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Chapter 1Introdu
tion
1.1 ObservationsThe phenomenon of highly 
ollimated plasma streams with high velo
ities,
alled jets, has been observed amongst a variety of obje
ts on wide s
ales inenergies and spatial extensions. The most energeti
 and largest jets emergefrom the nu
lei of a
tive galaxies (AGN) (e. g. Baade & Minkowski 1954;Zensus et al. 1995). Smaller jets with lower velo
ities have been observedaround Young Stellar Obje
ts (YSO) (e. g. Mundt & Friedt 1983; Mundt& Eisl�o�el 1998) and re
ently also around mi
ro-quasars (MQ), what arethought to be high-mass X-ray binaries (e. g. Mirabel & Rodriguez 1999).There are also reasons to believe that Gamma-Ray Burst (GRB) might be a
onsequen
e of a jet-like sour
e (for a re
ent review M�esz�aros 2002). Typi
alfor jets is that they extend to huge distan
es away from the 
entral obje
t(with radii up to 1000 times the size of the 
entral obje
t), with the largestthat 
an extend to up to 100 kiloparse
s.Eviden
e for a 
entral bla
k hole in the nu
leus of the E0 ellipti
al M87,that 
ontains one of the nearest extra-gala
ti
 jets (at 14.7 Mp
) and is lo-
ated at the 
enter of the Virgo 
luster, was found by Ford et al. (1994). UsingHST spe
tros
opy of its nu
leus, strong eviden
e was found for a rapidly ro-tating ionized gas disk at its 
enter from whi
h a mass for the 
entral bla
khole was inferred of 3 � 109 Msun. Also Kepler rotation for a 
ool thin diskaround a bla
k hole is found using VLBI maser emission in region between0.13 and 0.26 p
 in the NGC4258 galaxy that also 
ontains a jet (Myoshi atal. 1995). In the 
ase of mi
ro-quasar GRS 1915 eviden
e has been found for3



Figure 1.1: Top left: Opti
al image of the jet in the M87 ellipti
al galaxy. Topright: VLBA radio image of the mi
ro-quasar PKS1915 (Dhawan, Mirabel &Rodr�iguez 2000). Bottom: HST images of protostellar jets around Young Stel-lar Obje
ts (s
ale represents 1000 AU).a 
entral bla
k hole with a mass of about 14 Msun (Greiner et al. 2001). Theapparent 
orrelation of jet-a
tivity with the presen
e of an a

retion diskonto a 
entral bla
k hole has led to the general belief that the a

retion diskand the bla
k hole play an important part in the produ
tion pro
ess of thesejets.The M87 jet has been observed extensively at di�erent wavelengths (VLAradio, HST opti
al/uv), has strong 
ollimation (� 6o), and extends to largeranges ( 100 kp
). Be
ause it is relatively 
lose and is strong it is an ideal jetto test models on jet formation. Junor et al. (1999) and Biretta et al. (2002)showed that the 
ollimation of the M87 jet o

urs in an area < 30 RS (whereRS is the S
hwarzs
hild radius) to the fully 
ollimated zone > 100 RS. Forthe bla
k hole mass of M87 the RS 
orresponds to about 0.0003 p
. The4



measured opening angles for the jet as 
an be seen in Fig. 1.2 show that the jet
ollimates from an opening angle of� 60o to� 6o. Their radio interferometryobservations give the most detailed view yet on the 
ollimating region of ajet.

Figure 1.2: Radio observations of the 
ollimation regime in the M87 jet (takenfrom Junor et al. 1999). On the left: The radio stru
ture of the 
ollimating jet inthe 
ore of M87. On the right: The jet opening angle at di�erent distan
es fromthe jet 
ore. This shows 
learly the 
ollimation of a wide wind into a narrow jet.The question whether the jets 
ontent 
onsists of ele
tron-positron pairs,or ele
tron-proton pairs has not been answered yet. Celotti & Fabian (1993)have addressed the issue of 
ontent of a sample of radio-loud quasars. Theysuggest that for the sample as a whole, either the 
ows are 
old ele
tron-positron 
ows or ele
tron-proton 
ows with an energy 
ut-o� of � 50 MeV.Observations of the M87 jet by Reynolds et al. (1996) indi
ate that the M87jet is likely to be an ele
tron-positron dominated jet, based on standardsyn
hrotron self-absorption theory. The question remains, however, whetherbased on a small sample of jets, a 
laim 
an be made over the matter 
ontentof jets in general.There are many indi
ations that magneti
 �elds are present within thejet. The most obvious is the syn
hrotron emission. Perlman et al. (1999;2002) have done extensive resear
h syn
hrotron emission, and polarizationof the M87 jet. They report high polarizations that suggest highly orderedmagneti
 �elds. Herrnstein et al. (1998) found for the disk in NGC4258 anupper limit for the magneti
 �eld strength in the toroidal 
omponent of BT �300 mG. 5



Figure 1.3: Polarization measurements of the M87 jet in the radio (lower) andopti
al (upper), taken from Perlman et al. (1999). The two false-
olor representa-tions shows the total 
ux and the total degree of polarization for the opti
al andthe radio emission.Super-luminal motions of 3
�6
 have also been observed in the 
ase of jeteje
ted by AGN (for M87 by Biretta et al. 1999) and also by mi
ro-quasars(Mirabel & Rodriguez 1999). This super-luminal motion is the result of aproje
tion e�e
t: When matter moves with velo
ities 
lose to the speed oflight in the dire
tion of the observer, a transverse apparent velo
ity 
an beobserved that ex
eeds that of light. The fa
t that these type of jets have thesevery high velo
ities distinguishes them from their low-velo
ity 
ounterpartsaround YSOs. If the super-luminal motion observed is interpreted as theplasma motion itself, this implies high �-fa
tors, whi
h needs a relativisti
treatment of the jet stru
ture. These high velo
ities imply for a hydromag-neti
ally driven jet, that the poloidal ele
tri
 �elds will play a relevant rolein the for
e-balan
e, (EP / �BP ), whi
h is a relativisti
 e�e
t. Therefore arelativisti
 treatment of these jets is inherently di�erent from a Newtoniantreatment.
6



1.2 From observations to theoryMany e�orts have been made to explain the origin of these jets. Initially ame
hanism to 
ollimate the jet by gas pressure was suggested by Blandford& Rees (1974). They proposed that external gas pressure 
ould 
reate a 'deLaval nozzle' through whi
h hot gas might be 
hanneled outwards into a su-personi
 
ow. The high pressures needed to obtain this 
ollimation on a verysmall s
ale would 
ool rapidly, and should be observable. This has not beenobserved, so its absen
e would rule out this model (Krolik 1999). Althoughradiation for
es 
ould drive a wind, on
e one gets to mildly relativisti
 speeds,a medley of e�e
ts make further a

eleration by a dire
ted 
omponent of ra-diation extremely ineÆ
ient (Phinney 1987; I
ke 1989). Blandford & Payne(1982) proposed a me
hanism to eje
t matter from the disk into its magneto-sphere. When gas is in balan
e between gravitation and 
entrifugal for
eswhen poloidal magneti
 �elds are present, this leaves the possibility for amagneto-
entrifugal instability. If the disk is magnetized, and has a poloidalmagneti
 �eld that makes an angle < 60o from the disk plane, (see Fig. 1.4)Blandford & Payne (1982) found that the gas may slide along the �eld linesaway from the disk equator and then be
omes 
entrifugally dominated lead-ing to a

eleration of the gas away from the 
entral obje
t. This me
hanismis not only a possible me
hanism of the initial a

eleration of the gas, it alsois a me
hanism to remove angular momentum of the a

retion disk, allowingit to a

rete onto the 
entral obje
t. In order to des
ribe these out
ows,a hydromagneti
 des
ription is required. The magneti
 �elds observed (seeSe
tion 1.1) in the jets also provide good support for this idea. Althoughtheir presen
e does not ne
essarily imply their dynami
s relevan
e in the jet,the fa
t that they theory needs them for the jet inititation and a

elerationand that are observed does give a good argument for the hydromagneti

hara
ter of the jets.The model that has emerged from these observations and has be
omewidely a

epted, is as follows: A 
entral obje
t (YSO, bla
k hole) is sur-rounded by a magnetized a

retion disk (see Fig. 1.5). Matter is lifted fromthe disk into the magneto-sphere and a

elerated along the �eld lines. Theinitial wind then 
ollimates into the jet, either due to self-
ollimation or tothe ambient gas pressure. There are a lot of open questions still: How to
ollimate and a

elerate a low-velo
ity wind into a high-velo
ity 
ollimatedjet? How to lift the matter from the disk into the magneto-sphere? How isthe magneti
 �eld generated inside the disk, or is it the �eld of the 
entral7



Figure 1.4: Equipotential surfa
es for a 'bead on a wire' (plasma along mag-neti
 �eld line), 
orotating with the Keplerian angular velo
ity at a radius r0,whi
h is released from rest at r0. The equation for the surfa
es is � (r; x) =�GMr0 [1=2� rr0�2 + r0(r2+z2)1=2 ℄ = 
onstant. These surfa
es are equal intervals of� (r; z). If the wire makes an angle of less than 60o with the equatorial plane, theequilibrium is unstable (taken from Blandford & Payne 1982).obje
t? How stable is a hydro-magneti
 driven jet? In this thesis I will fo
uson the �rst question. Before presenting the work that I have done for mygraduation proje
t with Christian Fendt (AIP, Potsdam), I �rst give a briefreview on the work that has been done in the �eld.1.3 Review on models of (relativisti
) MHDjetsThere has been done a great amount work of modeling (relativisti
) jets. Abrief overview will be given here of the di�erent approa
hes whi
h have beenused.The types of studies that have been done 
an be divided broadly into sta-tionary and time-dependent studies. An approa
h to fully self-
onsistentlydes
ribe the initial formation and then the 
ollimation, propagation and sta-8
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Figure 1.5: A s
hemati
 model for the jet stru
ture: A 
entral obje
t, surroundedby a magnetized a

retion disk. The gas lifts from the disk and moves along thepoloidal magneti
 �eld lines and 
ollimated into a narrow jet.bility of the jets would of 
ourse need a time-dependent model. The regionsfrom the initial wind formation out to the 
ollimated jet stru
ture spans anenormous spatial range, what makes it diÆ
ult, even nowadays, to solve this
ompli
ated and time 
onsuming problem. Be
ause these problems have tobe solved numeri
ally and due to the la
k of 
omputational power only smallregions above the disk 
an be simulated and typi
al time-s
ales of these sim-ulations only span up to one rotation of the outer part of the disks, whi
his too little in order to address the stability of the jet formation pro
ess. Inorder to study the jet on global s
ales the problem is often simpli�ed, basedon reasonable argumentation, by assuming the jet to be stationary. Be
ausethis assumption is made for the work presented in this thesis I will mainly9



give a review narrowed down on the stationary models.Stationary models The resear
h done on stationary hydro-magneti
 drivenjets has been 
on
erned mainly with 
onsidering the 
ross-�eld for
e balan
e,known as the Grad-Shafranov Equation (GSE), and the Wind-Equation (alsoknown as the Bernoulli Equation), that des
ribes the energy 
onservationalong the 
ow lines.Blandford & Payne (1982) started out with the assumption that the ge-ometry of the jet was self-similar. This 
ould be used to redu
e the 
ompli-
ated GSE into a set of ordinary di�erential equations. Self-similarity 
an bemotivated by assuming a power-law distribution for various physi
al quan-tities (gas density, pressure, and magneti
 �eld distribution). In the 
ase ofa Keplerian disk, this holds quite well 
lose to the disk surfa
e. Their ap-proa
h was extended by Li et al. (1992) for relativisti
 jets. A general resultof the self-similar approa
h is that the jet tends to re-
ollimate in the 
aseof high fast-magnetosoni
 Ma
h numbers. This has been proven to be anartifa
t of the self-similar assumption (Ferreira 1997). Pelletier & Pudritz(1992) dropped the self-similar Ansatz and took into a

ount the gas pres-sure. Although their solutions were two-dimensional, the regimes below theslow-magnetosoni
 point and the region beyond were treated separately.Another self-
onsistent approa
h to solve the GSE was 
ondu
ted by Li(1993). By starting with an initial 
ux-�eld distribution at the base of thejet, a set of 
ux �elds was 
onstru
ted by 
onsidering lo
ally the for
e-balan
eand 
onserving the 
onserved quantities: the mass 
ow along the 
ux surfa
es� (	), the total energy E (	) and the angular momentum per unit densityL (	).Lovela
e et al. (1991, 1993) proposed a parameterization of the 
ylin-dri
al radius in terms of the jet radius, whi
h was 
hosen together withseparation of variables. This, however, did not 
onsider the lo
al-for
e bal-an
e des
ribed by the GSE. Contopoulos & Lovela
e (1994) returned to theself-similar Ansatz and presented an exa
t solution by 
onsidering the lo
alfor
e-balan
e. Contopoulos (1995) also proposed an alternative driving me
h-anism for jets, in absen
e of large poloidal �elds. In this 
ase the magneto-
entrifugal me
hanism by Blandford & Payne does not work, and the matterthen 
an be a

elerated by the pressure gradient of strong toroidal �eldsprovided by the a

retion disk.Heyvaerts & Norman (1989) derived analyti
ally that axisymmetri
 MHD10




ows en
losing a net poloidal 
urrent will 
ollimate to a 
ylindri
al shape inthe asymptoti
 region far away from the 
ow origin. This has been provedlater in the 
ase of relativisti
 jets as well by Chiueh et al. (1991). Theresulting one-dimensional version of the GSE has been studied by Appl &Camenzind (1993). Instead of a self-similar approa
h, they assumed the 
owto be for
e-free, i. e. the ele
tromagneti
 for
es dominate the inertial for
es.They found that the jet stru
ture 
ould be 
hara
terized by a 
ore-radius,and that most of the magneti
 
ux and ele
tri
 
urrent lies within this 
oreradius. This approa
h was extended by Fendt (1997) for di�erential rotationof the 
ux surfa
es. It was found that jets with di�erential rotating 
ux-surfa
es will have narrower jets in terms of the asymptoti
 light 
ylinder (seeSe
tion 2.2).Okamoto (1992) investigated the possibility of energy and angular mo-mentum extra
tion from a for
e-free bla
k hole magnetosphere due to a wind.He derived an analyti
al expression that 
ouples the the poloidal 
urrentI (	) and the �eld rotation 
F (	). This work was based on the idea Bland-ford & Znajek (1977) proposed, that for
e-free magneti
 �elds 
oupled to afast rotating bla
k hole may lead to extra
tion of energy and angular mo-mentum by a pure ele
tro-magneti
 pro
ess (Blandford-Znajek me
hanism).The most general treatment (but not full solutions) of the GSE in
ludinginertial terms 
lose to a bla
k hole has been done Nitta et al. (1991) andBeskin & Pariev (1993). Takahashi et al. (1990) obtained solutions of theWind-Equation in Kerr metri
, mainly dis
ussing the a

