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Chapter 1

Introduction

1.1 Observations

The phenomenon of highly collimated plasma streams with high velocities,
called jets, has been observed amongst a variety of objects on wide scales in
energies and spatial extensions. The most energetic and largest jets emerge
from the nuclei of active galaxies (AGN) (e. g. Baade & Minkowski 1954;
Zensus et al. 1995). Smaller jets with lower velocities have been observed
around Young Stellar Objects (YSO) (e. g. Mundt & Friedt 1983; Mundt
& Eisloffel 1998) and recently also around micro-quasars (MQ), what are
thought to be high-mass X-ray binaries (e. g. Mirabel & Rodriguez 1999).
There are also reasons to believe that Gamma-Ray Burst (GRB) might be a
consequence of a jet-like source (for a recent review Mészaros 2002). Typical
for jets is that they extend to huge distances away from the central object
(with radii up to 1000 times the size of the central object), with the largest
that can extend to up to 100 kiloparsecs.

Evidence for a central black hole in the nucleus of the EO elliptical M87,
that contains one of the nearest extra-galactic jets (at 14.7 Mpc) and is lo-
cated at the center of the Virgo cluster, was found by Ford et al. (1994). Using
HST spectroscopy of its nucleus, strong evidence was found for a rapidly ro-
tating ionized gas disk at its center from which a mass for the central black
hole was inferred of 3 x 10° Mg,,. Also Kepler rotation for a cool thin disk
around a black hole is found using VLLBI maser emission in region between
0.13 and 0.26 pc in the NGC4258 galaxy that also contains a jet (Myoshi at
al. 1995). In the case of micro-quasar GRS 1915 evidence has been found for
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Figure 1.1: Top left: Optical image of the jet in the M87 elliptical galaxy. Top
right: VLBA radio image of the micro-quasar PKS1915 (Dhawan, Mirabel &
Rodriguez 2000). Bottom: HST images of protostellar jets around Young Stel-
lar Objects (scale represents 1000 AU).

a central black hole with a mass of about 14 Mg,, (Greiner et al. 2001). The
apparent correlation of jet-activity with the presence of an accretion disk
onto a central black hole has led to the general belief that the accretion disk
and the black hole play an important part in the production process of these
jets.

The M87 jet has been observed extensively at different wavelengths (VLA
radio, HST optical/uv), has strong collimation (= 6°), and extends to large
ranges ( 100 kpc). Because it is relatively close and is strong it is an ideal jet
to test models on jet formation. Junor et al. (1999) and Biretta et al. (2002)
showed that the collimation of the M87 jet occurs in an area < 30 Rg (where
Rg is the Schwarzschild radius) to the fully collimated zone > 100 Rg. For
the black hole mass of M87 the Rg corresponds to about 0.0003 pc. The
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measured opening angles for the jet as can be seen in Fig. 1.2 show that the jet
collimates from an opening angle of & 60° to ~ 6°. Their radio interferometry
observations give the most detailed view yet on the collimating region of a
jet.
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Figure 1.2: Radio observations of the collimation regime in the M87 jet (taken
from Junor et al. 1999). On the left: The radio structure of the collimating jet in
the core of M87. On the right: The jet opening angle at different distances from
the jet core. This shows clearly the collimation of a wide wind into a narrow jet.

The question whether the jets content consists of electron-positron pairs,
or electron-proton pairs has not been answered yet. Celotti & Fabian (1993)
have addressed the issue of content of a sample of radio-loud quasars. They
suggest that for the sample as a whole, either the flows are cold electron-
positron flows or electron-proton flows with an energy cut-off of &~ 50 MeV.
Observations of the M87 jet by Reynolds et al. (1996) indicate that the M87
jet is likely to be an electron-positron dominated jet, based on standard
synchrotron self-absorption theory. The question remains, however, whether
based on a small sample of jets, a claim can be made over the matter content
of jets in general.

There are many indications that magnetic fields are present within the
jet. The most obvious is the synchrotron emission. Perlman et al. (1999;
2002) have done extensive research synchrotron emission, and polarization
of the M87 jet. They report high polarizations that suggest highly ordered
magnetic fields. Herrnstein et al. (1998) found for the disk in NGC4258 an
upper limit for the magnetic field strength in the toroidal component of By <
300 mG.



XN TVLOL 10d% X074 TVLOL
ZHD ST VIA MSssd zodAm / LSH

T10d%

Figure 1.3: Polarization measurements of the M87 jet in the radio (lower) and
optical (upper), taken from Perlman et al. (1999). The two false-color representa-
tions shows the total flux and the total degree of polarization for the optical and
the radio emission.

Super-luminal motions of 3c—6¢ have also been observed in the case of jet
ejected by AGN (for M87 by Biretta et al. 1999) and also by micro-quasars
(Mirabel & Rodriguez 1999). This super-luminal motion is the result of a
projection effect: When matter moves with velocities close to the speed of
light in the direction of the observer, a transverse apparent velocity can be
observed that exceeds that of light. The fact that these type of jets have these
very high velocities distinguishes them from their low-velocity counterparts
around YSOs. If the super-luminal motion observed is interpreted as the
plasma motion itself, this implies high S-factors, which needs a relativistic
treatment of the jet structure. These high velocities imply for a hydromag-
netically driven jet, that the poloidal electric fields will play a relevant role
in the force-balance, (Ep o< Bp), which is a relativistic effect. Therefore a
relativistic treatment of these jets is inherently different from a Newtonian
treatment.



