnetization
at larger disk radii would do the job. On the other hand,
the equipartition field strength in the disk decreases with
radius implying that the highest magnetization and, thus,
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jet velocities must be expected from the inner part of the
disk. Only, if the mass transfer rate from the disk into
the jet decreases more rapidly with radius than the field
strength, the magnetization increases.

4.3. The influence of the rotating black hole

As the main issue of our paper is the search for MHD wind
solutions in Kerr metric, it is necessary to clarify the role
of general relativity for the jet acceleration itself. Clearly,
at an injection radius of R, = 8.3 general relativistic ef-
fects are not very dominant.

For comparison we have calculated wind solutions for
a smaller injection radius xz, = 3.3 (solution S3q, S3u,
Figs. D.1, D.2). The main effect is a much higher asymp-
totic velocity resulting from the rapid rotation, Q, at
the smaller radius z,. With our choice Qr = 0.14 the
asymptotic velocity drastically increases from u, = 2.503
(S3) to up = 8.4792 (S3q). In order to obtain the critical
solution for the higher rotation rate, the wind parame-
ters have to be changed accordingly. o, is decreased by a
factor of two, while ¢, and wup, must be increased sub-
stantially. The large sound speed is in agreement with the
smaller injection radius, since a higher disk temperature
and pressure is expected close to the hole. The Alfvén ra-
dius is decreased by a factor of four, however, its location
relative to the outer light cylinder remains the same.

The limiting case of Minkowski metric can be achieved
by setting M = 0 and @ = 0 in the Boyer-Lindquist
parameters (see Appendix A). For such a wind solution
(S3u2) the magnetization is lower, although the asymp-
totic wind speed is the same as in the Schwarzschild case
(see Fig. D.2). This becomes clear if we take into account
that for S3u2 the wind flow does not have to overcome
the gravitational potential. Thus, less magnetic energy is
needed to obtain the same asymptotic speed by magnetic
acceleration. Further, we find from solutions for different
angular momentum parameters a that in general the wind
flow originating from a black hole with a smaller « is faster.
As an extreme example we show the solution S3u3 calcu-
lated with a ~ 0 but otherwise the same parameter set
(see Fig. D.2). This solution is magnetized stronger com-
pared to the case of a = 0.8, thus, resulting in a higher
asymptotic wind velocity. We believe that the reason for
such a behavior is the fact that the effective potential of
a black hole weakens (at this location) for increasing val-
ues of a. Therefore, less magnetic energy is necessary to
overcome the effective potential.

In the end, the results of this section are not surprising.
They demonstrate that the wind/jet is basically magneti-
cally driven. As a consequence, the acceleration takes place
predominantly across the Alfvén point as expected from
MHD theory. Therefore, the scenario is similar to the case
of classical pulsar theory in Minkowski metric. For rela-
tivistic jets with a high magnetization the Alfvén point is
always very close to the light surface, which is defined by
the angular velocity of the field line foot point. Usually,
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the Alfvén point is located at a radius large compared to
the gravitational radius. Thus, the influence of the general
relativistic metric is marginal. Only, if the Alfvén radius
comes close to the hole, the choice of the metric will de-
termine the jet acceleration.

4.4. The question of collimation

The huge size observed for the knots of the Galactic su-
perluminal sources leaves the possibility that the jet is
basically un-collimated.

Our numerical solutions have shown that the asymp-
totic speed of the jet does not depend very much on the
degree of collimation in the flow. That speed is reached
within a distance of about 108rg. However, the observed
upper limit for the knot size is still a factor 10 larger.
Therefore, from our solutions, the observed knots are con-
sistent with both a collimated and an un-collimated jet
flow. In particular, solution S9 which is more collimated,
has the same asymptotic speed as solution S4.