retion 
ow. Thishas been extended by Fendt & Greiner (2001) dis
ussing the leading param-eters of Kerr metri
 a and M on the 
ow a

eleration.Two-dimensional stationary models Two-dimensional solutions for theGSE have been 
al
ulated by amongst others Sakurai (1985). These werenon-relativisti
 solutions in
luding inertial terms, but for a slow-rotatingstar (initial radial out
ow, Sakurai 1985) and disk (split-monopole like initial
on�guration, Sakurai 1987). These, however, show a low degree of 
ollima-tion, mainly due to the slow rotation. For relativisti
 for
e-free MHD winds,Camenzind (1986,1987) developed a method, based on a �nite elements ap-proa
h, in order to solve the axisymmetri
 GSE. Although the solutionswere two-dimensional, the regularity 
ondition at the light surfa
e were nottreated 
orre
tly. These were extended by Fendt et al. (1995, 1997) to 
al-
ulate the global solution for highly magnetized stars (Fendt et al. 1995)11



and for rotating bla
k holes (Fendt 1997). Also the regularity 
ondition wastreated properly. Fendt & Memola (2001) in
luded, in a spe
ial relativisti
approa
h, the di�erential rotation terms of the 
ux-�elds. Bogovalov (1997)has obtained stationary solution for a relativisti
 MHD wind, by solving thetime-dependent problem. Also he �nds solutions with only weak 
ollima-tion. Re
ently Heyvaerts & Norman (2003) presented a general and globalsolution for non-relativisti
 MHD jets and winds in
luding inertial terms (apolytropi
 gas pressure was assumed). Here also the return 
urrent is takeninto a

ount. They found that for winds, where the kineti
 energy dominatesat in�nity, the magneti
 surfa
es fo
us into exponential paraboloids and for aPoynting 
ux dominated wind, the surfa
es 
ollimate into nested 
ylindri
alsurfa
es. Their approa
h takes only 
onstant rotation of the 
ux-surfa
esinto a

ount.1.4 Topi
 of this thesisThe main purpose of this thesis is to 
al
ulate the stationary axisymmetri
stru
ture of a hydromagneti
ally driven relativisti
 jet. I will fo
us mainlyon the 
ollimating regime of the jet (from the region at the disk/bla
k hole,where plasma gets lifted into a wind, up to the fully 
ollimated asymptoti
jet). The stru
ture will be 
al
ulated by 
onsidering the for
e-free lo
al for
ebalan
e a
ross the surfa
es of 
onstant magneti
 
ux. The two approa
hespreviously done by Fendt (1997; from now on F1997a), who solved the ax-isymmetri
 stru
ture in
luding a Kerr metri
 of the bla
k hole, and that ofFendt & Memola (2001; from now on FM2001) who 
al
ulated the axisym-metri
 stru
ture in the spe
ial relativisti
 regime, but in
luding di�erentialrotation term of the magneti
 �eld lines, will be 
ombined in this approa
h.The di�erential rotation is needed be
ause as the magneti
 �eld emanatesfrom the a

retion disk it is likely to be rotating di�erentially. For a spinningbla
k hole, its in
uen
e on the 
hara
ter of the ele
tromagneti
 �elds has tobe taken into a

ount. This 
ombination also allows for a 
onsistent s
alingof the jet-stru
ture with the mass of the bla
k hole. This will be done a
-
ording to the top-down approa
h adopted by FM2001 for their 
al
ulations.The method to solve the for
e balan
e is based on a �nite element solver,whi
h has been developed for this purpose by Camenzind (1987), Haehnelt(1990), Fendt (1994, 1995, 1997) and Memola (2001).The stru
ture of this thesis is as follows: In Se
tion 2 the assumptions12



about the physi
s of the gas will be given. Also the Grad-Shafranov Equa-tion (GSE), whi
h des
ribes the lo
al for
e-balan
e a
ross the surfa
es of
onstant magneti
 
ux, will be derived. The method used to solve the GSE,in
luding the ne
essary boundary 
onditions and the setup of the model, willbe des
ribed in Se
tion 3. In Se
tion 4 the 
ode developed for solving the�nite element method will be explained and will be tested, by 
omparing theresults with the results previously obtained by F1997a and FM2001. Finallythe method developed in this thesis be dis
ussed in Se
tion 5. Also a set ofpossible interesting follow-up studies will be dis
ussed. These in
lude: 1) Analternative bottom-up approa
h to solve the GSE. 2) Cal
ulating the Wind-Equation, the for
e-balan
e along the 
al
ulated magneti
 
ux-surfa
es, andthereby obtaining parameters su
h as �nal velo
ities of the 
ow, enabling
omparison of the model predi
tions to observed velo
ities. 3) Using the
al
ulated magneti
 
ux-surfa
e stru
ture to 
al
ulate the polarization ofsyn
hrotron emission, that also might make 
omparison of the model withobservations possible. Finally I will give a 
on
lusion in Se
tion 6.
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Chapter 2Magnetohydrodynami
 Jets
2.1 Model assumptionsTo des
ribe the for
e-balan
e in the jet, the following assumptions have beenmade:Bla
k hole -Kerr metri
- Be
ause the jet originates 
lose to the 
entralbla
k hole, it seems appropriate to in
lude a general relativisti
 des
riptionof the spa
e-time. The in
uen
e of the bla
k hole on the spa
e-time 
hangesthe behavior of the ele
tromagneti
 �elds. A 3+1 split of the spa
e-time(Thorne & M
Donald 1984) around the bla
k hole, with a mass M and aangular momentum per unit mass a = JM
 , was adopted whi
h is des
ribed bythe following line-element in Boyer-Lindquist 
oordinates (Boyer & Lindquist1967) ds2 = �2
2dt2 � ~!2 (d�� !dt)2 � ��2=�� dr2 � �2d�2 (2.1)Here t denotes a global time, in whi
h the system is stationary, � is theangle around the axis of symmetry (the polar axis). And r; � are similar tothe Eu
lidean spheri
al 
oordinates. The parameters of the metri
 are givenby �2 � r2 + a2 
os 2� � � r2 � 2GMr=
2 + a2�2 � (r2 + a2)2 � a2�sin 2� ~! � (�=�) sin �! � 2aGMr=
�2 � � �p�=�14



Where ! is the angular velo
ity of the di�erentially rotating spa
e, orthe angular velo
ity of an observer moving with zero angular momentumat in�nity distan
e from the bla
k hole (ZAMO), � = (d�=dt) is the red-shift fun
tion, des
ribing the lapse between the proper time � in the ZAMOsystem to the global time t. The ~! 
orresponds to the R 
omponent ina 
ylindri
al 
oordinate system (R;Z) for r ! 1. This split allows for ades
ription of the magneti
 and ele
tri
 �elds in a similar way to that in a
at Minkowski spa
e-time. The angular velo
ity of the bla
k hole is given by
BH = 
3 (a=2GM) �GM=
2 + [(GM=
2)2 � a2℄1=2��1. We adopt throughoutthis thesis for the angular momentum per unit mass a = 0:8M .Ideal magnetohydrodynami
s: Our model is based on the assumptionof ideal magnetohydrodynami
s (MHD). MHD des
ribes the dynami
s of a
ondu
ting 
uid in the presen
e of magneti
 �elds. Instead of treating ea
hindividual parti
le, MHD treats the dynami
s of the average over a wholeensemble of parti
les. This ensemble 
an be 
onsidered as being a neutrally
harged 
uid, if 
harge separation 
an
els out on s
ales larger than the typi
alDebye length s
ale.Ideal MHD 
onsiders the plasma 
ondu
tivity to be in�nite and di�usivepro
esses are negle
ted. A result of this assumption is that the 
ux �eld linesare 'frozen' into the plasma (the 
ux �elds move with the plasma).The dynami
s of a plasma under these assumptions are given by Maxwell'sEquations (Eq. 2.2-2.5)r^ (�B) = 4�
 �j� (E � r!) ~!e�̂ + �E�t (2.2)r^ (�E) = (B � r!) ~!e�̂ � �B�t (2.3)r �B = 0 (2.4)r �E = 4��e (2.5)the equation of 
ontinuity(N�);� = (nu�);� = 0 (2.6)and the equation of motion 15



T ��;� = �T ��M + T ��em�;� = 0: (2.7)Stationarity and axisymmetry The problem is simpli�ed by assumingaxisymmetry and stationarity. Be
ause observations show that jets are gener-ally 
ollimated almost into a 
ylindri
al shape and the time s
ales for typi
alrotations of the magneti
 �eld lines in the disk are > 104 than the times
ales for the jet-propagation, the assumption of axisymmetry is reasonable.The dynami
 time s
ales for the 
ollimation of the jet are mu
h shorter thanthat of the dynami
 time-s
ales of the propagation of the jet, and thereforestationarity seems a reasonable assumption as well. The advantage of theseassumptions is that the problem, as we will show, is now 
onstrained to a2-D problem and has be
ome mu
h easier to solve.It must be noted that although observations of jet-knots show asymme-tries and time-variability whi
h would seem to 
ontradi
t our assumptions,we are primarily interested in the 
ollimation and the global stru
ture of thejet-
ow, and therefore think the assumptions of axisymmetry and stationar-ity are valid in this 
ase. However, ultimately the assumption of stationaritywould have to be modi�ed.With the assumption of axisymmetry, a magneti
 
ux-fun
tion 
an bede�ned 	 (r; �) = 12� Z BP � dA (2.8)BP = 1~!	 ^m (2.9)where the 
ux is taken through a loop of the Killing ve
torm = ~!2r�. Inthe same way the poloidal 
urrent is de�ned by the 
urrent density measuredthrough the same loop I = � Z �jP � dA = � 
2�~!BT (2.10)The assumptions of axisymmetry and stationarity lead to 
onserved phys-i
al quantities as well:First, stationarity implies a 
onservation of the mass 
ow rate _N alongthe 
ux surfa
es 16



� (	) = d _Nd	 (2.11)Se
ondly, axisymmetry gives a 
onservation of the angular velo
ity of the�eld line (Ferraro's iso-rotation parameter 
F (Ferraro 1937)) that 
an bederived from the derivative of the time-
omponent of the ve
tor potential,
F (	) = �
 (dA0=d	). In the spe
ial relativisti
 
ase, this 
an be thoughto� as the velo
ity of the gas minus the slide along the �eld lines
F (	) = �
 1R  v� � � (	)� B�! (2.12)The third 
onserved quantity is the total angular momentum per unitdensity L (	) = �0��+ B24�n1A lut � ut (1� 
F l)4�� B� (2.13)Further the total energy is 
onservedE (	) = �0��+ B24�n1Aut � ut (1� 
F l)4�� Bt (2.14)with u = (ut; ur; u�; u�) the four velo
ity ve
tor.For
e-free approximation For the high velo
ities observed in highly rel-ativisti
 jets, a high magnetization (� >> 1) of the jet is needed (see forexample Fendt et al. 1996). Here � quanti�es the magneti
 
ux in terms ofmass 
ux (Mi
hel 1969) � (	) = 	max
4��� (	)R2L (2.15)For a for
e-free jet the 
urrent density I (	) be
omes a 
onserved quantity.In the 
ase of high magnetization the inertial terms will be weak 
omparedto the magneti
 terms. We assume that the inertial terms 
an be negle
tedwith respe
t to the magneti
 for
es when 
al
ulating the 
ross-�eld for
ebalan
e in the 
ollimating regime. This limit is 
alled the for
e-free limit.The equation of motion redu
es to 17



0 = �eE+ 1
 j ^B (2.16)To fully des
ribe the magneti
 jet formation this assumptions breaksdown, be
ause the 
ollimated non for
e-free jet lies beyond the Alfv�en andfast magnetosoni
 surfa
es, where the plasma kineti
 energy dominates themagneti
 energy, whi
h 
ontradi
ts the assumption of for
e-freeness. Alsothe initial a

eleration of the gas lifted from the a

retion disk 
annot bedes
ribed by a for
e-free 
on�guration.Numeri
al 
al
ulations of the plasma motion along the �eld show that, fora high magnetization, the Alfv�en Ma
h number remains relatively low. Thusthe inertial 
urvature term should not play a dominant role. Contopoulos &Lovela
e (1994) found from self-similar solutions that the 
entrifugal for
esare dominated by magneti
 for
es.It is therefore assumed that the 
al
ulated 
ollimating jet stru
ture withthe assumption of for
e-free will not 
hange dramati
ally if inertial termswere to be in
luded.2.2 Grad-Shafranov Equation (GSE)The Grad-Shafranov Equation (GSE) des
ribes the for
e-balan
e a
ross the
ux-�elds1. In order to derive the GSE, the normal ve
tor perpendi
ular tothe 
ux-surfa
e is introdu
ed n = � r	jr	j (2.17)the toroidal part of Amp�ere's equation (Eq. 2.2) 
an be rewritten as4��jT = r^ (�BP) + (EP � r
F ) ~!bfe�̂= r^ � �2�~!2r	 ^ ~!e�̂�� (EP � r (
F � !)) ~!e�̂ +(EP � r
F ) ~!e�̂= r	 �r � ~!e�̂� �2�~!2 � ~!2�e�̂r � � �~!2r	�1This derivation follows that of Jensen (1997)18



+ 12� �~!e�̂ � r�� �~!2r	�� �2�~!2 (r	 � r) ~!e�̂+
F � !2�� (r	 � r (
F � !)) ~!e�̂ � 
F � !2�� (r	 � r
F ) ~!e�̂= � ~!2�r � � �~!2r	� (
F � !)� � r	 � r (
F � !)� d
Fd	 jr	j2! e�̂= 4��j�̂e�̂ (2.18)The only non-vanishing terms are�eEP + jP ^BT + jT ^BP = 0sin
e ET = 0, jPkBP, and jTkBT. The �rst 
omponent is taken fromGauss's law (Eq. 2.5)4��e = r �EP = �r � �
F � !2�� r	��eEP = 14� �r � �
F � !2�� r	�� 
F � !2�� r	 (2.19)jP ^BT =  e�̂ ^ rI2��~! ! ^ �� 2I�~!e�̂�= 1� (�~!)2 h��Ie�̂ � e�̂�rI � ��Ie�̂ � rI� e�̂i= � 1� (�~!)2 IrI (2.20)jT ^BP = �j�̂e�̂� ^  r	 ^ e�̂2�~! !19