1.2 From observations to theory

Many efforts have been made to explain the origin of these jets. Initially a
mechanism to collimate the jet by gas pressure was suggested by Blandford
& Rees (1974). They proposed that external gas pressure could create a 'de
Laval nozzle’ through which hot gas might be channeled outwards into a su-
personic flow. The high pressures needed to obtain this collimation on a very
small scale would cool rapidly, and should be observable. This has not been
observed, so its absence would rule out this model (Krolik 1999). Although
radiation forces could drive a wind, once one gets to mildly relativistic speeds,
a medley of effects make further acceleration by a directed component of ra-
diation extremely inefficient (Phinney 1987; Icke 1989). Blandford & Payne
(1982) proposed a mechanism to eject matter from the disk into its magneto-
sphere. When gas is in balance between gravitation and centrifugal forces
when poloidal magnetic fields are present, this leaves the possibility for a
magneto-centrifugal instability. If the disk is magnetized, and has a poloidal
magnetic field that makes an angle < 60° from the disk plane, (see Fig. 1.4)
Blandford & Payne (1982) found that the gas may slide along the field lines
away from the disk equator and then becomes centrifugally dominated lead-
ing to acceleration of the gas away from the central object. This mechanism
is not only a possible mechanism of the initial acceleration of the gas, it also
is a mechanism to remove angular momentum of the accretion disk, allowing
it to accrete onto the central object. In order to describe these outflows,
a hydromagnetic description is required. The magnetic fields observed (see
Section 1.1) in the jets also provide good support for this idea. Although
their presence does not necessarily imply their dynamics relevance in the jet,
the fact that they theory needs them for the jet inititation and acceleration
and that are observed does give a good argument for the hydromagnetic
character of the jets.

The model that has emerged from these observations and has become
widely accepted, is as follows: A central object (YSO, black hole) is sur-
rounded by a magnetized accretion disk (see Fig. 1.5). Matter is lifted from
the disk into the magneto-sphere and accelerated along the field lines. The
initial wind then collimates into the jet, either due to self-collimation or to
the ambient gas pressure. There are a lot of open questions still: How to
collimate and accelerate a low-velocity wind into a high-velocity collimated
jet? How to lift the matter from the disk into the magneto-sphere? How is
the magnetic field generated inside the disk, or is it the field of the central



Figure 1.4: Equipotential surfaces for a 'bead on a wire’ (plasma along mag-
netic field line), corotating with the Keplerian angular velocity at a radius rg,
which is released from rest at r9. The equation for the surfaces is ¢ (r,z) =

2
—%[1 /2 (%) + W] = constant. These surfaces are equal intervals of

¢ (r,z). If the wire makes an angle of less than 60° with the equatorial plane, the
equilibrium is unstable (taken from Blandford & Payne 1982).

object? How stable is a hydro-magnetic driven jet? In this thesis [ will focus
on the first question. Before presenting the work that I have done for my
graduation project with Christian Fendt (AIP, Potsdam), I first give a brief
review on the work that has been done in the field.

1.3 Review on models of (relativistic) MHD
jets

There has been done a great amount work of modeling (relativistic) jets. A
brief overview will be given here of the different approaches which have been
used.

The types of studies that have been done can be divided broadly into sta-
tionary and time-dependent studies. An approach to fully self-consistently
describe the initial formation and then the collimation, propagation and sta-
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Figure 1.5: A schematic model for the jet structure: A central object, surrounded
by a magnetized accretion disk. The gas lifts from the disk and moves along the
poloidal magnetic field lines and collimated into a narrow jet.

bility of the jets would of course need a time-dependent model. The regions
from the initial wind formation out to the collimated jet structure spans an
enormous spatial range, what makes it difficult, even nowadays, to solve this
complicated and time consuming problem. Because these problems have to
be solved numerically and due to the lack of computational power only small
regions above the disk can be simulated and typical time-scales of these sim-
ulations only span up to one rotation of the outer part of the disks, which
is too little in order to address the stability of the jet formation process. In
order to study the jet on global scales the problem is often simplified, based
on reasonable argumentation, by assuming the jet to be stationary. Because
this assumption is made for the work presented in this thesis [ will mainly



give a review narrowed down on the stationary models.

Stationary models The research done on stationary hydro-magnetic driven
jets has been concerned mainly with considering the cross-field force balance,
known as the Grad-Shafranov Equation (GSE), and the Wind-Equation (also
known as the Bernoulli Equation), that describes the energy conservation
along the flow lines.

Blandford & Payne (1982) started out with the assumption that the ge-
ometry of the jet was self-similar. This could be used to reduce the compli-
cated GSE into a set of ordinary differential equations. Self-similarity can be
motivated by assuming a power-law distribution for various physical quan-
tities (gas density, pressure, and magnetic field distribution). In the case of
a Keplerian disk, this holds quite well close to the disk surface. Their ap-
proach was extended by Li et al. (1992) for relativistic jets. A general result
of the self-similar approach is that the jet tends to re-collimate in the case
of high fast-magnetosonic Mach numbers. This has been proven to be an
artifact of the self-similar assumption (Ferreira 1997). Pelletier & Pudritz
(1992) dropped the self-similar Ansatz and took into account the gas pres-
sure. Although their solutions were two-dimensional, the regimes below the
slow-magnetosonic point and the region beyond were treated separately.

Another self-consistent approach to solve the GSE was conducted by Li
(1993). By starting with an initial flux-field distribution at the base of the
jet, a set of flux fields was constructed by considering locally the force-balance
and conserving the conserved quantities: the mass flow along the flux surfaces
n (U), the total energy E (V) and the angular momentum per unit density
L (D).

Lovelace et al. (1991, 1993) proposed a parameterization of the cylin-
drical radius in terms of the jet radius, which was chosen together with
separation of variables. This, however, did not consider the local-force bal-
ance described by the GSE. Contopoulos & Lovelace (1994) returned to the
self-similar Ansatz and presented an exact solution by considering the local
force-balance. Contopoulos (1995) also proposed an alternative driving mech-
anism for jets, in absence of large poloidal fields. In this case the magneto-
centrifugal mechanism by Blandford & Payne does not work, and the matter
then can be accelerated by the pressure gradient of strong toroidal fields
provided by the accretion disk.

Heyvaerts & Norman (1989) derived analytically that axisymmetric MHD
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flows enclosing a net poloidal current will collimate to a cylindrical shape in
the asymptotic region far away from the flow origin. This has been proved
later in the case of relativistic jets as well by Chiueh et al. (1991). The
resulting one-dimensional version of the GSE has been studied by Appl &
Camenzind (1993). Instead of a self-similar approach, they assumed the flow
to be force-free, i. e. the electromagnetic forces dominate the inertial forces.
They found that the jet structure could be characterized by a core-radius,
and that most of the magnetic flux and electric current lies within this core
radius. This approach was extended by Fendt (1997) for differential rotation
of the flux surfaces. It was found that jets with differential rotating flux-
surfaces will have narrower jets in terms of the asymptotic light cylinder (see
Section 2.2).