In the case of extragalactic jets a high degree of
collimation is indicated. The “lighthouse model” by
Camenzind & Krockenberger (1992) gives opening angles
of only 0°1 for the quasar 2C 273 or 0°05 for typical
BL Lac objects. The question arises whether there could
be an intrinsic difference between the jets of AGN and
Galactic high energy sources. Why should Galactic su-
perluminal jets be un-collimated? A difference in the jet
magnetization seems to be unlikely since the jet velocities
are comparable. We hypothesize that if the jets of these
sources are systematically different, this should rather be
caused by the conditions in the jet environment. If the
jets are collimated by external pressure, a different ex-
ternal/internal pressure ratio will affect the degree of jet
collimation. Extragalactic jets are believed to be confined
by an external medium (see Fabian & Rees 1995; Ferrari
et al. 1996). It is likely that Galactic superluminal sources
provide an example where the jet pressure exceeds the
pressure of the ambient medium. While AGN jets bore a
funnel through the galactic bulge, Galactic superluminal
jets freely expand into the empty space. Such a picture
seems to be supported by the fact that the Galactic su-
perluminal jet knots move with constant velocity over a
long distance.

5. Summary

We have investigated magnetically driven superluminal
jets originating from a region close to a rotating black
hole. The stationary, general relativistic, magnetohydro-
dynamic wind equation along collimating magnetic flux
surfaces was solved numerically. The wind solutions were
normalized to parameters typical for Galactic superlumi-
nal sources.

The assumption of stationarity allows us to calculate
the jet velocity on a global scale over a huge radial range in
terms of radius of the central source. The wind is launched
close to the rotating black hole at several gravitational
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radii. The calculation was performed up to a radius of 10*
gravitational radii, but is in general not limited in radius.
In some cases the asymptotic speed may be reached only
at a distance of several 10® gravitational radii. Different
magnetic field geometries were investigated. The model
allows for a choice of the shape of the magnetic flux surface
and the fluz distribution of that field.

The physical wind solution is defined by the regular-
ity condition at the magnetosonic points. As the poloidal
field is prescribed, the choice of the following input pa-
rameters determines the wind solution completely, (i) the
injection radius of the matter into the jet, (ii) the injection
velocity and (iii) the plasma magnetization (the ratio of
magnetic flux to mass flux). The results of our numerical
computation are the following.

— In general, the observed speed for Galactic superlumi-
nal sources of more than 0.9 ¢ can be achieved;

— The flow acceleration is magnetohydrodynamic and
takes place predominantly around the Alfvén point.
General relativistic effects are important only if the
wind originates very close to the black hole. In order to
overcome the gravitational potential, the critical wind
solution must be higher magnetized in order to reach
a similar asymptotic speed. This has been proven by
calculating the Schwarzschild and Minkowski limit of
the wind equation;

— For a fixed magnetic field distribution the asymptotic
jet velocity depends mainly on the plasma magnetiza-
tion, in agreement with earlier papers (Michel 1969;
Fendt & Camenzind 1996). The higher the plasma
magnetization, the higher the final speed. The velocity
distribution along the magnetic field shows a saturat-
ing profile depending on the distribution of the mag-
netic flux;

— The magnetic flux distribution along the field line also
influences the plasma acceleration. Since the real field
distribution is not known, we have considered two cases
which show the typical behavior and which are proba-
bly close to the reality. We find that the jet velocity in
a (spatially) faster decaying field can be the same as
long as the magnetization at the injection point is high
enough in order to balance the effect of the decrease
in field strength;

— For jet solutions not emerging from a region close to
the black hole, a highly relativistic velocity can be ob-
tained if the flow magnetization is sufficiently large.
However, one we hypothesize that the field strength
required for such a magnetization can be generated
only close to the black hole;

— Investigation of flux surfaces with a different degree
of collimation has shown that both field distributions
allow for a relativistic velocity. The asymptotic jet ve-
locity is reached considerably earlier in the case of
the faster collimating flux surface. The jet reaches
its asymptotic speed at a distance from the injection
point of 30007, or 10574, depending on the degree of
collimation. The latter we measure with the opening
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angle of the collimating flux surface at this point and
is about 15° or 45°, respectively. This distance is below
the observational resolution by several orders of mag-
nitude. Therefore, the question of the degree of colli-
mation for the superluminal jets of GRS 1915+105 and
GRO 1655—40 could not be answered;