= �j�̂e�̂ � e�̂2�~!�r	� �j�̂e�̂ � r	� e�̂2�~!= 12�~!j�̂r	 (2.21)4��j�̂r	 = ��~!2� �r � �
F � !� r	�� 
F � !� r	+ 8��~!IrI (2.22)4��j�̂ = ��~!2� �r � �
F � !� r	�� 
F � !� + 8��~!I dId	= � ~!2�r � "(
F � !)2� r	# + ~!2� (
F � !)� r	 � r (
F � !)+ 8��~!I dId	 (2.23)r � " �~! � (
F � !)2� !r	#+ (
F � !)� d
Fd	 jr	j2+ 16�2�~! I dId	 = 0 (2.24)The Grad-Shafranov Equation with di�erential rotation of 
ux-�elds thenbe
omes ~!r � ��D~!2r	� = ~!! � 
F�
2 
0F jr	j2 � 1�~! 4
2 II 0 (2.25)with D = 1 � (~!=~!L)2 where ~!2L = (��= (
F � !), the positions of thetwo light surfa
es. The gradients, expressed in terms of the Boyer-Lindquist
oordinates are r =  �(r; t)� (r; t) ��r ; 0; 1�(r; t) ���! (2.26)We are left with Eq. 2.29, whi
h is a paraboli
 2-D non-linear partialdi�erential equation, with two free fun
tion 
F (	) and I (	) that have tobe spe
i�ed. Note that although the equation is two-dimensional, the for
e-balan
e des
ribed is a fully three-dimensional balan
e, whi
h is redu
ed by20



the assumption of axisymmetry (this is 
ommonly 
alled a 2.5-D solutioninstead of a 2-D or 3-D solution). This equation redu
es for a 
onstant 
F ,and in the spe
ial relativisti
 regime, to the well-known Pulsar Equation(Mi
hel 1973; Charleman & Wagoner 1973)

21



The GSE 
an be made more transparent by showing the di�erent me
h-anisms 
ontributing to 
ollimation of the jetn � (BP � r) BP4� �1�M2A � x2
2F� = �1� x2
2F� r?B2P8� + r?B2�8�+r?P +  B2�4� � �u2�! r?xx � B2P
F4� r? �x2
F� (2.27)The terms in the equation, whi
h are indi
ated in red, are the inertialterms: the de-
ollimating 
entrifugal for
e due to the motion of the mat-ter along the 
urved poloidal �eld line, the gas pressure gradient, the de-
ollimating due to the 
entrifugal for
e of the rotating plasma. For a for
e-free jet the balan
e is determined solely by the magneti
 for
es, so the 
ur-vature of the poloidal �eld lead to a tension for
e, also the poloidal magneti
�eld pressure redu
ed by the pressure gradient of the ele
tri
 �eld. Thereare the toroidal magneti
 pressure gradient and the 
ollimating e�e
t of thetoroidal �eld tension. The last term 
ombines the tension of the 
urvedpoloidal �eld and the e�e
t of the spa
e 
harge density.If the for
e-free assumption is made the following balan
e between 
olli-mating for
es (on the l. h. s. ) and the de-
ollimating for
es (on the r. h. s. )be
omesn�(BP � r) BP4� +B2P
F4� r? �x2
F�+x2
2Fr?B2P8� = r?B2P8� +r?B2�8� +B2�4� r?xxLight surfa
es The light surfa
es were already brie
y mentioned before.For our stationary for
e-free approa
h, the GSE in Kerr metri
 has two sin-gular surfa
es, de�ned by ~!2L = �� �
F�!�, whi
h are typi
al features for arelativisti
 treatment. The meaning of these surfa
es 
an be understood bythinking of the magneti
 �elds 
ux-surfa
es rotating at an angular velo
ity
F (	). These angular rotations 
an be expressed as a toroidal velo
ity likev� = ~! (r; �) 
F (	 (r; �)). When this toroidal velo
ity rea
hes the speed oflight v� = ~! 
F = 
 , this gives the singular surfa
e, hen
e the name. Notethat the 
ux-�elds represent no physi
al obje
t, and therefore the velo
ity
orresponding to 
F 
an ex
eed the speed of light. There is an inner surfa
e,near the bla
k hole, whi
h is due to the frame-dragging e�e
t of the metri
,and outer surfa
e far away from the bla
k hole. In the asymptoti
 region22



were the bla
k hole's in
uen
e is negligible and 
ux surfa
es are 
ollimatedinto 
ylinders, the light surfa
e is also 
alled (asymptoti
) light 
ylinder.As the ele
tri
 �eld 
ontributions s
ale with the asymptoti
 light 
ylinderEP = � RRLC�BP , the light surfa
e is also an indi
ation where the relativisti
e�e
t be
ome important.2.2.1 Normalizing the GSEThe GSE is further normalized and made dimensionlessr , RLCr ~! , RLC~!! , (1=RLC)! 
F , (1=RLC) 
Fr , (1=RLC)r 	, 	max	I , ImaxIHere RLC denotes the asymptoti
 light 
ylinder. The 
oupling 
onstant,with parameters typi
al for AGN's, in the sour
e term now be
omesgI = 4I2maxR2LC
	2max = 4� Imax1012 A�2 � RLC1016 
m�2 � 	max1033 Gauss��2The normalized GSE be
omes the following equation~!r � ��D~!2r	� = ~!! � 
F� 
0F jr	j2 � gI�~!II 0 (2.29)Note that only the se
ond term in the sour
e term has the 
oupling 
on-stant gI (indi
ated in red) whi
h depends on Imax, RLC and 	max, the termdue to angular rotation of the 
ux surfa
es has not.It will show out later in this thesis, that espe
ially the normalization ofthe 
F will pose a problem in the method we adopt to solve the GSE. Theadvantage of normalizing with respe
t to the asymptoti
 light 
ylinder is thatthe normalized GSE 
an be used to study more general solutions for jets, be-
ause these solutions are then in terms of the dimensionless asymptoti
 light
ylinder, whi
h 
an be s
aled, in prin
iple, to any physi
al s
ale. The mainproblem is, when trying to mat
h this dimensionless solution to a physi
als
ale, the physi
al s
aling of the asymptoti
 light 
ylinder follows from the 2-D solution. But to solve the 2-D solution, it seems that the s
aling is neededbeforehand. This problem will be dis
ussed in the next se
tions.23



From now on we normalize 
 = 1, and G = 1. The gravitational radiusthen be
omes Rg = MG
2 = M . By doing this, the spatial s
ales of the jet 
anbe expressed dire
tly into the mass of the 
entral bla
k hole.
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Chapter 3Solving the Grad ShafranovEquationThe GSE 
an be solved numeri
ally by using a �nite element 
ode with the'Galerkin Ansatz' (see Appendix A for full detail). This method 
an solveparaboli
 non-linear di�erential equations when a set of boundary 
onditionsis given on a 
hosen grid. Therefore an appropriate set of 'physi
al' boundary
onditions needs to be spe
i�ed in order to solve the equation. Also thetwo free fun
tions 
F (	) and I (	) have to be spe
i�ed. There are twoapproa
hes how to do this. The �rst, a top-down approa
h will be des
ribedin this se
tion and used in the rest of this thesis. A se
ond bottom-upapproa
h will be dis
ussed in x5:2.3.1 Regularity 
ondition at the light surfa
eAt the light surfa
e, the GSE be
omes singular (at D = 1 � � ~!~!L�2 = 0).In prin
iple singularities always pose a problem when solving the equationsnumeri
ally. It would be useful to have the light surfa
e at the boundary. Inthat 
ase the boundary 
onditions along the light surfa
e have to be spe
i�ed.On 
loser inspe
tion, the GSE shows to have an intrinsi
 boundary 
onditionalong the light surfa
e. At the light surfa
e the GSE redu
es to�~!rDr	 = ~!! � 
F� 
0F jr	j2 � gI�~!II 0 (3.1)With the normal on the boundary de�ned as n = � rDjrDj this regularity25




ondition for 	 is a
tually equivalent to an inhomogeneous Neumann-typeboundary 
ondition�	�n = � ~!jrDj ! � 
F�2 
0F jr	j2 + 1jrDj gI�2 II 0 (3.2)This o�ers the possibility to solve the stru
ture of the 
ux-surfa
es in twoseparate regions: 1) the inner region inside of the light surfa
e and 2) theouter region outside of the light surfa
e. Both of these regions havie the lightsurfa
e as a boundary.An estimate for whether the light surfa
e lies within the jet so that thisdistin
tion 
an a
tually be used 
an be made by assuming a Keplerian ro-tation of the magneti
 
ux surfa
es 
F (r) = 1r3=2+a / r�3=2. For the lightsurfa
e the relation rl
 = 
�1 (rdisk) = r1:5disk holds. For the light surfa
e tobe inside the jet, the light surfa
e radius must be less than the jet boundaryxjet = fexprdisk (where fexp is the expansion rate of the jet and rdisk the outerdisk radius). Junor et al. (1999) measured for the M87 jet a lower limit forthe expansion rate of fexp � 3:3 (fully 
ollimated at 200 Rg and at the upperlimit of the un-
ollimated region of 60 Rg). For the light surfa
e to be insideof the jet this implies r1:5disk < fexprdisk. This gives rdisk < f 2exp � 10 Rg whi
his a lower limit, be
ause the a
tual formation region 
an be smaller than theresolved 60 Rg. Although the disk size we adopt is somewhat smaller, typi
alestimates for the expansion rate is about fexp � 100. In that 
ase it is highlylikely that the light surfa
e will be inside the jet, and the distin
tion betweenan inner region and outer region 
an be made.3.2 Boundary 
ondition at the jet axisWe assume that there is no magneti
 
ux on the jet axis (R=0). On the jetaxis a Diri
hlet boundary 
ondition is 
hosen of 	 = 0.3.3 Jet surfa
e boundary 
onditionThe outer surfa
e of the jet is de�ned at 	 = 1. For a 
ux distribution thatis saturated at 	 = 1, this is the last 
ux-surfa
e that 
ontains all of thepoloidal magneti
 �eld. For the jet surfa
e, 	 = 1 is 
hosen as the Diri
hletboundary 
ondition. In the next se
tion the determination of the shape ofthe boundary will be explained. 26



3.4 Disk and bla
k hole boundary 
onditionsThe magneti
 �eld distribution along the disk is not well known. Therehave been some studies to 
al
ulate the disk stru
ture around a bla
k hole(e. g. Khanna & Camenzind 1992; Kudoh & Kaburaki 1996; Koide, Shibata& Kudoh 1998). Khanna & Camenzind (1992) obtained for a stationaryaxisymmetri
 thin disk a solution for the 
ux distribution along the disk:	 / e�k2 R D(r0)dr0 (See Fig. 3.1).

Figure 3.1: Cal
ulated 
ux distribution at the surfa
e of an axisymmetri
 thinmagnetized a

retion disk around a bla
k hole (taken from Khanna & Camenzind1992)As mentioned before, it is possible for a bla
k hole to have a magneto-sphere (Blandford & Znajek 1974; Okamoto 1992; Kommissarov 2003). Soit is possible for some magneti
 
ux to emerge from the bla
k hole's dire
tenvironment. Be
ause this pro
ess is yet poorly understood, we only assumethat some fra
tion of the total 
ux 	BH 
omes from the bla
k hole's magne-tosphere. As boundary 
ondition we take for now a homogeneous Neumannboundary 
ondition. There are some indi
ations that the exa
t distribution
lose to the disk and 
entral obje
t do not have a large in
uen
e on the globalsolution, so for now these boundary 
onditions seem reasonable.The boundary 
ondition for the disk was 
hosen as27



	(x) = 	BH + (x� xin) = (A� xin)m1 + (x� xin) = (A� xin)m (3.3)with A = xdisk � xin(	BH)�1=m + xin (3.4)This fun
tion is shown for di�erent 	BH in Fig. 3.2 in order to 
ompareto the results of Khanna & Camenzind (1992).

Figure 3.2: The boundary 
ondition for di�erent 	BH withm = 2, for a disk withxin = 2 Rg and xdisk = 20 Rg.3.5 Asymptoti
 solution for the spe
ial rela-tivisti
 GSEAppl & Camenzind (1991) showed that for a 
onstant 
F , the boundary ofthe jet, de�ned at 	 = 1, is known if some distribution I (x) is assumed.With the Ansatz of I (	) = �1� e�b	� = �1� e�b� the jet boundary is thengiven by xjet = apeb � 1. For a di�erentially rotating 
ux distribution, thisposition is not known in advan
e, so the GSE has to be solved somehow in28



order to obtain this position. In order to obtain the boundary 
onditionsalong the 
ollimated part of the 
ow the asymptoti
 version of the GSE isused.The asymptoti
 behavior of a jet 
an be analyzed by 
onsidering the 
ross-�eld for
e balan
e of the relativisti
 GSE in the asymptoti
 region (regionwhere z >> R )Rr� 1� (R
F (	) =
)2R2 r	! = 4
2 1R dd	I2 (	)�Rjr	j2 12 dd	
2F (	) (3.5)By assuming perfe
tly 
ollimated 
ylindri
al or 
oni
al 
ows, the 
urva-ture of the poloidal �eld lines vanishes, and 
onsequently the pressure gra-dients must be balan
ed by the radial dire
ted for
es and the toroidal pin
hfor
e (Heyvaerts & Norman 1989; Chiueh et al. 1991). An analysis of theasymptoti
 behavior of the Grad-Shafranov equation has been done for 
on-stant rotation (Appl & Camenzind 1991,1993) and for di�erential rotation ofthe 
ux �elds F1997b. For high 
ollimation (�x >> �z), the 2-D GSE, 
anbe redu
ed to a one-dimensional equation. Be
ause 	 (x; z) ! 	(x), the
onserved quantities 
 (	) and I (	) 
an be expressed as fun
tions of x. If itis further assumed that the 
ux distribution is monotonous, the derivativeswith respe
t to 	 be
ome �=�	 ! (d	=dx)�1 (d=dx). With these assump-tions, Eq. 3.5 redu
es to a ordinary di�erential equation in the �rst order inthe derivative (d	=dx)2�1� x2
2F� ddx  d	dx !2 +  4x � 2x
2F � x2d
2Fdx ! d	dx !2 + gdI2dx = 0 (3.6)Be
ause (x�2d	=dx)2 is related to the magneti
 pressure of the poloidal�eld (�	=�x = xBz), this equation 
an be rewritten as�1� x2
2F� dydx � 4xy  
2F + x4 d
2Fdx ! = � g8�x2 dI2dx (3.7)This has the formal solutiony (x) = 18� 1M (x) Z 1x 1w2 11� w2
2F (w) ddwI2 (w) �M (w)dw (3.8)29



with M (x) = exp [Z x1 � 4w1� w2
2F (w) � f (w)! dw℄ (3.9)and f (x) = 
2F (x) + 14x ddx
2F (x) (3.10)Be
ause d	(x)dx = xq8�y (x) (3.11)The asymptoti
 