Okamoto (1992) investigated the possibility of energy and angular mo-
mentum extraction from a force-free black hole magnetosphere due to a wind.
He derived an analytical expression that couples the the poloidal current
I (U) and the field rotation Qp (¥). This work was based on the idea Bland-
ford & Znajek (1977) proposed, that force-free magnetic fields coupled to a
fast rotating black hole may lead to extraction of energy and angular mo-
mentum by a pure electro-magnetic process (Blandford-Znajek mechanism).
The most general treatment (but not full solutions) of the GSE including
inertial terms close to a black hole has been done Nitta et al. (1991) and
Beskin & Pariev (1993). Takahashi et al. (1990) obtained solutions of the
Wind-Equation in Kerr metric, mainly discussing the accretion flow. This
has been extended by Fendt & Greiner (2001) discussing the leading param-
eters of Kerr metric @ and M on the flow acceleration.

Two-dimensional stationary models Two-dimensional solutions for the
GSE have been calculated by amongst others Sakurai (1985). These were
non-relativistic solutions including inertial terms, but for a slow-rotating
star (initial radial outflow, Sakurai 1985) and disk (split-monopole like initial
configuration, Sakurai 1987). These, however, show a low degree of collima-
tion, mainly due to the slow rotation. For relativistic force-free MHD winds,
Camenzind (1986,1987) developed a method, based on a finite elements ap-
proach, in order to solve the axisymmetric GSE. Although the solutions
were two-dimensional, the regularity condition at the light surface were not
treated correctly. These were extended by Fendt et al. (1995, 1997) to cal-
culate the global solution for highly magnetized stars (Fendt et al. 1995)
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and for rotating black holes (Fendt 1997). Also the regularity condition was
treated properly. Fendt & Memola (2001) included, in a special relativistic
approach, the differential rotation terms of the flux-fields. Bogovalov (1997)
has obtained stationary solution for a relativistic MHD wind, by solving the
time-dependent problem. Also he finds solutions with only weak collima-
tion. Recently Heyvaerts & Norman (2003) presented a general and global
solution for non-relativistic MHD jets and winds including inertial terms (a
polytropic gas pressure was assumed). Here also the return current is taken
into account. They found that for winds, where the kinetic energy dominates
at infinity, the magnetic surfaces focus into exponential paraboloids and for a
Poynting flux dominated wind, the surfaces collimate into nested cylindrical
surfaces. Their approach takes only constant rotation of the flux-surfaces
into account.

1.4 Topic of this thesis

The main purpose of this thesis is to calculate the stationary axisymmetric
structure of a hydromagnetically driven relativistic jet. I will focus mainly
on the collimating regime of the jet (from the region at the disk/black hole,
where plasma gets lifted into a wind, up to the fully collimated asymptotic
jet). The structure will be calculated by considering the force-free local force
balance across the surfaces of constant magnetic flux. The two approaches
previously done by Fendt (1997; from now on F1997a), who solved the ax-
isymmetric structure including a Kerr metric of the black hole, and that of
Fendt & Memola (2001; from now on FM2001) who calculated the axisym-
metric structure in the special relativistic regime, but including differential
rotation term of the magnetic field lines, will be combined in this approach.
The differential rotation is needed because as the magnetic field emanates
from the accretion disk it is likely to be rotating differentially. For a spinning
black hole, its influence on the character of the electromagnetic fields has to
be taken into account. This combination also allows for a consistent scaling
of the jet-structure with the mass of the black hole. This will be done ac-
cording to the top-down approach adopted by FM2001 for their calculations.
The method to solve the force balance is based on a finite element solver,
which has been developed for this purpose by Camenzind (1987), Haehnelt
(1990), Fendt (1994, 1995, 1997) and Memola (2001).

The structure of this thesis is as follows: In Section 2 the assumptions
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about the physics of the gas will be given. Also the Grad-Shafranov Equa-
tion (GSE), which describes the local force-balance across the surfaces of
constant magnetic flux, will be derived. The method used to solve the GSE,
including the necessary boundary conditions and the setup of the model, will
be described in Section 3. In Section 4 the code developed for solving the
finite element method will be explained and will be tested, by comparing the
results with the results previously obtained by F1997a and FM2001. Finally
the method developed in this thesis be discussed in Section 5. Also a set of
possible interesting follow-up studies will be discussed. These include: 1) An
alternative bottom-up approach to solve the GSE. 2) Calculating the Wind-
Equation, the force-balance along the calculated magnetic flux-surfaces, and
thereby obtaining parameters such as final velocities of the flow, enabling
comparison of the model predictions to observed velocities. 3) Using the
calculated magnetic flux-surface structure to calculate the polarization of
synchrotron emission, that also might make comparison of the model with
observations possible. Finally I will give a conclusion in Section 6.

13



Chapter 2

Magnetohydrodynamic Jets

2.1 Model assumptions

To describe the force-balance in the jet, the following assumptions have been
made:

Black hole -Kerr metric- Because the jet originates close to the central
black hole, it seems appropriate to include a general relativistic description
of the space-time. The influence of the black hole on the space-time changes
the behavior of the electromagnetic fields. A 341 split of the space-time
(Thorne & McDonald 1984) around the black hole, with a mass M and a
angular momentum per unit mass a = ﬁ, was adopted which is described by
the following line-element in Boyer-Lindquist coordinates (Boyer & Lindquist

1967)

ds* = o?c*dt* — @* (d — wdt)” — (p*/A) dr* — p*d6? (2.1)

Here t denotes a global time, in which the system is stationary, ¢ is the
angle around the axis of symmetry (the polar axis). And r, 6 are similar to
the Euclidean spherical coordinates. The parameters of the metric are given
by

p* =12+ a’cos?f A=7r?—-2GMr/c® + a?
22 = (12 + a2)’ — a?Asin20 &= (S/p)sinb
w = 2aGMr/cS? a=pV/A/S
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Where w is the angular velocity of the differentially rotating space, or
the angular velocity of an observer moving with zero angular momentum
at infinity distance from the black hole (ZAMO), o = (d7/dt) is the red-
shift function, describing the lapse between the proper time 7 in the ZAMO
system to the global time ¢. The @ corresponds to the R component in
a cylindrical coordinate system (R, Z) for r — oo. This split allows for a
description of the magnetic and electric fields in a similar way to that in a
flat Minkowski space-time. The angular velocity of the black hole is given by
Qpn = ¢ (a/2GM) (GM/C2 +[(GM/e?)? — a2]1/2)71. We adopt throughout
this thesis for the angular momentum per unit mass a = 0.8M.