— Motivated by the huge size of the observed knots in the
Galactic superluminal jets, we point out the possibility
that the jet collimation process in these sources may
be intrinsically different in comparison to the AGN.
For example, the upper limit for the knot diameter in
GRS 19154105 is about 10? Schwarzschild radii, which
is distinct from typical estimates for AGN jets with
diameters of about 100-1000 Schwarzschild radii;

— The gas temperature at the injection point is about
10'% K which is one order larger than the disk tem-
perature at this point. With the polytropic expansion
the temperature decreases rapidly to about 106 K at a
distance of 5000 Schwarzschild radii from the source.
Both the temperature and the mass density follow a
power law distribution with the radius;

— The calculations show that the jet magnetic field is
dominated by the toroidal component. Similarly, the
velocity field is dominated by the poloidal component.

In summary, our numerical calculations have shown that
the highly relativistic speed observed for galactic superlu-
minal sources can be achieved by magnetic acceleration.
For a given magnetic flux surface we obtain the complete
set of physical parameters for the jet flow. The calcu-
lated temperature, density and velocity profile along the
jet would provide a interesting set of input parameters for
computing the spectral energy distribution.
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Appendix A: Parameters of Kerr metric

For the reason of completeness, here we list the parame-
ters applied in the equations of Kerr geometry. In Boyer-
Lindquist coordinates with the parameters

2

r? +a? cos? 6, A=r’+a®>—-2Mr,

p =
2?2 = (1P +a%)? —a’Asin®0, O =(/p) sind,
w=2aMr/cX? a=pVA/T,

the components of the metric tensor are defined as
= owm(2r/p(r,0)%* = 1)

go3 = —om2rasin(0)?/p(r,0)?

gu = omp(r,0)*/A(r,0)

g22 = omp(T, 9)2

g33 = omX(r,0)?sin(0)?/p(r,0)?

Det(gun) = —g11922(930 — go0gs3)-

goo
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In our paper we have chosen a negative sign of the metric,
om = —1.

Appendix B: Wind polynomial

Here we provide the polynomial coefficients of the gen-
eral relativistic magnetohydrodynamic wind Eq. (4). For a
derivation, see Camenzind (1986), Takahashi et al. (1990),
or Jensen (1997). The specific angular momentum, prop-

erly normalized, is
L = —(gos + 2wrgs3)/ (900 + Qrgos)- (B.1)

For convenience we define the following parameters,

2 g @\ ®
Ci = — 5 Ix = Co = +/— *
C A (“p*\/ g c1>*> 2TV TIg,,
Dy = goo + 2Qprgo3 + Qgss, Do = (1 —QpL)?
D3 = —(g33+ 2Lgos + ngoo)/(ggz), — §00933)-

With the corresponding values at the injection radius z,
the total specific energy density of the flow E is defined
as

*Umuf(uﬁ* +1)(D1s + Um]wf)2

E? = :
(D14 + 2001 M2) Dy + D3, M2

(B.2)

where M, denotes the Alfvén Mach number at the injec-
tion radius. The polynomial coefficients of the wind Eq. (4)
are
= C?
@2,2n+m = 20mCoDy
a3on = DI+ O3+ omE*C5Ds
Ason-m = 20mC2Dy + 2E*CyDy
a5,2n—2m = D} +omE>D1 Dy
a6,n+3m = 4C1C3

a1.2n+2m

7nt2m = 60mC1C2Dq
A8 mem = 2C1D? 4+ 4C,C2 4 6,,2E*C1C2D;3
d9.n = omb6C1CaDy +2E2C1Cy Dy
a10,n—m = 201D?
@11.4m = 6C3C32
@12.3m = 60mC2CyD,y
@13,2m = CiD3 +6CiC3 + o E*C3C3 Ds
A14m = 60mCiCoD;y
15,0 = C¥D?
a16,5m—n = 4C;C3
a17.4m-n = 20:mC3C2Dy
A18.3m-n = 4C3C3
@19.2m—n = 20:mC3Cy Dy
@20.6m—2n = C{C3
91 am—2n = C{C3.