ux-distribution 
an be 
al
ulated by integrating y (x)	 (x) = Z x0 vq8�y (v)dv (3.12)The jet boundary xjet is de�ned at the last 
ux surfa
e 	 (xjet) = 1 andis therefore known. This will be used in order to solve the 2-D GSE.3.5.1 Free fun
tions 
F (x) and I (x) of the GSEAs already mentioned, the fun
tions 
F (	) and I (	) have to be 
hosenwhen solving the GSE. As shown in the previous se
tion, when trying to �nda solution by integrating the asymptoti
 GSE one has to pres
ribe 
F (x)and I (x) instead of 
F (	) and I (	). This type of asymptoti
 solution hasbeen studied before by Camenzind (1986), Appl & Camenzind (1993) andF1997b.They adopted a bounded 
urrent distribution (often used in fusion re-sear
h) I (x) = B (x=a)n1 + (x=a)n (3.13)The parameter a represents the radial s
ale on whi
h the 
urrent rises,also 
alled the '
ore radius' of the jet and B = 11�e�b where b is the 'pin
h'of the 
urrent with respe
t to the 
ux �elds. For 
onstant rotation, thisleads to the analyti
al solution for the asymptoti
 
ux distribution as Appl& Camenzind (1993) found 30



Figure 3.3: Current distribution I (x) = B (x=a)n1+(x=a)n for di�erent 
ore radii a.Shown are a = 5:0 (dashed), 1.0 (solid), 0.5 (dotted) and 0.1 (dash-dot), withB = 1. 	(x) = 1b log 1 + �xa�2! (3.14)We assume that the 
ux �elds 
orotate with the a

retion disk at Kep-lerian speed 
F (r) = 1r3=2+a (the dimension of r is in Rg), the di�erentialrotation pro�le 
F (x) in the asymptoti
 region will be a monotonous de-
reasing fun
tion of x as well, as 
ux distribution along the disk is assumedto be a monotonous in
reasing fun
tion. To investigate the in
uen
e of thedi�erential rotation of the 
ux �eld, F1997b introdu
ed a de
reasing expo-nential rotation law for the asymptoti
 rotation pro�le
2F (x) = eh�hx (3.15)where the parameter h is the steepness of the pro�le, and 
F is normalizedto the asymptoti
 light 
ylinder 
F (1) = 1.If the asymptoti
 solution 	 (x) has then been found, it 
an then beapplied to the 2-D GSE by 
reating the fun
tions 
F (	) and I (	) by 
om-bining 	 (x) with 
F (x) and I (x). This is a top-down approa
h, i. e. theinternal global solution of the jet is determined by the solution in the asymp-toti
 regime. An alternative bottom-up approa
h is physi
ally more plausiblethan the top-down approa
h. This is be
ause the jet is 
reated at the disk,31



so it the properties like 
urrent- and rotation distribution will be tightly re-lated to the disk physi
s. The bottom-up approa
h dire
tly 
ouples the jetstru
ture to the physi
al pro
esses at the disk surfa
e. Unfortunately, thebottom-up approa
h is harder to solve than the top-down approa
h. In Se
-tion 5:2 the problems that arise when using this approa
h will be dis
ussedand a method is proposed how to solve these problems. In Se
tion 3:5:4 thedisadvantages of using the asymptoti
ally determined distributions for I (	)and 
F (	) will be dis
ussed.3.5.2 The asymptoti
 light surfa
eIt is interesting to note that apart from the singularity at x=1, the asymptoti
GSE 
an 
ontain a se
ond singularity. This fa
t has not been mentionedbefore anywhere in the literature. If the di�erential rotation pro�le fromEq. 3.15 is taken, for the singular point, the following equation holds:0 = 1� x2
2F = 1� x2eh�hx (3.16)This is by normalization automati
ally ful�lled at the asymptoti
 light
ylinder x = 1, but also for h = 11�x log � 1x2�. In Fig. 3.4 the toroidalvelo
ity of the 
ux �eld is shown for h = 0.2, 0.5, 0.9, 1, 2 and 3.It 
an be seen that for h = 2, the singularities merge at x = 1, be
auseonly one solution is possible. The �rst singularity is always thought to be theboundary between the sub-relativisti
 jet (v� < 
) and relativisti
 (v� > 
).The origin of this se
ond singularity in the 1-D equation 
an be 
lari�ed ifthe 2-D equation is 
onsidered. As 
an be seen in the Fig. 3.5, the se
ondsingularity 
an be interpreted as the same light 
ylinder as at x = 1, afterwhi
h the asymptoti
 relativisti
 regime of the jet be
omes sub-relativisti
again.Note that this holds for any rotation pro�le whi
h is monotonously de-
reasing, where 
F (1) = 1 and for x > 1, 
F (x) / xn, with n � 2. Thisis a restri
tion to the 
on�guration of the relativisti
 jet in this model. The
ux �eld that passes through the light surfa
e is not able to pass it for ase
ond time, but has to 
ollimate before the se
ond light surfa
e. Other-wise, this would imply a 
ontradi
tion. Be
ause for the �rst light 
ylinderx
F (	) = 1. As the 
ux �eld 
rosses the �rst light 
ylinder, x will only in-
rease. It is therefore not possible to get x
F (	) < 1 after the 
rossing. Soit should be possible to have a 
ore stru
ture in the jet, where a relativisti
32



Figure 3.4: Toroidal velo
ity v� = x2
2F for di�erent steepness (h = 0.2 (solid),0.5 (dotted), 0.9 (dashed), 1.0 (dash dot) and 2.0 (dash 3xdot) 3.0 (long dashes)).The line indi
ates the position of the regular points at x
F = 1.
ore is nested inside a sub-relativisti
 stru
ture. Although it has not beenmentioned in the literature on stationary work, it is interesting to note thatsimilar 
on�gurations have been seen in the time dependent simulations ofCasse & Keppens (2002) in a non-relativisti
 treatment in
luding the disk.There the Alfv�eni
 surfa
e returns into the asymptoti
 region. As for highmagnetizations the Alf�en surfa
e approa
hes the light surfa
e, this would im-ply the same type of 
on�guration. It is not 
lear however, how general thistype of 
on�guration is.The model used in this paper is for now unable to handle su
h a 
on-�guration, be
ause the distin
tion between an inner part (inside of the lightsurfa
e) and an outer part 
annot be made anymore and the position of thelight surfa
e be
omes a mu
h more 
ompli
ated problem. We therefore fo
uson 
on�gurations that do not have a returning light 
ylinder. We will dis
ussthe 
onsequen
es of this assumption in x 5:1.
33
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RFigure 3.5: Two possible 
on�gurations for light surfa
e. On the left: The bound-ary of the jet 
rosses the light surfa
e. On the right: The light surfa
e 'returns'to the asymptoti
 region. In this 
ase a relativisti
 
ore is embedded in a sub-relativisti
 envelope. The hat
hed regions indi
ate the regions where x 
F � 1.3.5.3 Solving the asymptoti
 GSETo solve the asymptoti
 GSE, a program was written using IDL. The numer-i
al integration was done using a Romberg solver, of 5th order (e. g. Stoer& Bulirs
h 1980). The two singularities posed a small problem, be
ause thefun
tion M (x) is not de�ned at these points. This was solved by integratingeither until 0.99999 or from 1.0001. Be
ause the fun
tion within the integra-tion blows up to �1, due to the exponential, this dies o�, so as x approa
hes1, the integral of the part between 0.99999 and 1.0001 will not 
ontributemu
h to the total. To test how a

urate the integration routine was, theresults were 
ompared to the analyti
al solution 	 (x) = 1=b log�1 + �xa�2�by Appl & Camenzind (1993) for 
onstant rotation and to the numeri
alresults for the steepness parameter h = 0:2, and with a = 1 and B = 1by Fendt (1997). The solutions and the relative di�eren
es are plotted withtheir analyti
al and numeri
al 
ounterparts in Fig. 3.6 and Fig. 3.7. Theresults were a

urate enough. The di�eren
e between the analyti
al solutionof the asymptoti
 GSE and the numeri
al solutions were about 0:3% whi
hseems to be a systemati
 error of 0:3% probably due to the integration lim-its of 0.99999 and 1.0001. Our solutions di�ered from that of Fendt (1997)within less than 0:05%. It is not surprising that no systemati
 error is seen34



in Fig. 3.7, be
ause the integrating limits are the same as Fendt (1997) used,so almost the same systemati
 error will be expe
ted.

Figure 3.6: On the left: The values for 	num (x) (solid line) using the IDL routineand over-plotted the analyti
al solution of Appl & Camenzind (1991) (
rosses).On the right: The relative di�eren
e of the (	AC �	num) =	AC. A systemati
error 
an be seen of about 0:3% with a s
atter on mu
h smaller s
ales.3.5.4 S
aling the 2-D solution to the 
entral mass ofthe bla
k holeFM2001 solved the spe
ial relativisti
 axisymmetri
 Grad-Shafranov Equa-tion (GSE) in
luding the di�erential rotation e�e
t in the sour
e term of theGSE. Their whole axisymmetri
 stru
ture was normalized in terms of theasymptoti
 light 
ylinder radius xl
. An Ansatz was made for the rotationpro�le (see Eq. 3.15) and then the axisymmetri
 solution 
ould be obtained.Their �nding was, that their adopted steepness of the rotation pro�le wastoo low to mat
h the Keplerian rotation at the foot-points of the �eld linesin the disk.In order to use the solutions of the spe
ial relativisti
 asymptoti
 GSE,as a boundary 
ondition for the general relativisti
 axisymmetri
 GSE, thissolution had to be re-normalized, be
ause the spatial 
oordinates in the gen-eral relativisti
 
ode were normalized to gravitational radii (Rg) instead ofthe asymptoti
 light 
ylinder (xl
) as was the 
ase with FM2001. Be
ausethe di�erent normalization might 
ause 
onfusion, the asymptoti
 solutionwill be expressed in terms of x, whi
h is normalized to the asymptoti
 light35



Figure 3.7: On the left: The values for 	num (x) (solid line) using the IDLroutine and over-plotted the numeri
al solution 	Fendt (x) (
rosses) used byFendt (1997) (obtained using MATLAB). On the right: The relative di�eren
e(	Fendt �	num) =	Fendt.
ylinder xl
, and the general relativisti
 GSE is expressed in terms of r whi
his normalized in gravitational radii Rg.Be
ause the angular velo
ity of the 
ux �elds 
F (	) is 
onserved along	, the rotation originating from the foot-point of the 
ux �elds at the disk,whi
h rotates at Keplerian speed, must have the same value in the asymptoti
part. The Keplerian angular velo
ity distribution near a bla
k hole is givenby 
F (r) = 1r3=2 + a (3.17)with a the angular momentum per mass of the bla
k hole. This redu
esto the Newtonian Kepler pro�le for small a=r. The adopted pro�le for theasymptoti
 
ollimated jet is given by
F (x) = peh�hx (3.18)Be
ause 	 = 	 (x) is known and 
F (x) in the asymptoti
 region, also	 (
F ) is known. This is also true for the foot-points 	 = 	 (r) and 
F (r)are known and therefore 
F (	) jasy 
an be related to 
F (	) jKerr. By nor-malizing the asymptoti
 light surfa
e, the asymptoti
 rotation pro�le 
an beused in the GSE normalized in Rg (see Fig. 3.8).The question is now how from the 
hosen asymptoti
 distributions of
F (x), I (x) and 	 (x) a distribution is obtained that resembles the a
tual36
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Figure 3.8: Conne
tion the rotation distributions in the two regimes with di�erentnormalization of the rotation pro�le. At the top an exponential pro�le normalizedto 1 at the light 
ylinder. At the bottom a Keplerian rotation law for the disk.disk physi
s as 
losely as possible. So what kind of steepness h and whatvalue for the asymptoti
 light 
ylinder in term of gravitational radii had to beadopted to �t the asymptoti
 exponential pro�le to the Keplerian pro�le atthe disk. The disk size restri
ts the 
ombination of jet radius and steepnesssomewhat. Given a disk size, the fra
tion between the maximal and minimalangular velo
ities for respe
tively the inner disk radius, and the outer diskdisk radius f
jkep = 
max
min jkep = r3=2disk + ar3=2in + a (3.19)where for rin � 2:0 the radius of the ergosphere of the BH has been taken,and rdisk is the outer disk radius where the last 
ux emerges. In order for theasymptoti
 rotation pro�le to �t a Keplerian pro�le the fra
tion of maximal37



and minimal angular velo
ities in the asymptoti
 region must be greater orequal to that of the 
ux from the disk. If it is equal, all the 
ux solelyoriginates from the a

retion disk. If it is larger, part of the 
ux 
omes fromthe ergosphere of the bla
k hole.f
jasy = 
max
min jasy � 
max
min jkep (3.20)or f
jasy = s eheh�hxjet = pehxjet � r3=2out + ar3=2in + a(3.21)FM2001 found a solution for a jet with h = 0:9, xjet = 2:2 xl
, xin =0:05 xl
 and xdisk = xdisk = 0:2 xl
. Relation 3.20 then be
omesf
jasy = pe0:9�2:2 = 2:69 > 0:23=20:053=2 = 8:0 (3.22)In Fig. 3.9 this situation is illustrated. This easily shows, as they already
on
luded, that the rotation pro�le they assumed was too 
at to �t a Ke-plerian rotation pro�le at the disk. In order to get a disk with a Keplerianpro�le one would therefore need either a steeper pro�le (higher h) or a widerjet in terms of asymptoti
 light radii (lower gI). This will part of the dis
us-sion in x 5:1. The disk physi
s are yet still not fully understood as well. Forpressure supported disks, the rotation will be in general sub-Keplerian. Aswe take the disk as a boundary, it is diÆ
ult to say anything about the diskbased on our solutions. A broader parameter study of our model as well asthe bottom-up approa
h (See Se
tion 5:1) is needed in order to address thisproblem.One 
an ask whether it is possible to have any light 
ylinder radius for theasymptoti
 solution, when it is applied as a boundary 
ondition to the 2-Dproblem. Be
ause this radius determines how the 
F jasy is to be normalized(rl
 
F (r = rl
) jdisk = 1, but 
F (x = 1) jasy = 1) . Depending on the distri-bution 	 (r) jdisk along the disk, there is some 	� (r) jdisk, that 
ollimates inthe asymptoti
 regime at the light 
ylinder. This then gives some 
F (r) jdiskthat in its turn determines the asymptoti
 light 
ylinder radius. But whi
h38



Figure 3.9: Comparison of asymptoti
 
F = peh�hx, with h = 0:2, gI = 2:71,xdisk = 5:0 Rg and 	BH = 0:2 and a Keplerian rotation pro�le at the disk. The so-lution of the asymptoti
 GSE (left top) gives some value for 	 (x), this 
orrespondsto a 	 along the disk (left bottom), that in turn gives the physi
al s
aling of theasymptoti
 rotation pro�le (right top) using a Keplerian rotation pro�le at the disk(right bottom, solid line). In the right bottom �gure, the normalized asymptoti
solution (striped line) is shown to have an idea what this physi
al rotation law thisnormalization implies for the disk.	� (r) a
tually 
ollimates is determined again by the 2-D solution, so thisposes a problem.Let us 
onsider the Alfv�en point that is determined by the 
onservedquantities as follows: M2A = 1� 
F (	)L (	) =E (	) (3.23)In the for
e-free 
ase (M2A << 1), the Alfv�en point approa
hes the light
ylinder, so then 
F (	) = E (	) =L (	) (3.24)As we know, the light 
ylinder is de�ned as xl