Ideal magnetohydrodynamics: Our model is based on the assumption
of ideal magnetohydrodynamics (MHD). MHD describes the dynamics of a
conducting fluid in the presence of magnetic fields. Instead of treating each
individual particle, MHD treats the dynamics of the average over a whole
ensemble of particles. This ensemble can be considered as being a neutrally
charged fluid, if charge separation cancels out on scales larger than the typical
Debye length scale.

Ideal MHD considers the plasma conductivity to be infinite and diffusive
processes are neglected. A result of this assumption is that the flux field lines
are 'frozen’ into the plasma (the flux fields move with the plasma).

The dynamics of a plasma under these assumptions are given by Maxwell’s
Equations (Eq. 2.2-2.5)

4T oE
B)=—aj— (E- ve; + — 2.2
V A (aB) - ( Vw)we¢+at (2.2)

0B
E)=(B- ve; — — 2.
VA(eE) = (B-Vw)wey 5 (2.3)
V-B=0 (2.4)
V -E = 47p, (2.5)
the equation of continuity

(Na);a = (nua);a = 0 (26)

and the equation of motion
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T, = (T + Tj‘nf);ﬂ = 0. (2.7)

Stationarity and axisymmetry The problem is simplified by assuming
axisymmetry and stationarity. Because observations show that jets are gener-
ally collimated almost into a cylindrical shape and the time scales for typical
rotations of the magnetic field lines in the disk are > 10* than the time
scales for the jet-propagation, the assumption of axisymmetry is reasonable.
The dynamic time scales for the collimation of the jet are much shorter than
that of the dynamic time-scales of the propagation of the jet, and therefore
stationarity seems a reasonable assumption as well. The advantage of these
assumptions is that the problem, as we will show, is now constrained to a
2-D problem and has become much easier to solve.

It must be noted that although observations of jet-knots show asymme-
tries and time-variability which would seem to contradict our assumptions,
we are primarily interested in the collimation and the global structure of the
jet-flow, and therefore think the assumptions of axisymmetry and stationar-
ity are valid in this case. However, ultimately the assumption of stationarity
would have to be modified.

With the assumption of axisymmetry, a magnetic flux-function can be
defined

1
N 9:—/3 dA 9.
r0)= o [ By (25)
1
w

where the flux is taken through a loop of the Killing vector m = @?V¢. In
the same way the poloidal current is defined by the current density measured
through the same loop

I= —/ajp CdA = —ga&)BT (2.10)

The assumptions of axisymmetry and stationarity lead to conserved phys-
ical quantities as well:

First, stationarity implies a conservation of the mass flow rate N along
the flux surfaces

16



dN
n(¥) =—3

Secondly, axisymmetry gives a conservation of the angular velocity of the
field line (Ferraro’s iso-rotation parameter Qp (Ferraro 1937)) that can be
derived from the derivative of the time-component of the vector potential,
Qp (V) = —c(dAy/dV). In the special relativistic case, this can be thought
off as the velocity of the gas minus the slide along the field lines

(2.11)

Qp () = —c% <v¢ _ @Bqﬁ) (2.12)

The third conserved quantity is the total angular momentum per unit
density

-2
L(V)=-— — | luyy — ———B 2.1
(v) (M . m) w — U, (213)
Further the total energy is conserved
—2
E(U)=— — —-——— B 2.14
(¥) ('u + 47rn> e 47 ! ( )

with u = (u, u,, ug, uy) the four velocity vector.

Force-free approximation For the high velocities observed in highly rel-
ativistic jets, a high magnetization (¢ >> 1) of the jet is needed (see for
example Fendt et al. 1996). Here o quantifies the magnetic flux in terms of
mass flux (Michel 1969)

\Ijma,xc
P) = o
o (¥) Ay (¥) R,

For a force-free jet the current density I (¥) becomes a conserved quantity.
In the case of high magnetization the inertial terms will be weak compared
to the magnetic terms. We assume that the inertial terms can be neglected
with respect to the magnetic forces when calculating the cross-field force
balance in the collimating regime. This limit is called the force-free limit.
The equation of motion reduces to

(2.15)
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1
0=pE+-jAB (2.16)
C

To fully describe the magnetic jet formation this assumptions breaks
down, because the collimated non force-free jet lies beyond the Alfvén and
fast magnetosonic surfaces, where the plasma kinetic energy dominates the
magnetic energy, which contradicts the assumption of force-freeness. Also
the initial acceleration of the gas lifted from the accretion disk cannot be
described by a force-free configuration.

Numerical calculations of the plasma motion along the field show that, for
a high magnetization, the Alfvén Mach number remains relatively low. Thus
the inertial curvature term should not play a dominant role. Contopoulos &
Lovelace (1994) found from self-similar solutions that the centrifugal forces
are dominated by magnetic forces.

It is therefore assumed that the calculated collimating jet structure with
the assumption of force-free will not change dramatically if inertial terms
were to be included.

2.2 Grad-Shafranov Equation (GSE)

The Grad-Shafranov Equation (GSE) describes the force-balance across the
flux-fields'. In order to derive the GSE, the normal vector perpendicular to
the flux-surface is introduced

\YA'%

the toroidal part of Ampere’s equation (Eq. 2.2) can be rewritten as

47TO[jT =VA (CYBP) + (EP . VQF) (:)bfqu
— VA <2m2w A@e(j;) — (Bp -V (O — w)) Ge; +
(Ep . VQF) &)ed;

«

- a w a
=V (V- dey) 5 — — eV (quf)

IThis derivation follows that of Jensen (1997)
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(2.18)

The only non-vanishing terms are

peEp +jp ABr +jr ABp =0

since Er = 0, jp||Bp, and jp||Bt. The first component is taken from
Gauss’s law (Eq. 2.5)

QF—CU

47Tpe:V-Ep:—V-< vw)

2o

pEp = — {V : (QF - “’vw)] dr —ogy (2.19)
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a  (Qp —w)? (Qp — w) dQp , 1672 _dI
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w

The Grad-Shafranov Equation with differential rotation of flux-fields then
becomes

: 14
Qp|VI|> — — =11 (2.25)

ol c?