All coefficients with the same second index have to be
summed up, A; = Zj a@j;. The polytropic indices n = 5,
m = 3 give a polynomial of 16th order.
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Fig. C.1. Example solution S1. Overlay of solutions up(z) for
three different parameter sets. o, = 49830, csx = 0.4585 gives
the critical solution which is regular across the magnetosonic
points. The critical wind solution is the continuous branch
starting with low velocity and accelerating to high speed. The
magnetization o, is the critical parameter for the FM point,
whereas cs. is the critical parameter for the SM point. Sub- or
super-critical solutions are obtained by variation of the param-
eters oy, cs«. The choice of o, = 51830, cs» = 0.4485 results in
gaps in x(up), the choice of o, = 48830, csx = 0.4685 in gaps
in up(z). The other parameters are xa = 31.2, up, = 0.01,
zx = 3.0, Qr = 0.1 Qg = 0.025, a = 0.8

Appendix C: Example wind solution in Kerr metric

Here we show an example solution of the wind Eq. (4).
The parameters are chosen such that a variation of o,
and cg, clearly demonstrates the criticality of the wind
solution. They do not necessarily match astrophysical con-
straints. However, the asymptotic poloidal velocity is com-
parable to the speed of the Galactic superluminal sources.
The solution (solution S1) considers a highly magnetized
plasma flow with o, ~ 510%. The flux geometry is that of
a slightly collimating cone with an opening angle decreas-
ing with distance from the source.

Figure C.1 shows the solution branches with a posi-
tive ug. An overlay of solutions for three parameter sets is
displayed in order to show the typical behavior of wind so-
lution. There is only one unique solution, the critical solu-
tion, with one branch continuing from small to large radii
without any gaps in u, or . The magnetosonic points are
located at the intersections of the solution branches of the
critical solution. The critical wind solution is regular at
all three magnetosonic points. It is defined by a wunique
set of the parameters E, L and o (for Qg prescribed). In
the critical solution the slow magnetosonic point is passed
close to the foot point of the jet. The Alfvén point is lo-
cated at x = 31 and the fast magnetosonic point not far
beyond. The asymptotic speed of the flow is u, = 2.28,
equivalent to v, ~= 0.9 ¢ (not shown in the figure).

Sub- or super-critical wind parameters lead to solution
branches which are not defined for all radii or all velocities.
Even for a slight variation of these parameters the solu-
tion will be not continuous anymore, implying “jumps”
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Fig. D.1. Example solutions with a small injection radius z, =
3.3. Rotation rate Qr = 0.14. Solution S3q with a = 0.8, za =
5.83, o, = 480 has a high asymptotic velocity u, = 8.48

or “shocks” across the gaps in the solution branches. At
these locations the stationary character of the solution
most probably breaks down. Such solution branches are
inconsistent with the assumptions and are therefore re-
ferred to as unphysical.

Appendix D: The wind solution for a small
injection radius

For comparison, we show solutions of the wind equation
with a small injection radius x, = 3.3 as well as solutions
in the limit of Minkowski and Schwarzschild metric (for
a discussion see Sect.4.3). Solution S3q corresponds to
solution S3, however, with a magnetization smaller by a
factor of two. The asymptotic speed is u, = 8.48 and
much larger than for S3. Also solutions S3u, S3u2, S3u3
correspond to S3 and S3q. However, in this case the Alfvén
radius and the derived magnetization parameter are lower
resulting in a lower asymptotic speed. Solution S3u is the
Kerr solution for a = 0.8, S3u3 the Schwarzschild solution
(a = 1078), and S3u2 the Minkowski solution where we set
a = 1078 and M = 0 in the Boyer-Lindquist parameters
(see Appendix A). For a comparison of all solutions see
Table 1.
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