F (	 (xl
)) = 1 so the39



light 
ylinder radius is determined byxl
 = L (	) =E (	) (3.25)So when the distribution along the disk is known and with it the L (	)and E (	), then the asymptoti
 light 
ylinder still is not de�ned uniquelybeforehand. Be
ause this relation might hold for any 	� along the disk andbeforehand it is not known whi
h 	� 
ollimates exa
tly at the asymptoti
light 
ylinder. This is determined by the 2-D solution.In the top-down approa
h the value for the asymptoti
 light 
ylinderradius xl
 
an be 
hosen arbitrarily in prin
iple (as long as 
F (r) jmax < 
BH),but this 
hoi
e then determines the 
onditions L (	) and E (	) at the disk. Iffor example the physi
s of the disk are known, then to get the 2-D stru
tureof the jet, the asymptoti
 light 
ylinder has to be 
hosen in su
h a way thatthese mat
h, and is therefore not free of 
hoi
e. This apparent free 
hoi
eof the asymptoti
 light 
ylinder radius is a 
onsequen
e of the top-downapproa
h. With the alternative bottom-up approa
h one does not have thisproblem, as will be explained in x 5:2.3.6 Grid boundaries3.6.1 Light surfa
eOne of the main problems in solving the GSE was to �nd the 
orre
t grid.Be
ause the light surfa
e is the singular surfa
e of the GSE (see x4:1), it isimportant that our boundaries for the inner grid as well as the outer gridfollow the light surfa
e as a

urately as possible. The inner and outer lightsurfa
es are given by ~!2L = �� �
F � ! �2 (3.26)To see what the light surfa
es for a given 
F look like, this equation 
anbe rewritten. At the light surfa
e ~! = ~!L then
F (r; �) = �� (r; �)~! (r; �) + ! (r; �) (3.27)40



On the right hand side of the equation there are only parameters of theKerr metri
. It is possible to 
al
ulate the family of solutions that satisfyEq. 3.27 for all (r; �). Every 
onstant 
F then 
onstitutes a 
ontour on thissurfa
e that 
F (r; �) builds. In Fig. 3.10 the 
ontours are shown for di�erent
onstant 
F . It 
an be seen that for the outer light surfa
e, the light surfa
emoves outwards for smaller 
F (a higher radius is needed in order to maintainx 
F (	 (x)) = 1). For the inner light 
ylinder, whi
h is due to the framedragging e�e
t of the rotating bla
k hole, the light surfa
e moves inwards forhigher 
F and approa
hes the bla
k hole surfa
e.For a 
onstant rotation of the 
ux �elds the light surfa
e 
an be 
al
ulatedexpli
itly. This is di�erent for a di�erentially rotating 
ux distribution. It isonly known for a 
ux �eld 	 with an 
 (	) that if it 
rosses the light surfa
eit will 
ross the light surfa
e somewhere along the known surfa
e of 
onstant
F as plotted in Fig. 3.10. At whi
h point along the light surfa
e it will 
rossdepends on the internal for
e balan
e.

Figure 3.10: On the left, Inner- and outer light surfa
es for di�erent 
F =0:05; 0:1; 0:2. On the right: Inner light surfa
es blown up. The bla
k hole sur-fa
e and the ergosphere are indi
ated as well (dashed).41



The problem is that 
F is now a fun
tion of 	(x), whi
h is exa
tly what isto be 
al
ulated: The shape of our boundary is a result of our 
al
ulation forwhi
h this shape is needed. A pro
edure to solve this problem was proposedby FM2001: For the initial light surfa
e boundary the light surfa
e of theangular velo
ity of the asymptoti
 solution 
F;1 is taken. For this gridthe solution is 
al
ulated with the n-element solver algorithm, so 
F (	) isknown at the boundary. This boundary will di�er from the real light surfa
eby D = 1 � � ~!~!F �2 = 1 � � ~!(
F (	)�!)� �2. Then the grid is 
hanged with�x / D (x; z)2. This pro
edure is repeated until D (x; z) � 0. FM2001showed that this pro
edure su

essfully 
onverges to the light surfa
e asdetermined by a 
onsistent axisymmetri
 solution.3.6.2 Outer jet surfa
eThe same problem as with the light surfa
e holds for the outer boundary ofthe jet. The position of the boundary has to be spe
i�ed in order to solvethe internal solution, but this position itself depends on that solution. Inprin
iple the 
orre
t boundary 
an be sear
hed for. To have an idea where tostart, the asymptoti
 GSE is �rst solved. This gives the position xjet of thelast 
ux surfa
e in the 
ollimated asymptoti
 region. The 
orre
t shape ofthe boundary is the one that gives an 
onsistent internal solution. Whetherthe internal solution is 
onsistent is determined at the light surfa
e. This'mat
hing problem' was studied by Fendt (1994). The internal solution is a
onsistent solution to the 2-D GSE, if at the light surfa
e the transition ofthe 
ux surfa
es a
ross the light surfa
e is smooth.In order to �nd the 
orre
t solution the mat
hing problem had to besolved, i. e. a 
orre
t boundary for 	 = 1 had to be found 
onsistent withthe smooth 
rossing of the light surfa
e. We 
hose to parameterize the outerboundary of the jet by some general fun
tion as F1997b and FM2001 did. ForZ > Zyso the grid was divided evenly in dZ = (Zmax � Zyso) =nel;Z with nel;Zthe number of elements in Z dire
tion. Here Zyso was 
hosen at double theheight of the 
rossing of the jet boundary at opening angle �0 with the lightsurfa
e 2Zls;min. We start at a fully 
ollimated boundary down to fyso � Zyso.For the rest of the i elements the fun
tion Ri = Rjet � dR (i� iyso)n wastaken. The parameters Zyso, fyso, dR and n were a free 
hoi
e, enabling awide variety of shapes for the outer boundary (see Fig. 3.12).The solution of the GSE sear
hed for is the 
ombination of 
oupling 
on-42



=1
Ψ Ψ Ψ=1

=1Figure 3.11: (Mis)mat
h of the 
rossing 
ux surfa
es at the light surfa
e. The redline indi
ates the light surfa
e. The blue lines indi
ate the magneti
 
ux surfa
es.There are three possible 
on�gurations: The �rst two solutions do 
ross the lightsurfa
e smoothly. Only the third solution has a smooth 
rossing of the light surfa
e,and therefore the boundary 
orresponding to the internal for
e-balan
e.stant gI, 
ore-radius a, and steepness h that gives a 
onsistent mat
h at thelight surfa
e for the inner and outer solution. Three possible situations atthe light surfa
e, that might o

ur while mat
hing the inner solution to theouter solution, are shown in Fig. 3.11. Cal
ulated examples of the mat
hingproblem will be shown in the next se
tion. The �rst two 
on�gurations inFig. 3.11 show a kink-like 
rossing at the light surfa
e, whi
h would requirejumps in the magneti
 �eld distribution whi
h are not present in the asymp-toti
 distribution. These are only due to the mismat
h of the adopted outerboundary with the internal solution that is de�ned by the given 
ombinationof 
oupling 
onstant gI , 
ore-radius a, and steepness h. The outer boundaryis then adjusted to have about the same shape as the internal �eld lines 
loseto the boundary. This adjustment is repeated until the mat
h at the lightsurfa
e is found.3.6.3 Disk & bla
k hole boundariesAt the lower part of the grid, the disk and bla
k hole are taken as boundaries.The disk is assumed to be thin (Z = 0) and starts from the ergosphere(rin = 2 Rg), whi
h is somewhat less than the marginally stable orbit (for abla
k hole with a = 0:8, rms � 3 Rg) and the disk goes out to rdisk.In prin
iple it would be logi
al to take the inner light surfa
e inside of the43
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θFigure 3.12: The parameterization of the outer boundary of the jet. The param-eters Zyso, fyso, dR and n were a free 
hoi
e.ergosphere as a boundary near the bla
k hole, be
ause there then we have awell de�ned boundary 
ondition. In order to use this boundary an iteratedpro
edure to �nd this position is needed as well. The inner light surfa
e
ould be found by starting at the light surfa
e for the lowest rotation, whi
his furthest out from the horizon. Then the same iteration pro
edure as usedfor the outer light surfa
e 
ould be used to move the inner boundary to theinner light surfa
e. This pro
edure will be very slow, be
ause both the innerand outer iteration pro
edures have to o

ur at the same time, as they dependon ea
h other. Be
ause in general it is not 
lear how the 
ux emanates fromthe bla
k hole's environment, we take for now the ergosphere as boundary.3.6.4 Summary of the jet-modelThe previous se
tions 
an be summarized as follows: The for
e balan
e a
rossthe magneti
 
ux surfa
es, that emanate from an a

retion disk and the
entral bla
k hole's environment and 
ollimates into a jet, is 
al
ulated in tworegions: inside and outside of the light surfa
e. The boundary 
onditions atthe disk are based on both phenomenologi
al arguments (for the bla
k holesmagnetosphere, based on Blandford & Znajek 1974; Okamoto 1992) andstudies of magnetized a

retion disks (e. g. Khanna & Camenzind 1992). It44



is assumed that all of the magneti
 
ux 
ollimates in the asymptoti
 region.The boundary 
ondition in the asymptoti
 regime is provided by solving the1-D asymptoti
 GSE of a 
ollimated jet stru
ture.The grid for the inner region to be 
al
ulated is seen in Fig. 3.13. Anopening angle �o is de�ned at the disk boundary rdisk from whi
h the jetboundary extends to the light surfa
e. The grid-boundaries are given by thejet-axis, bla
k holes ergosphere, disk, jet boundary and the asymptoti
 jet.The grid for the outer region to be 
al
ulated is seen in Fig. 3.14. Anouter boundary is de�ned that starts at the 
rossing point from the internalregion's boundary up to the jet radius xjet in the asymptoti
 part.

o

R

Z

θ

Figure 3.13: The inner region: Cal
ulation for the region inside the light surfa
e.The boundaries are given by the jet axis, the bla
k hole ergosphere, the thin disk,the jet boundary given by an adopted opening angle �o of the last 
ux surfa
e, thelight surfa
es and the asymptoti
 
ollimated region.
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Z

RFigure 3.14: The outer region: Cal
ulation for the region outside of the lightsurfa
e. The boundaries are given by the light surfa
e, the asymptoti
 solutionthat de�nes xjet and the adopted outer jet boundary whi
h is 
onne
ted to thepoint at the light surfa
e where internal 
ux 
rosses it at some opening angle �0.
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Chapter 4Code Development/Testing
4.1 Developing the 
odeThe FORTRAN77 
ode for the �nite element solver that in
luded the Kerrmetri
 in the GSE (see F1997a) was used as a base to develop the ne
essary
ode. The main idea behind the 
ode was as follows: First a non-equidistantgrid was spe
i�ed. Then the Diri
hlet 
onditions were spe
i�ed for ea
h (r; �).An initial �rst guess for 	 (r; �), was given by applying the asymptoti
 solu-tion to the whole grid. This proved to be a good 
hoi
e for fast 
onvergen
eof the 
ode. The initial solution was then used to solve the equation 6.8. Themaximal di�eren
e between the old and new value for 	 was then used toestimate the degree of 
onvergen
e. This pro
edure was repeated until themaximum di�eren
e j	new � 	oldjmax < �
onv. We 
hose for the 
onvergingfa
tor �
onv = 1 10�4, whi
h gave a good, and fast 
onvergen
e of the 
ode.The �nal 
onverged solution was set on an equidistant grid of 501 � 501elements. Be
ause this 
ode was only suited for 
onstant 
F a number ofextensions had to be added in order to su

essfully solve Eq. 2.29 in
ludingthe di�erential terms:The �rst step was to add the di�erential term, ~! !�
F� 
0F jr	j2, to thesour
e term J (see Appendix A). The fun
tions of 
 (	) and I (	) wereobtained by making a spline �t of the 	 (x) and 
 (x) and also for I (x).This had to be done, be
ause the fun
tions 
 (x) and also for I (x) had werea result of numeri
al integration (see x3:2:3) and should be 
al
ulated inthe 
ode for arbitrary 0 < 	 < 1. This spline also gave their derivativeswith respe
t to 	, I 0 (	) and 
0F (	). The fun
tion 
F was normalized by47




hoosing the asymptoti
 light 
ylinder radius. This gives the normalizationfa
tor f
 = 1=xl
. In Appendix A it is shown how the jr	j2 term was
al
ulated. Be
ause the 
F is also present in the l. h. s. of Eq. 2.29 thesame spline pro
edure had to be applied there as well.The se
ond step was to in
lude the iteration pro
edure of the positionof the light surfa
e. The �rst guess of the boundary for the light surfa
ewas initially made by 
al
ulating the light surfa
e for 
onstant 
F = 1=xl
,be
ause this 
orresponds to the maximal possible 
F of the light surfa
eby de�nition (see Se
tion 3:6:1). It turned out that for the non-
onstantrotation pro�les the initial 
hoi
e of the boundary gave problems when 
hosentoo 
lose to the light surfa
e. Due to the initial 
hoi
e of the boundary no
onvergen
e of the solution on this grid 
ould be obtained. This was probablydue to the fa
t that at the top, the boundary was, relative to the bottom, too
lose to the real light surfa
e, whi
h gave too little room for readjustmentof the boundary during the iteration pro
edure. To solve this the initialboundary was shifted by an amount of �xi = 0:01xl
 inside, to be sure thatthe whole boundary is well inside of the light surfa
e. This method provedto be su

essful. After ea
h 
onverged solution, for a given grid, for ea
h 
ellat the boundary 
orresponding to the light surfa
e, the value for D (r; �) was
al
ulated byD (r; �) = 1� (~! (r; �) [
F (	 (r; �))� ! (r; �)℄=� (r; �) )2 (4.1)Ea
h element at the light surfa
e was shifted by �x = f�D (x; y). Heref� was a 
hosen fa
tor that 
ould be adapted during the 
al
ulation in orderto speed up the light surfa
e iteration. It turned out that a good and fast
onvergen
e was obtained by 
hoosing f� as su
h that the amount of 
hangewas about 10% of the D (r; �). After the shift of the outer elements, theinternal grid was rearranged as well, and then the 
onverged solution of theprevious step was used as an initial 
ondition for the 
al
ulation of the new	 (r; �). For 
onstant rotation, the number of iteration steps was about10-20 in order to obtain a 
onvergen
e of �
onv = 1 10�4. The initial fewiteration over the new light surfa
e took the same amount of steps, butgradually de
reased to 2-3 steps to get the same 
onvergen
e. This wasbe
ause when the in
rement gets smaller, as the boundary approa
hes thereal light surfa
e, the 
onverged solution on the previous grid will be mu
h
loser to the real �nal solution. The light surfa
e iteration was stopped on
eD (x; y)max < 1 10�4. 48