W — QF
ac?

ov - (a%v\lf) =
W

with D = 1 — (&/@r,)* where &2 = (+a/ (Qr — w), the positions of the
two light surfaces. The gradients, expressed in terms of the Boyer-Lindquist
coordinates are

_(A(r,t) 0 G
-G a ) (2:20)

We are left with Eq. 2.29, which is a parabolic 2-D non-linear partial
differential equation, with two free function Qp (¥) and I (¥) that have to
be specified. Note that although the equation is two-dimensional, the force-
balance described is a fully three-dimensional balance, which is reduced by
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the assumption of axisymmetry (this is commonly called a 2.5-D solution
instead of a 2-D or 3-D solution). This equation reduces for a constant Qp,
and in the special relativistic regime, to the well-known Pulsar Equation
(Michel 1973; Charleman & Wagoner 1973)
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The GSE can be made more transparent by showing the different mech-
anisms contributing to collimation of the jet

B V.B%, V, B’
n-(Bp- V)7 (1M} - "0}) = (1-2°0%) = + ;T"’
B2 V.r B2Q
¢ 2 1S Per 2
+V P+ (E - PU¢> T T ar i (SU QF)
(2.27)

The terms in the equation, which are indicated in red, are the inertial
terms: the de-collimating centrifugal force due to the motion of the mat-
ter along the curved poloidal field line, the gas pressure gradient, the de-
collimating due to the centrifugal force of the rotating plasma. For a force-
free jet the balance is determined solely by the magnetic forces, so the cur-
vature of the poloidal field lead to a tension force, also the poloidal magnetic
field pressure reduced by the pressure gradient of the electric field. There
are the toroidal magnetic pressure gradient and the collimating effect of the
toroidal field tension. The last term combines the tension of the curved
poloidal field and the effect of the space charge density.

If the force-free assumption is made the following balance between colli-
mating forces (on the 1. h. s. ) and the de-collimating forces (on the r. h. s. )
becomes

Bp , BpQr

— \ (xQQF)-i-xQQQ V. Bp = VLBI%_FVLBi_i_B_?’m
4 4

n:(Bp - V) Fogr 8T 8T At =«
Light surfaces The light surfaces were already briefly mentioned before.
For our stationary force-free approach, the GSE in Kerr metric has two sin-
gular surfaces, defined by &7 = (iQF‘{w), which are typical features for a
relativistic treatment. The meaning of these surfaces can be understood by
thinking of the magnetic fields flux-surfaces rotating at an angular velocity
Qp (V). These angular rotations can be expressed as a toroidal velocity like
vy =@ (r,0) Qp (¥ (r,0)). When this toroidal velocity reaches the speed of
light v4 = @ Qp = ¢, this gives the singular surface, hence the name. Note
that the flux-fields represent no physical object, and therefore the velocity
corresponding to {2r can exceed the speed of light. There is an inner surface,
near the black hole, which is due to the frame-dragging effect of the metric,
and outer surface far away from the black hole. In the asymptotic region

22



were the black hole’s influence is negligible and flux surfaces are collimated
into cylinders, the light surface is also called (asymptotic) light cylinder.
As the electric field contributions scale with the asymptotic light cylinder
Ep = (RL;C) Bp, the light surface is also an indication where the relativistic
effect become important.

2.2.1 Normalizing the GSE

The GSE is further normalized and made dimensionless

r < Ricor W& Rpcw
w<:>(1/RLC)w QF<:>(1/RL0) QF
V& (1/RLC) V Vo U,...¥

I & I d

Here Ry denotes the asymptotic light cylinder. The coupling constant,
with parameters typical for AGN’s, in the source term now becomes

gr = 4I§1axR%C — 4< Imax >2< RLC >2 ( \Ijmax >2

cy2 1012 A 106 cm 1033 Gauss

The normalized GSE becomes the following equation

ov - @%vw) — Mg e - Yy (2.29)
w a aw

Note that only the second term in the source term has the coupling con-
stant gy (indicated in red) which depends on Iy, Rrc and W, the term
due to angular rotation of the flux surfaces has not.

It will show out later in this thesis, that especially the normalization of
the Qr will pose a problem in the method we adopt to solve the GSE. The
advantage of normalizing with respect to the asymptotic light cylinder is that
the normalized GSE can be used to study more general solutions for jets, be-
cause these solutions are then in terms of the dimensionless asymptotic light
cylinder, which can be scaled, in principle, to any physical scale. The main
problem is, when trying to match this dimensionless solution to a physical
scale, the physical scaling of the asymptotic light cylinder follows from the 2-
D solution. But to solve the 2-D solution, it seems that the scaling is needed
beforehand. This problem will be discussed in the next sections.
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From now on we normalize ¢ = 1, and G = 1. The gravitational radius
then becomes R, = % = M. By doing this, the spatial scales of the jet can
be expressed directly into the mass of the central black hole.
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Chapter 3

Solving the Grad Shafranov
Equation

The GSE can be solved numerically by using a finite element code with the
'Galerkin Ansatz’ (see Appendix A for full detail). This method can solve
parabolic non-linear differential equations when a set of boundary conditions
is given on a chosen grid. Therefore an appropriate set of 'physical’ boundary
conditions needs to be specified in order to solve the equation. Also the
two free functions Qp (¥) and I (¥) have to be specified. There are two
approaches how to do this. The first, a top-down approach will be described
in this section and used in the rest of this thesis. A second bottom-up
approach will be discussed in §5.2.

3.1 Regularity condition at the light surface

At the light surface, the GSE becomes singular (at D = 1 — (i)Q = 0).
In principle singularities always pose a problem when solving the equations
numerically. Tt would be useful to have the light surface at the boundary. In
that case the boundary conditions along the light surface have to be specified.
On closer inspection, the GSE shows to have an intrinsic boundary condition

along the light surface. At the light surface the GSE reduces to

W—QF

IVDVY =i Qv — gy (3.1)
w ow

With the normal on the boundary defined as n = —% this regularity
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condition for ¥ is actually equivalent to an inhomogeneous Neumann-type
boundary condition
ov 0w ow— QF /
5= —WTQFW\M? + =TT (3.2)

This offers the possibility to solve the structure of the flux-surfaces in two
separate regions: 1) the inner region inside of the light surface and 2) the
outer region outside of the light surface. Both of these regions havie the light
surface as a boundary.

An estimate for whether the light surface lies within the jet so that this
distinction can actually be used can be made by assuming a Keplerian ro-
tation of the magnetic flux surfaces Qp (r) = mm— oc v */2. For the light
surface the relation 7. = Q7! (rgig) = 753 holds. For the light surface to
be inside the jet, the light surface radius must be less than the jet boundary
Tiet = fexpTdisk (Where fey, is the expansion rate of the jet and r4s the outer
disk radius). Junor et al. (1999) measured for the M87 jet a lower limit for
the expansion rate of fo, > 3.3 (fully collimated at 200 R, and at the upper
limit of the un-collimated region of 60 R,). For the light surface to be inside
of the jet this implies r§% < fexpraisk- This gives raige < fo, ~ 10 Ry which
is a lower limit, because the actual formation region can be smaller than the
resolved 60 Ry. Although the disk size we adopt is somewhat smaller, typical
estimates for the expansion rate is about fex, ~ 100. In that case it is highly
likely that the light surface will be inside the jet, and the distinction between
an inner region and outer region can be made.

3.2 Boundary condition at the jet axis
We assume that there is no magnetic flux on the jet axis (R=0). On the jet
axis a Dirichlet boundary condition is chosen of ¥ = 0.

3.3 Jet surface boundary condition

The outer surface of the jet is defined at ¥ = 1. For a flux distribution that
is saturated at W = 1, this is the last flux-surface that contains all of the
poloidal magnetic field. For the jet surface, ¥ = 1 is chosen as the Dirichlet
boundary condition. In the next section the determination of the shape of
the boundary will be explained.
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3.4 Disk and black hole boundary conditions

The magnetic field distribution along the disk is not well known. There
have been some studies to calculate the disk structure around a black hole
(e. g. Khanna & Camenzind 1992; Kudoh & Kaburaki 1996; Koide, Shibata
& Kudoh 1998). Khanna & Camenzind (1992) obtained for a stationary
axisymmetric thin disk a solution for the flux distribution along the disk:

U oc e K[ DD (See Fig. 3.1).

_”J!n
250
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DR/ [Gaussscm?]

5 10 15 20

160

R/R,

Figure 3.1: Calculated flux distribution at the surface of an axisymmetric thin
magnetized accretion disk around a black hole (taken from Khanna & Camenzind

1992)

As mentioned before, it is possible for a black hole to have a magneto-
sphere (Blandford & Znajek 1974; Okamoto 1992; Kommissarov 2003). So
it is possible for some magnetic flux to emerge from the black hole’s direct
environment. Because this process is yet poorly understood, we only assume
that some fraction of the total flux Uz comes from the black hole’s magne-
tosphere. As boundary condition we take for now a homogeneous Neumann
boundary condition. There are some indications that the exact distribution
close to the disk and central object do not have a large influence on the global
solution, so for now these boundary conditions seem reasonable.

The boundary condition for the disk was chosen as
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(7 = win) / (A = 21)"

\ =y .
with
Ldisk — ZLin
= T _i/m + Ty (34)
(Tp) "/

This function is shown for different Wy in Fig. 3.2 in order to compare
to the results of Khanna & Camenzind (1992).
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Figure 3.2: The boundary condition for different gy with m = 2, for a disk with
Tin = 2 Rg and zgisk = 20 Ry.

3.5 Asymptotic solution for the special rela-
tivistic GSE

Appl & Camenzind (1991) showed that for a constant Qp, the boundary of
the jet, defined at ¥ = 1, is known if some distribution I (x) is assumed.

With the Ansatz of I (¥) = (1 — e*b‘l’) / (1 — e*b) the jet boundary is then

given by i = aveb — 1. For a differentially rotating flux distribution, this
position is not known in advance, so the GSE has to be solved somehow in
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order to obtain this position. In order to obtain the boundary conditions
along the collimated part of the flow the asymptotic version of the GSE is
used.

The asymptotic behavior of a jet can be analyzed by considering the cross-
field force balance of the relativistic GSE in the asymptotic region (region
where z >> R )

1 — (RQp (W) /¢)? o 41d o, 1 d
RV ( i VU | = S 5og P (0) = RV 5205 (T) (3.5)

By assuming perfectly collimated cylindrical or conical flows, the curva-
ture of the poloidal field lines vanishes, and consequently the pressure gra-
dients must be balanced by the radial directed forces and the toroidal pinch
force (Heyvaerts & Norman 1989; Chiueh et al. 1991). An analysis of the
asymptotic behavior of the Grad-Shafranov equation has been done for con-
stant rotation (Appl & Camenzind 1991,1993) and for differential rotation of
the flux fields F1997b. For high collimation (9, >> 0,), the 2-D GSE, can
be reduced to a one-dimensional equation. Because ¥ (z,z) — ¥ (z), the
conserved quantities © (V) and I (¥) can be expressed as functions of z. If it
is further assumed that the flux distribution is monotonous, the derivatives
with respect to U become 8/00 — (d¥/dz)~" (d/dx). With these assump-
tions, Eq. 3.5 reduces to a ordinary differential equation in the first order in
the derivative (dV /dz)?

d (d¥\> [4 dOz\ [dU\*  darz
202\ Y e = 2 2Wp W o
(1 T QF) - (da:) + (:c 20005 — — ) (d:c) +gda: 0 (3.6)

Because (z2d¥/dz)” is related to the magnetic pressure of the poloidal
field (0¥ /0x = ©B,), this equation can be rewritten as

dy x d2? g dI?
1—220%2) -2 —4 0L+ - )= — 3.7
( v F)da: xy<F+4d:c> 872 dx (3.7)
This has the formal solution
1 1 1 1 d
= — —— M d )
v (@) 8t M (x) /:c w? 1 — w?Q% (w) dw (w) (w) duw (3:8)
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with

M (@) =esp[[ - (%M f <w>) du (3.9)
and
() = 0 () + g0 (2) (3.10)
Because

d\I:Z:ff) = x\/87y (x) (3.11)

The asymptotic flux-distribution can be calculated by integrating y ()

U (x) = /Oxm/87ry (v)dv (3.12)

The jet boundary z;je; is defined at the last flux surface ¥ (zje;) = 1 and
is therefore known. This will be used in order to solve the 2-D GSE.