We en
ountered an unexpe
ted problem when mat
hing the 1-D solutionof the asymptoti
 GSE to the upper boundary 
ondition. The height of thegrid was taken 5xl
 for the jets 
al
ulated in the next se
tions, where theasymptoti
 light radius was 
hosen xl
 = 10 Rg. The Kerr metri
 has threeparameters of in
uen
e in the GSE, the red-shift � (r; �), the frame-dragging! (r; �) and the ~! (r; �). In the spe
ial relativisti
 regime far away from thebla
k hole, the �rst redu
es to 1, the se
ond to 0, and the third is equalto the R-
omponent in a 
ylindri
al 
oordinate system. The values for theKerr parameters for di�erent heights in terms of the asymptoti
 light 
ylinderradius xl
 are given in Table 4.1.height (xl
) � (rl
; �l
) ! (rl
; �l
) ~! (rl
; �l
) xl
 (Rg)5.00 0.9798 1:2825 10�5 9.7991 9.797810.00 0.9899 1:6249 10�6 9.8991 9.898815.00 0.9933 4:8054 10�7 9.9329 9.932720.00 0.9949 2:0229 10�7 9.9497 9.94961 1.0 0.0 10.0 10.00Table 4.1: Values for Kerr parameters at di�erent heights of the grid (for xl
;1 =10 Rg)At a height of 5xl
 = 50 RG the light surfa
e has is at a distan
e ofxl
 = 9:7978 Rg and has not yet rea
hed its asymptoti
 value at xl
;1 =10:0 Rg. The Table 4.1 shows that the Kerr parameters have not rea
hedtheir asymptoti
 values at this height. The question now arises whetherthe asymptoti
 solution, whi
h has been 
al
ulated in the spe
ial relativisti
regime, may be used as a valid boundary 
ondition for the problem 
al
ulatedin the Kerr metri
. There are two options how to interpret the asymptoti
solution. The �rst is to assume that both in the non-asymptoti
 regionas well as in the asymptoti
 region the �eld is perfe
tly 
ollimated. This,however, leads to some problems at the light surfa
e. As 
an be seen inFig. 4.1 that the 
ux surfa
es that originally 
rossed the light surfa
e (at thepoint where x
F (	 (x)) = 1), now 
ross it ba
k. This is a 
ontradi
tion,be
ause 
F (	) is 
onserved, so it 
annot possibly 
ross the light surfa
e ase
ond time. Therefore all the 
ux that is outside the light surfa
e must stayoutside the light surfa
e. It would be obvious to in
rease the height of thegrid until the in
uen
e of the bla
k hole be
omes negligible. Be
ause thegrid 
ells should not get too elongated, to avoid numeri
al problems, we 
an49



not set our boundary at arbitrarily high Z. For these we 
hose to normalizethe asymptoti
 solution with respe
t to the position of the light surfa
e atthe top of our grid and not its asymptoti
 value. Be
ause the di�eren
e ofthis point to the asymptoti
 value is very small (less than 2%), the di�eren
ebetween the asymptoti
ally normalized jet and our adopted normalizationshould be insigni�
ant. This does not mean that the solution be
omes lessa

urate, it just implies a di�erent rotation at the disk for some 	�.

RLS

Ψ

R=R_lc(Z=5R_lc)

Z=inf

Z=5R_lc

R_lc,inf

Figure 4.1: A s
hemati
 view of the problem when applying the asymptoti
 dis-tribution as a boundary 
ondition to a region where the light surfa
e has notyet rea
hed its asymptoti
 value. The assumed straight 
ux �eld will 
ross thelight surfa
e for a se
ond time, whi
h is in 
ontradi
tion with x
F (x) = 1. The
ollimated 
ux surfa
es (blue) and the light surfa
e (red) are indi
ated in this �g-ure. Note how in between the light surfa
e and its asymptoti
 value the assumed
ollimated �eld lines may re-
ross the light surfa
e.4.2 Testing the 
odeTo test the extended new 
ode was applied it to the 
ase of 
onstant rotationand di�erential rotation of the 
ux-�elds.50



In order to obtain the 
onsistent solution, we adopted the the modelparameters in a spe
i�
 order. First an opening angle �0 was 
hosen be
ausethis parameter seemed to have to largest in
uen
e on the global stru
ture.This determined the internal solution. By assuming some outer boundary by
hoosing the parameters Zyso, fyso, dR and n it was immediately apparentwhether the gI would have a possible 2-D solution with this opening angle.When an opening angle was found that had a solution for whi
h the outerboundary gave an almost 
onsistent solution, the opening angle was kept andthe outer solution was 
hanged until a 
onsistent solution was found.4.2.1 Constant rotationIn the 
ase of 
onstant rotation of the 
ux surfa
es the analyti
al solutionof Appl & Camenzind (1992) was used for the asymptoti
 boundary 
on-dition in order to solve the 2-D GSE. The asymptoti
 form of the GSEhas, with the Ansatz that I (	) = 1�e�b	1�e�b , the analyti
al solution 	 (x) =1=b log�1 + �xa�2�. The jet radius is then de�ned as xjet = apeb � 1. Theparameters used originally by F1997a are given in Table 4.2. These were usedto re-
al
ulate stru
ture as found by F1997a. Unfortunately the parametersdes
ribing the outer jet boundary used by F1997a were not spe
i�ed in thepaper, so we had to look for the solution again.gI a b rl
;1 	BH2.14 2.71 0.8 10 0.2Table 4.2: Jet model parameters as 
al
ulated by F1997a.An initial guess of the jet boundary is done by taking a initial �0 thesame as F1997a, whi
h was about �0 = 3=4 rad � 42o. The internal solutionshown in Fig. 4.2.To illustrate the method how the 
orre
t outer boundary was found twosolutions for di�erent boundaries are shown in Fig. 4.3. Both �gures show
learly what happens if the outer boundary (as was shown in Fig. 3.11) is toodi�erent from the boundary that satis�es the internal for
e-balan
e. Whenthe boundary is moved more inwards (
ollimates more slowly) the kinks moveupwards. If the boundary is moved outwards, the kinks move downwards.The smooth solution where the derivatives of the 
ux distributions in the51



Figure 4.2: The inner region as 
al
ulated for the parameters of F1997a, with anopening angle of �0 = 42o. The 
ontour lines indi
ate the values for 	 = 10�(0:1n)2 ,with n = 1; 2; ::17.inner region and the outer are equal, must have a boundary that is somewherein between these boundaries.In Fig. 4.4 
an be seen what happens when the opening angle �0 is
hanged. Although the uniqueness of a this boundary is diÆ
ult to quan-tify, pra
ti
e shows that when a given opening angle and outer boundary
ausing these kinks, these kinks 
an only be removed for one opening angle.In the left of Fig. 4.4, when the boundary is 
hanged inwards (be
ause nowthe kinks are downwards), the upper part of the distribution may be
omesmooth, but the lower part still has a large kink. By doing this for a range inopening angles, it was found that fo too high opening angle we had this prob-lem with upwards bending kinks, and for too low opening angles we had thisproblem with downwards bending kinks. A smooth transition at the light52



surfa
e 
ould be found for the intermediate opening angle. The mat
hing ofthe light surfa
e was done by hand, whi
h is quiet unsatisfa
tory, although itdoes give good results. An iterative pro
edure 
ould be made by mat
hin thederivatives of the distribution at the light surfa
e, although it will be veryslow, be
ause iteration would be needed over the outer boundary as well asthe opening angle.

Figure 4.3: The inner region as 
al
ulated for the parameters of F1997a, with anopening angle of �0 = 42o. The 
ontour lines indi
ate the values for 	 = 10�(0:1n)2 ,with n = 1; 2; ::17. On the left: The parameters des
ribing the outer boundarywere �0 = 42o, Zyso = 1:5Zls;min, fyso = 6:5, dR = 0:0007 and n = 2. On the right:The parameters des
ribing the outer boundary were �0 = 42o, Zyso = 1:5Zls;min,fyso = 3:5, dR = 0:0008 and n = 2.The boundary that shows the best mat
h at the light surfa
e is shown inFig. 4.5. The two shapes of the outer boundary are almost identi
al and theinternal solution looks 
onsistent. Due to the 
onstant rotation, the positionof the light surfa
e is known in advan
e. The di�eren
e in the approa
h here,is that the whole 2-D stru
ture, inside as well as outside the light surfa
e atthe same time was 
al
ulated by F1997a. The outer part was 
al
ulatedseparately and then mat
hed to the inner part, be
ause it had to be suitedfor �nding the light surfa
e of a di�erential rotation as well.The solution seem very alike. Although the boundary may not be the ex-a
t boundary satisfying the GSE, whi
h probably would not have the bound-53



Figure 4.4: On the left: 2-D solution for higher opening angle than F1997a. The
ontour lines indi
ate the values for 	 = 10�(0:1n)2 , with n = 1; 2; ::17 (on the left)and n = 1; :2; ::25 (on the right). The parameters des
ribing the outer boundarywere �0 = 49:2o, Zyso = 2:0Zls;min, fyso = 8:4, dR = 0:000041 and n = 2:5.On the right: The parameters des
ribing the outer boundary were �0 = 32:7o,Zyso = 2:0Zls;min, fyso = 3:0, dR = 0:00018 and n = 2:0. With these openingangles no outer boundary 
an be adopted, whi
h gives a smooth transition at thelight surfa
e.ary in a straight line at an opening angle �0 from the disk, the mat
h at thelight surfa
e is so good the internal solution obtained with our approximatejet boundary will be 
lose to that with the boundary that gives the exa
tsolution of the GSE. In any 
ase, the 
ode was able to repli
ate the solutionby F1997a up to a good degree of a

ura
y. The a

ura
y of the 
ode withrespe
t to the exa
t solution of the GSE will be dis
ussed in x 5.1.
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Figure 4.5: On the left: axisymmetri
 jet stru
ture for 
onstant 
F , as 
al
ulatedwith the new 
ode. On the right: Same axisymmetri
 jet stru
ture, as 
al
ulated byF1997a. The 
ontour lines indi
ate the values for 	 = 10�(0:1n)2 , with n = 1; 2; ::17(on the left) and n = 1; :2; ::25 (on the right). The parameters des
ribing the outerboundary were �0 = 420, Zyso = 2:0Zls;min, fyso = 5:3, dR = 0:00038 and n = 2:5.Note the di�eren
e near the disk, as F1997a took the boundary 
ondition alongthe disk somewhat di�erent 	disk = E	max (r � r0)n with n = 3, r0 = 1:76 andE = 0:03. It 
an be seen that the disk boundary 
ondition does not a�e
t the globalsolution. This shows that for a 
onstant rotation law, the new 
ode su

essfullyreprodu
es the solution as found by F1997a.4.2.2 Di�erential rotationIn order to 
ompare our results with the previous work by FM2001 whereonly the di�erential rotation of the 
ux surfa
es was in
luded the exponentialrotation pro�le 
2F (x) = peh�hx was 
hosen, with a steepness of h = 0:2.For the 
urrent density distribution I (x) = (x=a)2 =(1 + (x=a)2 was taken.The parameters used are given in Table 4.3. Be
ause the solution obtainedby FM2001 was normalized with respe
t to the asymptoti
 light 
ylinder, wehad to re-normalize the asymptoti
 light 
ylinder radius in terms of the grav-itational radius (as dis
ussed in Se
tion 3.2.4) to 
al
ulate the 2-D stru
ture.For the test, the asymptoti
 radius was 
hosen at xl
 = 25 Rg, whi
h giveswith the disk size rdisk = 5 Rg like F1997a the same light surfa
e to disk sizeratio as FM2001.As initial opening angle �0 = 75o was 
hosen. The solution for the inner55



gI a h rl
;1 	BH2.5 1.0 0.2 25.0 0.2Table 4.3: Jet model parameters as 
al
ulated by FM2001.region with the initial 
hoi
e of the outer boundary are shown in Fig. 4.6.The initial inner solution was shifted 0:1 Rg to the left of the light surfa
efor 
F = 1=rl
 = 0:04. It took 140 steps for the iteration pro
edure, whi
hmoves the outer boundary to the light surfa
e, to 
onverge to D (x; y)max <1 10�4. The 
ombined solution for the inner and outer regions is shown inFig. 4.7. The solution as 
al
ulated by FM2001 is shown in Fig. 4.8. Againthe global solutions are very alike, as they are determined by the asymptoti
free fun
tions as found by F1997a. The solution near the disk di�er however.This is for a part due to a di�erent boundary 
ondition taken along the diskand the 
entral obje
t. FM2001 took at the disk a distribution of	disk (x) = 1~b ln 1 + �x� xin~a �2! (4.2)with ~a the 
ore radius of the 
ux at the disk and ~b = ln �1 + (xdisk � xin)2 =~a2�.The se
ond di�eren
e is the in
uen
e of the Kerr metri
 near the rotatingbla
k hole. The global solutions are the same as those determined by theasymptoti
 free fun
tions as found by F1997a. The outer boundary is slightlydi�erent, but for the purpose of testing the 
ombining of the two methods,this is quite satisfa
tory.
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Figure 4.6: On the left: Converged solution for the initial 
hoi
e of the outerboundary that was shifted 0:1 Rg inside of the light surfa
e for 
F = 1=rl
 = 0:04.The opening angle is �0 = 75o. On the right: The �nal inner solution after 140iteration steps of the light surfa
e. Both are for a steepness h = 0:2. The 
ontourlines indi
ate the values for 	 = 10�(0:1n)2 , with n = 1; 2; ::17.
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Figure 4.7: The axisymmetri
 jet stru
ture for a di�erentially rotating 
ux-distribution with steepness h = 0:2, in
luding the Kerr metri
. The 
ontour linesindi
ate the values for 	 = 10�(0:1n)2 , with n = 1; 2; ::17. The parameters des
rib-ing the outer boundary were �0 = 75o, Zyso = 1:7Zls;min, fyso = 1:8, dR = 0:000091and n = 3:0. 58



Figure 4.8: The axisymmetri
 jet stru
ture for a di�erentially rotating 
ux-distribution jet stru
ture, as 
al
ulated in a spe
ial relativisti
 treatment byFM2001. The 
ontour lines indi
ate the values for 	 = 10�(0:1n)2 , with n =1; :2; ::25 (on the right).
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Chapter 5Dis
ussion & Future Work
5.1 Dis
ussionIn 
al
ulating the for
e balan
e a
ross the magneti
 
ux �elds, the 
ombina-tion of the Kerr metri
 with the di�erential rotation of the �eld lines appearsto be su

essful. In the 
ase of 
onstant rotation the same solution as 
al-
ulated by F1997a was found. Be
ause the outer boundary exa
t shape asfound by F1997a was not 
onserved, we had to �nd the boundary again. Wefound a slightly di�erent jet boundary than F1997a (see Fig. 4.5), but the so-lutions look almost exa
tly alike. What 
an be seen is that in the region nearthe disk the solutions di�er somewhat. This is due to the slight di�eren
ein boundary 
onditions along the disk and the di�erent boundary near thebla
k hole. F1997a took the light surfa
e as the inner boundary, we took theergosphere. The global solution is not a�e
ted by the di�eren
e in boundary
onditions at the disk. This is be
ause both have the same free fun
tionsI (	) and 
F (	 as determined from the asymptoti
 analyti
al solutions ofAppl & Camenzind (1993). Be
ause the 
ode was based on the 
ode that
al
ulated the same solution, so we expe
t no di�eren
e in the a

ura
y ofthe 
ode. This is somewhat di�erent in the 
ase of repli
ating the solutionof FM2001. By 
omparing the solution as found by our 
ode with that ofFM2001 we 
an say that we found almost the same solution. Although thereare still some small kinks left at the light surfa
e this approximate solution
losely resembles that of FM2001. For testing the 
ode, this result is goodenough to be sure that the 
ombination of the Kerr metri
 and the di�erentialrotation has been su

essful. 60



Top-down approa
h and the rotation pro�le 
F The problems whenadopting some rotation pro�le 
F in the top-down approa
h were des
ribedin Se
tion 3:2:4. When trying to mat
h this pro�le to some physi
al rotationpro�le the steepness (in our 
ase h = 0:2) in 
ombination with the 
oupling
onstant gI was too small, based on arguments 
on
erning the ratio of max-imal and minimal rotation of the asymptoti
 rotation pro�le and the diskrotation pro�le. When the steepness was in
reased, this showed that thelight surfa
e returned in the asymptoti
 regime. A se
ond problem, was thata

ording to some arguments the rotation of the 
ux �elds around the bla
khole's environment rotate at 
onstant rotation at some fra
tion of the bla
khole's rotation 
F = f
BH (Punsly 2001). Therefore an asymptoti
 rotationpro�le should have some 
ut-o� value that 
orresponds to this rotation. Wedid some investigation with a modi�ed rotation pro�lefor x > xbh 
F = e1=((x�xbh)n+f)h (x� xbh)m + 1 (5.1)for x � xbh 
F = e1=f (5.2)with f = 1= log (h (1� xbh)m + 1)� (1� xbh)n. Here xbh is the positionnormalized in asymptoti
 light 
ylinder radii, where the rotation pro�le be-
omes 
onstant. The parametersm, n 
an be 
hosen su
h that a high rotationis obtained inside the light 
ylinder and a low fall o� for higher x, makingsure that no returning light 
ylinder was 
lose to the jet boundary. The sameIDL pro
edure as used in Se
tion 3:2:3 was used to solve the asymptoti
 GSEfor this rotation pro�le (see Fig. 5.2).The main drawba
k of this method was that yet more parameters xbh; m; nhad to be 
hosen, and for example xbh is determined by the internal for
ebalan
e. Also to obtain an exa
t mat
h between a Keplerian pro�le and theasymptoti
 rotation pro�le while 
onserving 
F (	) will always stay a prob-lem while using the solution of the asymptoti
 jet to determine the internalstru
ture. Although it must be stressed that the solutions, obtained with thetop-down approa
h, do give exa
t solutions for the jet stru
ture, for thesereasons in Se
tion 5:2 an alternative bottom-up approa
h will be explainedand its advantages and disadvantages will be dis
ussed.61



Figure 5.1: Pro�le for 
F (x) as in Eq. 5.1. For xbh = 0:2, and di�erent (m;n):dotted (1,1), solid (2,2), striped (2,3).Jet 
ollimation Although the jet does not propagate through a va
uum,this is not ne
essary for 
ollimation. When the ele
tromagneti
 pressureex
eeds the ambient pressure the shape of the jet will not be a�e
ted. Thepressure of the ambient 
on�ning medium spans a wide range, from values of10�2 dyn 
m2 in the broad line region to 10�12 dyn 
m2 in the intergala
ti
medium (Appl & Camenzind 1993). The ambient pressure 
an be relatedto jet pressure. For a jet to be in equilibrium, the sum of stresses on theboundary inside and outside must 
an
el18� �B2� +B2P � E2P�jet = Pext + 18�B2�;ext (5.3)The dimensionless pressure 
an be expressed as p = (R4LC=	2max)P whi
hhas the units 62



Figure 5.2: Asymptoti
 
ux distribution as 
al
ulated for rotation pro�le as inEq. 5.1. Here a = 1, B = 1, h = 0:2, xjet = 0:2, gI = 1:97 and (m;n) = (2; 2).p =  P10�6 dyn 
m�2!� RLC1015 
m�4 � 	max1033 G 
m2��2 (5.4)The jet is de�ned by the set of nested 
ux surfa
es with 0 � 	 � 1.This 
an be done for a saturating pro�le at 	 = 1 be
ause then there is nopoloidal �eld left beyond this point (d	=dx = 0). In prin
iple, one 
an dis-tinguish between two di�erent regimes for a jet (Appl & Camenzind 1993): a
urrent-
on�ned (or self-
on�ned) or a pressure-
on�ned jet. Self-
ollimationis shown to be possible by time-dependent simulations for parti
ular 
ases(Ouyed & Poudritz 1997), but the spatial s
ales were far below the s
ales ofthe 
ollimating regime. There are also arguments based on 
urrent-
losurethat 
on�nement 
annot o

ur without external help (Okamoto 1997, 1999).For now we assume that the jet is 
urrent-
on�ned and the external pressure
an be negle
ted.Possible follow-up studies may be done in order to in
lude external gaspressure. A possible idea might be to make the pressure gradient as a fun
tionof the 
ux-�elds rP (	). Then it 
ould be in
luded as an extra term in thesour
e term. It is not really 
lear what kind of fun
tion one then would takefor the pressure distribution though. A 
onstant external pressure and a zeropressure in the for
e-free jet would lead to an in�nite high gradient at 	 = 1,so one needs some idea on what to take for the gradient at the jet boundary.63



Whether this 
an work or not still has to be investigated.Jet stability Having found these solutions for the axisymmetri
 jet stru
-ture, the question arises whether they are stable or not. We have not foundthe time to address this problem yet, and this will have to be done in thefuture. Many studies have been done on the stability of stationary MHDjet solutions (e. g. Appl 1996; Lery 1996; Lery & Frank 2000) show thatsolutions for MHD jets, espe
ially 
urrent 
arrying ones are more stable thanhydrodynami
 ones. The stability will probably depend on the type of 
ur-rent distribution I (	) (see Fig. 3.3). The 
urrent pro�le taken is a pro�lewhere most of the 
urrent is lo
ated inside the 
ore radius a (in our solutionin Se
tion 4:2:2 a = 1, whi
h 
orresponds to the asymptoti
 light 
ylinder)and then drops o� for larger 	 (a pro�le similar to what Khanna & Camen-zind (1992) obtained for their stationary disk solutions). A parameter studyof the 
ore radius a, the 
oupling 
onstant gI will have to be done in orderto see what e�e
t they have on the jet stru
ture and see whether it is indeedstable.5.2 Cal
ulating the 
ux stru
ture from diskphysi
sThe top-down approa
h used in this thesis, takes the asymptoti
 version ofthe GSE, to 
al
ulated the asymptoti
 boundary 
ondition used by the 2-DGSE. To solve this, for the 
urrent distribution I (	) and for the rotationpro�le 
F (	) assumption had to be made. The top-down approa
h usesthe results of studies made by Appl & Camenzind (1993) and F1997b of theasymptoti
 spe
ial relativisti
 GSE whi
h assumes some 
urrent-distributionand rotation pro�le as a fun
tion of x (in terms of the asymptoti
 light
ylinder radius xl
). From these fun
tions then a 
onsistent solution for theasymptoti
 GSE 
an be 
al
ulated. This 
an give some 
ompli
ations, how-ever, when trying to mat
h these fun
tions to the physi
al properties, su
has the rotation of the magneti
 �elds at the disk. An alternative bottom-upapproa
h would be to base the distributions of 	 (x), I (x) and 
F (x) on thephysi
al properties of the disk and around the bla
k hole, whi
h 
an be basedon 
al
ulations done by for example Khanna & Camenzind (1992), Okamoto(1992) and others. When one has these des
riptions of these three distribu-64



tions, one also has the fun
tions 
F (	) and I (	) whi
h are needed to solvethe 2-D GSE. The question is now, how to �nd the appropriate asymptoti
boundary 
ondition. As already mentioned in Se
tion 3:2:2, when we havethe situation that there is no returning light surfa
e into the asymptoti
 re-gion, the light surfa
e 
an be used as a boundary 
ondition for 
al
ulatingthe stru
ture inside the light surfa
e. In our approa
h, for this region theasymptoti
 Diri
hlet boundary 
ondition is not mandatory. A homogeneousNeumann boundary 
ondition (e. g. fully 
ollimated �eld lines) is enough.The problem is that the position of the outer boundary in the asymptoti
region xjet is now unknown, be
ause we only have 
F (	) and I (	) and notI (x) and 
F (x) whi
h 
an be used to integrate the asymptoti
 GSE. Wenow start with the rotation pro�le normalized in the dimension of the Kerrmetri
, but the true s
aling is a result of the internal solution that we wantto 
al
ulate (as dis
ussed in Se
tion 3:2:4). In Se
tion 4:1 we showed the pos-sibility of starting inside of the light surfa
e and use an iterative pro
edureto �nd it. It 
ould therefore be possible, to start at a low position and usethe same pro
edure to �nd the unknown light surfa
e and with it the 
orre
ts
aling of the asymptoti
 light 
ylinder radius. The regularity 
ondition atthe light surfa
e will make sure this is possible. It is not as straightforward to�nd a solution for the region outside of the light surfa
e, be
ause the positionof the jet outer boundary is not known in advan
e either.We propose a method to �nd the boundary by solving the 2-D GSE inthe asymptoti
 regime with our 
ode. Be
ause the s
aling of the asymptoti
light surfa
e 
an be found, the exa
t position is known and we 
an try to�nd the true solution by varying the outer boundary where 	 = 1.As a �rst test of this idea we used the analyti
al solution of Appl &Camenzind (1992) for 	 (x) and the adopted I (x) and 
F (x) to get thefun
tions for I (	) and 
F (	). Be
ause the real solution is known by inte-grating the asymptoti
 equation, we 
an examine how the solution 
hangeswhen a di�erent xjet (	 = 1) is taken. We used a re
tangular grid far fromthe bla
k hole, so that the light surfa
e be
omes a 
ylinder. We 
hose onlyDiri
hlet boundary 
onditions at the inner part 	 (x) = 0 and at the bound-ary 	 (xjet) = 1, and 
hose the s
aling of the asymptoti
 light surfa
e ofxl
 = 100 Rg whi
h gives a jet radius of xAC;jet = 213:80 Rg. We do not setthe boundary 
onditions at the top and bottom of the grid! In Fig. 5.3 thesolutions are shown for the xjet = xAC;jet � 5; xAC;jet and xAC;jet + 30. No
onverging solution 
ould be obtained for xjet = xAC;jet � 10; xAC;jet + 50.From Fig. 5.3 it 
an be seen that for the boundary taken at xAC;jet the65



Figure 5.3: Solutions for the 2-D GSE by varying the boundary of the jet xjet.The dashed line indi
ates the jet with the boundary xAC;jet, the dotted line withxAC;jet � 5 and the solid line with xAC;jet + 30. Be
ause the solutions are plottedagainst the equidistant grid points, the asymptoti
 light 
ylinders are not on thesame position in the plots. It is 
lear that kinks appear around the asymptoti
light 
ylinders for the boundaries that do not 
orrespond to xAC;jet.same solution is obtained as that from the integration. For small devia-tion from xAC;jet a kink d2	=dx2 = 0 appears around the asymptoti
 light
ylinder. For larger deviations the 
ode did not 
onverge at all. The solu-tion only 
onverged for smaller xjet < xAC;jet for smaller deviations than forxjet > xAC;jet. The maximum deviation was about 10% of the jet radius forxjet > xAC;jet and about 2% for xjet < xAC;jet. The dire
tion of the bump
hanges as well when xAC;jet is passed, whi
h might be an indi
ation for the
orre
t solution.Although 
are should be taken in over interpreting these results, it is anindi
ation that the boundary may be found by examining the behavior of the
onverged solutions around the light 
ylinder. This may be done by startingto take the value of xjet from the light surfa
e and in
rease the value in smallsteps, and look for 
onverged solutions. The true solution must lie in betweenthe point where the kinks 
hange sign. It is still un
lear how a

urate thismethod might be to obtain the exa
t solution. Whether this holds for an66



arbitrary I (	) and 
F (	) is also still un
lear. This has to be studied moreextensively.In order to use the bottom-up approa
h the full distributions of 
F (x),I (x) and 	 (x) have to be spe
i�ed for the bla
k hole/a

retion disk system.Although there have been some studies of this, a fully 
onsistent disk modelhas not yet been found. Be
ause in the bottom-up approa
h the jet stru
-ture is determined mainly by these quantities, this might be a useful methodalso to test disk models. It 
ould be seen that for di�erent disk boundary
onditions, the same global solution was obtained. Be
ause the top-downapproa
h uses the asymptoti
ally determined free fun
tion, this is expe
ted.It would be interesting to study how the disk physi
s will in
uen
e the globalsolution for the bottom-up approa
h, be
ause in this 
ase, the whole axisym-metri
 solution is entirely determined by it and not only lo
ally as in thetop-down approa
h.5.3 Solving the energy equation along the 
uxsurfa
esWith the 
al
ulated magneti
 
ux distribution that was obtained solving the
ross-�eld for
e balan
e it is now possible to 
al
ulate the 
ow propertiesalong the 
ux surfa
es, whi
h gives for example the �nal 
ow of the a

eler-ated plasma. These follow from the for
e-balan
e along the �eld lines, 
alledthe Wind Equation (also known as the Bernoulli Equation), whi
h representsthe integrated stationary MHD energy equation. The most general versionof the stationary relativisti
 wind equation (Camenzind 1986; Takahashi etal. 1990) is given in terms of the relativisti
ally de�ned poloidal velo
ityup � 
vp=
 by u2p + 1 = ��m  E�!2 k0k2 + �m2k2M4A(k0 + �mM2A)2 (5.5)with k0 = g33
2F + 2g03
F + g00, k2 = 1� 
F LE , andk4 = �g33 + 2g03L=E + g00L2=E2g203 � g00g3367



Fendt & Camenzind (1996) did these 
al
ulations for a 
al
ulated 
uxdistribution for 
onstant rotation to study the in
uen
e of the magnetization�m on various parameters of the 
ow (see Fig. 5.4). It would be interesting tostudy the in
uen
e of the Kerr metri
 and the di�erential rotation on theseparameters.