3.5.1 Free functions Qp (z) and I (z) of the GSE

As already mentioned, the functions Qg (V) and I (V) have to be chosen
when solving the GSE. As shown in the previous section, when trying to find
a solution by integrating the asymptotic GSE one has to prescribe Qp ()
and I (z) instead of Qp (V) and I (¥). This type of asymptotic solution has
been studied before by Camenzind (1986), Appl & Camenzind (1993) and
F'1997b.

They adopted a bounded current distribution (often used in fusion re-
search)

I(z)= B% (3.13)

The parameter a represents the radial scale on which the current rises,

also called the ’core radius’ of the jet and B = % where b is the ’pinch’

e b
of the current with respect to the flux fields. For constant rotation, this
leads to the analytical solution for the asymptotic flux distribution as Appl

& Camenzind (1993) found
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0.8

Figure 3.3: Current distribution I (z) = BIJ(:EQ %;n for different core radii a.

Shown are a = 5.0 (dashed), 1.0 (solid), 0.5 (dotted) and 0.1 (dash-dot), with
B=1.

U (z) = %log (1 + <§>2> (3.14)

We assume that the flux fields corotate with the accretion disk at Kep-
lerian speed Qp (r) = - (the dimension of r is in R,), the differential
rotation profile Qp () in the asymptotic region will be a monotonous de-
creasing function of x as well, as flux distribution along the disk is assumed
to be a monotonous increasing function. To investigate the influence of the
differential rotation of the flux field, F1997b introduced a decreasing expo-
nential rotation law for the asymptotic rotation profile

Q% (z) = e (3.15)

where the parameter h is the steepness of the profile, and 2z is normalized
to the asymptotic light cylinder Qp (1) = 1.

If the asymptotic solution W () has then been found, it can then be
applied to the 2-D GSE by creating the functions Qp (¥) and I (V) by com-
bining ¥ (z) with Qp (x) and I (x). This is a top-down approach, i. e. the
internal global solution of the jet is determined by the solution in the asymp-
totic regime. An alternative bottom-up approach is physically more plausible
than the top-down approach. This is because the jet is created at the disk,
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so it the properties like current- and rotation distribution will be tightly re-
lated to the disk physics. The bottom-up approach directly couples the jet
structure to the physical processes at the disk surface. Unfortunately, the
bottom-up approach is harder to solve than the top-down approach. In Sec-
tion 5.2 the problems that arise when using this approach will be discussed
and a method is proposed how to solve these problems. In Section 3.5.4 the
disadvantages of using the asymptotically determined distributions for I (¥)
and Qp (¥) will be discussed.

3.5.2 The asymptotic light surface

It is interesting to note that apart from the singularity at x=1, the asymptotic
GSE can contain a second singularity. This fact has not been mentioned
before anywhere in the literature. If the differential rotation profile from
Eq. 3.15 is taken, for the singular point, the following equation holds:

0=1-2%Q% =1— g% " (3.16)

This is by normalization automatically fulfilled at the asymptotic light
cylinder z = 1, but also for h = ﬁlog (I%) In Fig. 3.4 the toroidal
velocity of the flux field is shown for h = 0.2, 0.5, 0.9, 1, 2 and 3.

It can be seen that for h = 2, the singularities merge at x = 1, because
only one solution is possible. The first singularity is always thought to be the
boundary between the sub-relativistic jet (v, < ¢) and relativistic (v, > c).
The origin of this second singularity in the 1-D equation can be clarified if
the 2-D equation is considered. As can be seen in the Fig. 3.5, the second
singularity can be interpreted as the same light cylinder as at x = 1, after
which the asymptotic relativistic regime of the jet becomes sub-relativistic
again.

Note that this holds for any rotation profile which is monotonously de-
creasing, where Qp (1) = 1 and for z > 1, Qp (x) o< 2", with n > 2. This
is a restriction to the configuration of the relativistic jet in this model. The
flux field that passes through the light surface is not able to pass it for a
second time, but has to collimate before the second light surface. Other-
wise, this would imply a contradiction. Because for the first light cylinder
2Qp (U) = 1. As the flux field crosses the first light cylinder, z will only in-
crease. It is therefore not possible to get zQp (¥) < 1 after the crossing. So
it should be possible to have a core structure in the jet, where a relativistic
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Figure 3.4: Toroidal velocity vy = 2?Q% for different steepness (h = 0.2 (solid),
0.5 (dotted), 0.9 (dashed), 1.0 (dash dot) and 2.0 (dash 3xdot) 3.0 (long dashes)).
The line indicates the position of the regular points at zQp = 1.

core is nested inside a sub-relativistic structure. Although it has not been
mentioned in the literature on stationary work, it is interesting to note that
similar configurations have been seen in the time dependent simulations of
Casse & Keppens (2002) in a non-relativistic treatment including the disk.
There the Alfvénic surface returns into the asymptotic region. As for high
magnetizations the Alfén surface approaches the light surface, this would im-
ply the same type of configuration. It is not clear however, how general this
type of configuration is.

The model used in this paper is for now unable to handle such a con-
figuration, because the distinction between an inner part (inside of the light
surface) and an outer part cannot be made anymore and the position of the
light surface becomes a much more complicated problem. We therefore focus
on configurations that do not have a returning light cylinder. We will discuss
the consequences of this assumption in § 5.1.
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Figure 3.5: Two possible configurations for light surface. On the left: The bound-
ary of the jet crosses the light surface. On the right: The light surface 'returns’
to the asymptotic region. In this case a relativistic core is embedded in a sub-
relativistic envelope. The hatched regions indicate the regions where z Qp > 1.

3.5.3 Solving the asymptotic GSE

To solve the asymptotic GSE, a program was written using IDL. The numer-
ical integration was done using a Romberg solver, of 5th order (e. g. Stoer
& Bulirsch 1980). The two singularities posed a small problem, because the
function M (z) is not defined at these points. This was solved by integrating
either until 0.99999 or from 1.0001. Because the function within the integra-
tion blows up to —oo, due to the exponential, this dies off, so as = approaches
1, the integral of the part between 0.99999 and 1.0001 will not contribute
much to the total. To test how accurate the integration routine was, the

2
results were compared to the analytical solution ¥ (z) = 1/blog <1 + (%) )

by Appl & Camenzind (1993) for constant rotation and to the numerical
results for the steepness parameter h = 0.2, and with @ = 1 and B = 1
by Fendt (1997). The solutions and the relative differences are plotted with
their analytical and numerical counterparts in Fig. 3.6 and Fig. 3.7. The
results were accurate enough. The difference between the analytical solution
of the asymptotic GSE and the numerical solutions were about 0.3% which
seems to be a systematic error of 0.3% probably due to the integration lim-
its of 0.99999 and 1.0001. Our solutions differed from that of Fendt (1997)
within less than 0.05%. It is not surprising that no systematic error is seen
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in Fig. 3.7, because the integrating limits are the same as Fendt (1997) used,
so almost the same systematic error will be expected.