Figure 5.4: On the left: Overall stru
ture of the 
riti
al surfa
es of the 
ollimatedjet. The regions indi
ated are the sub-Alfv�eni
 (sA), super-Alfv�eni
, but sub-fastmagnetosoni
(A/sFM), and super-fastmagnetosoni
 (FM) (taken from Fendt &Camenzind 1996). On the right: The dynami
al parameters along the 
ux surfa
e	 = 0:726 for various degrees of magnetization �m. The dynami
al properties arethe total energy minus the rest energy �E = E (	)�1, the maximal poloidal velo
itynear the asymptoti
 radius, uM , the poloidal velo
ity near the fast magnetosoin
point uF , and the Alfv�en point uA. Also the positions of the fas magnetosoni
point xFM and the Alfv�eni
 point xA. The parti
le density N in 
m�3 at theposition of uM . Fast magnetosoni
 Ma
h number M , and the poloidal 
urrent T ,in units of 	max=RL (taken from Fendt & Camenzind 1996).Although 
F (	) is 
onserved even in a non-for
e-free plasma (as it fol-lows from the axisymmetry assumption), I (	) is not. In order to 
al
ulatethe dynami
s of the stream the for
e-free assumption has to be dropped, be-
ause the inertial terms are essential to get the a

eleration of the 
ow. Theapproa
h is therefore not entirely 
onsistent. To do it really 
onsistently, aniteration over the 
urrent distribution should be adopted: A initial 
urrentdistribution is taken and a for
e-free 
al
ulation of the 
ross-�eld balan
e68



is done. That �eld distribution is used to 
al
ulate the for
e balan
e alongthe �elds in
luding inertial terms, whi
h gives a new 
urrent distribution.Of 
ourse the question whether su
h an iteration iteration would 
onvergeshould be investigated, and be
ause it is probably very time-
onsuming andmaybe as a good approximation it may be left out, espe
ially for highlymagnetized 
ows. This must investigated further.5.4 Polarization of the jet syn
hrotron emis-sionAnother interesting follow-up from the work done, is the possibility to 
al
u-late the syn
hrotron polarization from radio emission. Pariev, Istomin andBeresnyak (2003) re
ently published their 
al
ulations for the degree of po-larization of syn
hrotron emission in for
e-free MHD jets. They assumed asimpli�ed model for the stru
ture and the rotation pro�le of the fully 
olli-mated magneti
 
ux surfa
es (see Fig.5.5).Their adopted rotation pro�le was
F = 
 
R  1� � rR�2! (5.6)With 
 the dimensionless strength of the rotation, and R the boundaryof the jet. The Stokes parameters for their 
on�gurations were given byI = � + 7=3� + 1 k (�) Z R0 dh Z �2�1 jB?j(�+1)=2 hsin � sin2 �d� (5.7)Q = k (�) Z R0 dh�Z �2�1 jB?j(��3)=2 [
2F r2 
os2 �� (
 sin � + 
F r sin� sin �)2℄B2zh
2 sin � sin2 � d� (5.8)U = V = 0 (5.9)69



Figure 5.5: Stru
ture adopted by Pariev et al. (2003) for their 
al
ulations ofthe polarization of syn
hrotron emission in 
ollimated jets (taken from Pariev etal. 2003).They found that the strength of the rotation 
 has a strong in
uen
e onthe degree of polarization of the syn
hrotron emission (see Fig. 5.6). Theiradopted stru
ture and rotation pro�le however do not satisfy the 
ross-�eldfor
e balan
e. What would be interesting is to redo these 
al
ulations usingthe 
ux surfa
e distributions 
al
ulated by the method presented in this the-sis. Then from the rotation law of the disk, a more 
onsistent 
al
ulation 
anbe done for the degree of polarization of the syn
hrotron emission. We 
annotdire
tly 
ompare our results to the work of Pariev, Istomin and Beresnyak(2003) and predi
t the polarization as expe
ted using our solution, be
ausein their paper they assume 
onstant Bz and a di�erent rotation pro�le whiledoing the derivation and their presented equations are not immediately ap-pli
able to our obtained solutions. When this is done the 
al
ulated emissionmight be a useful tool to probe the 
ollimation region of the jet.
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Figure 5.6: Dependen
e of linear polarization � on the strength of the angularrotational velo
ity of the magneti
 
ux surfa
es and di�erent angles of view. Onthe left: For a homogeneous distribution of emitting parti
les. On the right: Foremitting parti
les 
on
etrated 
lose to the Alfv�eni
 resonan
e surfa
e (both takenfrom Pariev et al. 2003)
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Chapter 6Con
lusionIn this thesis I studied the for
e-free for
e balan
e a
ross the surfa
es of 
on-stant magneti
 
ux in 
ollimating relativisti
 jets with the in
lusion of thedi�erentially rotating term of the magneti
 �eld stru
ture in a ba
kgroundof the Kerr metri
 of the 
entral bla
k hole. The fo
us was primarily on theproblems en
ountered when 
ombining the separate studies done by F1997aon the Kerr metri
, and FM2001 who in
luded the di�erential term in aspe
ial relativisti
 treatment. The advantage of this 
ombination is the pos-sibility of 
onsistently mat
hing the 
al
ulated stru
ture of the 
ollimated jetto physi
al properties of the disk and the 
entral bla
k hole. Also the in
u-en
e of the metri
 on the ele
tromagneti
 �elds is 
onsistently in
orporatedin this treatment. For this thesis the 
ode that 
al
ulated the for
e-balan
ein a Kerr metri
 using a �nite element approa
h was extended to in
lude thedi�erential rotation of the magneti
 �eld lines. The 
al
ulations done by theresulting 
ode were 
ompared to those done by F1997a and FM2001. Thesetests out that the new 
ode 
an su

essfully obtain the same results. Thesolution shown in Fig.4.7 is therefore a full solution that in
ludes the di�er-ential rotation of the 
ux surfa
es and the general relativisti
 des
ription ofthe spa
e-time.In order to solve the GSE the free fun
tions of the the di�erential rotationpro�le 
F (	) and I (	) had to be spe
i�ed. We did this a

ording to a top-down approa
h as adopted by FM2001, whi
h uses the analyti
al studiesof asymptoti
ally 
ollimated jets done by Appl & Camenzind (1993) andF1997b to obtain the free-fun
tions 
F (	) and I (	). These were then usedto 
al
ulate the global solution by solving the axisymmetri
 GSE.By studying the asymptoti
 GSE, we found the possibility for a relativisti
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ore stru
ture in the asymptoti
 
ollimated jet. For some rotation pro�les,the light surfa
e (the Alfv�eni
 surfa
e in the 
ase of high magnetization)
an return into the asymptoti
 regime, thereby dividing the jet into an innersub-relativisti
 part, a relativisti
 
ore, and an outer sub-relativisti
 envelope.As far as we know, this has not been mentioned yet in previous studies onasymptoti
ally 
ollimated jets. It does resemble the super-Alf�eni
 
ore Casse& Keppens (2002) see in their time-dependent non-relativisti
 simulations.Up till now, studies of relativisti
 jets have been 
on
erned only with jetshaving an inner sub-relativisti
 region and an outer relativisti
 envelope.Due to the extra 
omplexity of the relativisti
 
ore stru
ture, we do not yettreat these stru
tures with returning light surfa
e.Although this approa
h did give a 
onsistent solution to Eq. 2.29, it pre-sented some problems when trying to mat
h the stru
ture to the disk/bla
khole physi
s. For some disk models that imply some distributions 
F (x),I (x) and 	 (x) to �nd the jet-stru
ture that �ts these distribution, the top-down approa
h did not give a dire
t mat
h, be
ause it was not 
lear whatasymptoti
 distributions to take for the asymptoti
 rotation pro�le 
F1 (x).The rotation pro�le as used for the solution in Fig. 4.7 is too 
at to mat
h aKeplerian rotation at the disk.An alternative bottom-up approa
h was introdu
ed to solve the axisym-metri
 stru
ture by starting from the disk distributions instead of the asymp-toti
 distributions. Instead of determining the free fun
tions 
F (	) andI (	) from the asymptoti
 regime, these were taken from the disk/bla
k holephysi
s itself. The rotation pro�le in 
ombination with the 
ux distributiongives the formal asymptoti
 light surfa
e for any 
ux 	�. Whether this 
ux
ollimates at the light surfa
e is a result of the 2-D solution. We showed thatthe light surfa
e 
ould su

essfully be obtained when starting out inside ofthe surfa
e and then shift the boundary outwards bit-by-bit, whi
h was pos-sible due to the regularity 
ondition at the light surfa
e. Therefore it shouldbe possible to obtain the light surfa
e. Instead of now solving the asymptoti
version of the GSE, we propose to solve a asymptoti
 version of the 2-D GSEusing the newly developed 
ode. The only unknown is the outer boundaryposition xjet. By varying the boundary xjet (	 = 1) there are indi
ations thatthe solution 
an be found by these means. Be
ause there was too little timeto fully study this approa
h, more extensive work is needed. The asymp-toti
 solution obtained in this way 
an then be used to 
al
ulate the globalsolution as done by FM2001. The bottom-up approa
h would then give a
onsistent mat
h between the jet stru
ture and the bla
k hole/a

retion disk73



boundary 
onditions. The bottom-up approa
h may also show out whetherthe rotation pro�le at the disk will have a relativisti
 
ore stru
ture or a rel-ativisti
 envelope stru
ture. Possible follow-up studies were dis
ussed werethe solution obtained with the newly developed 
ode 
ould be used in orderto solve the for
e-balan
e along the �eld lines, allowing for estimations ofthe �nal velo
ities of the plasma. Also the solutions give the possibility to
al
ulate the polarization of the jet emission. In future work the stabilityof our solutions also has to be examined. Also a parameter study has tobe done for various parameters like the 
oupling 
onstant gI , and the 
oreradius a of the 
urrent distribution.We realize that the many assumptions (stationarity, axisymmetry, for
e-freeness, full 
ollimation of the asymptoti
 jet) may weaken our treatment ofthe jet stru
ture, although reasonable arguments have been given to justifythem, but we note that for the moment these kind of treatments are theonly possible way to treat the jet in a global sense. This is needed in orderto learn from the global jet stru
ture the internal pro
esses that are yet(and will remain) unobservable. To fully understand how the jet is initiated,
ollimates and propagates, a time-dependent study that in
ludes the disk,
entral obje
t and the environment in a 
onsistent way is inevitable, but forobje
ts as 
omplex as relativisti
 jets this is still far away for now.
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Appendix A: Finite elementssolverThe GSE equation was solved by using the method of �nite elements, whi
his suited to solve se
ond-order partial di�erential equations like the GSE.The pro
edure was based on work on the spe
ial relativisti
 GSS originallyintrodu
ed by Camenzind (1987), that was further developed by Haehnelt(1990), who in
luded Kerr metri
s. Fendt (1994, 1995, 1997) extended the
ode to get solutions extending throughout the outer light 
ylinder. Morere
ently, Memola (2001) has worked on the spe
ial relativisti
 
ode in
ludingdi�erential rotation of the �eld lines. For the purpose of this master-thesis,the 
ode has been extended to in
lude both the sour
e term due to di�erentialrotation of the �eld lines as well the Kerr metri
.In general, for problems that 
annot be solved by Variational methods,a Galerkin ansatz of weighted Residues is used (see S
hwarz 1984): Theintegration area G is dis
retized in a grid of �nite elements with ea
h element
ontaining m knots. The fun
tion 	 (r; �) is approximated at ea
h grid-element (e) by an expansion into m linearly-independent fun
tions,	(e) (r; �) = mXi=1 
(e)i N (e)i (r; �) (6.1)where the the knot-variables 
(e)i are 
hosen su
h that they represent thefun
tion value 	(e)i .The solution on the whole area 
an be represented by 
ombining all theinitial expansions of the individual grid elements,	 (r; �) = nXk=1	kN (e)k (r; �) (6.2)76



where the summation now is over all n knot-points of the grid, and the setof global form-fun
tions N (e)k (r; �) are taken from the element-form-fun
tionsN (e)i (r; �), that have the value of one in knot-point k.With this Ansatz, the di�erential equation will only be ful�lled up toa Residual < (r; �). The a

ura
y depends on the number of knots, or thenumber of expansion 
oeÆ
ients. The Method of Galerkin demands for mini-mizing the Residual, that the integral of the Residual, weighted with a spe
i�
weight-fun
tion Wj over the integration area, dissapears,ZZD < (r; �)Wj (r; �) dA = 0 (6.3)in 
ase of the GSE the Residual is< (r; �) = ~!r � f�D~!2 r nXk=1	kNk (r; �)!g � J (6.4)where J is the sour
e-term of the GSE. If the m fun
tions Ni are taken asthe weight-fun
tion, a set of m linear independent equations remain for ea
hgrid element, that 
an be solved in prin
iple to the 
oeÆ
ients 	k. Then thesolution 	 (r; �) is fully determined.The integral 
an be done by using Green's Identity so that one retainsthe 'weak form' of the GSE,ZZ �D~! rNi � r	dA = ZZ JNidA+ I �D~! Ni�	�n ds (6.5)This gives a matrix,Aij = ZZ �D~! (��rNi�rNj + ��Ni��Nj) drd�p� (6.6)and a ve
torBi = ZZ�DNiJ �2p�drd� + I D~! Ni�n	ds(6.7)For the set of 	k the following equation holds,A (	)	 = B (	) (6.8)
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Appendix B : Choosing the gridA grid was used with 128x128 �nite elements. Ea
h of the isoparametri

urvilinear �nite element (S
hwarz 1984; Cesari 1994) is formed of 8 gridpoints, or nodes, whi
h gives a total of 49665 grid-points for the whole gridat whi
h the GSE is dis
retized. For the inner solution from 128 elements inthe z-dire
tion, 27 grid points were used at the bla
k hole ergosphere, and24 grid points at the a

retion disk.The stru
ture of the grid is shown in Fig. 6.1. For the inner grid shapeof the left and right boundaries were spe
i�ed. The elements were dividedin steps of equal (dR; dZ) in both dire
tions. A straight line then 
onne
tedthe left and the right elements in a straight line. For ea
h line, the spa
ingsof (dR; dZ) were equal.
nyrl=257

nyrl=257

nxrl=257

nxrl=257
nde2=27

nde3=24

nyrl-nde2-nde3 = 206

nxrl=257

nxrl=257

Figure 6.1: setup of grids 
hosen for inner and outer region
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