1.0 T T T T T 0.004[

0.003F =

)
—wum) /¥,

0.002f~ 4

°
R
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I R
(¥,

0.001 - 5
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Figure 3.6: On the left: The values for Wy, (z) (solid line) using the IDL routine
and over-plotted the analytical solution of Appl & Camenzind (1991) (crosses).
On the right: The relative difference of the (Vac — Wnum) /Pac. A systematic
error can be seen of about 0.3% with a scatter on much smaller scales.

3.5.4 Scaling the 2-D solution to the central mass of
the black hole

FM2001 solved the special relativistic axisymmetric Grad-Shafranov Equa-
tion (GSE) including the differential rotation effect in the source term of the
GSE. Their whole axisymmetric structure was normalized in terms of the
asymptotic light cylinder radius xj.. An Ansatz was made for the rotation
profile (see Eq. 3.15) and then the axisymmetric solution could be obtained.
Their finding was, that their adopted steepness of the rotation profile was
too low to match the Keplerian rotation at the foot-points of the field lines
in the disk.

In order to use the solutions of the special relativistic asymptotic GSE,
as a boundary condition for the general relativistic axisymmetric GSE, this
solution had to be re-normalized, because the spatial coordinates in the gen-
eral relativistic code were normalized to gravitational radii (R,) instead of
the asymptotic light cylinder (z).) as was the case with FM2001. Because
the different normalization might cause confusion, the asymptotic solution
will be expressed in terms of z, which is normalized to the asymptotic light
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Figure 3.7: On the left: The values for Wyum () (solid line) using the IDL
routine and over-plotted the numerical solution Wgengt () (crosses) used by
Fendt (1997) (obtained using MATLAB). On the right: The relative difference

(\IlFendt - \Ijnum) /\Ierndt-

cylinder z., and the general relativistic GSE is expressed in terms of r which
is normalized in gravitational radii R,.
Because the angular velocity of the flux fields Qp (U) is conserved along
W, the rotation originating from the foot-point of the flux fields at the disk,
which rotates at Keplerian speed, must have the same value in the asymptotic
part. The Keplerian angular velocity distribution near a black hole is given
by
1
)=

with a the angular momentum per mass of the black hole. This reduces
to the Newtonian Kepler profile for small a/r. The adopted profile for the
asymptotic collimated jet is given by

(3.17)

Qp (r) = Vehhe (3.18)

Because ¥ = WU (x) is known and Qg (z) in the asymptotic region, also
U (Qp) is known. This is also true for the foot-points ¥ = W (1) and Qp (1)
are known and therefore Qp (U) |.sy can be related to Qp (V) |ker. By nor-
malizing the asymptotic light surface, the asymptotic rotation profile can be
used in the GSE normalized in R, (see Fig. 3.8).

The question is now how from the chosen asymptotic distributions of
Qp (x), I (x) and ¥ (x) a distribution is obtained that resembles the actual
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Figure 3.8: Connection the rotation distributions in the two regimes with different
normalization of the rotation profile. At the top an exponential profile normalized
to 1 at the light cylinder. At the bottom a Keplerian rotation law for the disk.

disk physics as closely as possible. So what kind of steepness A and what
value for the asymptotic light cylinder in term of gravitational radii had to be
adopted to fit the asymptotic exponential profile to the Keplerian profile at
the disk. The disk size restricts the combination of jet radius and steepness
somewhat. Given a disk size, the fraction between the maximal and minimal
angular velocities for respectively the inner disk radius, and the outer disk
disk radius

Qnax r3l2 +a
falkep = o [kep = 55— (3.19)
P Quin P r?nﬂ +a

where for r;, ~ 2.0 the radius of the ergosphere of the BH has been taken,
and rgsx s the outer disk radius where the last flux emerges. In order for the
asymptotic rotation profile to fit a Keplerian profile the fraction of maximal
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and minimal angular velocities in the asymptotic region must be greater or
equal to that of the flux from the disk. If it is equal, all the flux solely
originates from the accretion disk. If it is larger, part of the flux comes from
the ergosphere of the black hole.

Qm X Qm X
fQ|asy = Q—il|a‘sy = Q—il|kep (320)
or
el 2 4 g
— - hxie > out
fQ|asy eh*hfjet V e'ttiet > ri?)n/? T
(3.21)

FM2001 found a solution for a jet with h = 0.9, zjes = 2.2 21, Tin =
0.05 71 and zgisk = Taisk = 0.2 7. Relation 3.20 then becomes

3/2

0.
folsy = Ve?922 = 2,69 > == = 8.0 (3.22)

In Fig. 3.9 this situation is illustrated. This easily shows, as they already
concluded, that the rotation profile they assumed was too flat to fit a Ke-
plerian rotation profile at the disk. In order to get a disk with a Keplerian
profile one would therefore need either a steeper profile (higher h) or a wider
jet in terms of asymptotic light radii (lower g;). This will part of the discus-
sion in § 5.1. The disk physics are yet still not fully understood as well. For
pressure supported disks, the rotation will be in general sub-Keplerian. As
we take the disk as a boundary, it is difficult to say anything about the disk
based on our solutions. A broader parameter study of our model as well as
the bottom-up approach (See Section 5.1) is needed in order to address this
problem.

One can ask whether it is possible to have any light cylinder radius for the
asymptotic solution, when it is applied as a boundary condition to the 2-D
problem. Because this radius determines how the Qp|,sy is to be normalized
(T Qp (r = 11¢) |aisk = 1, but Qp (r =1) [asy = 1) . Depending on the distri-
bution ¥ (r) |gisk along the disk, there is some W* (r) |4k, that collimates in
the asymptotic regime at the light cylinder. This then gives some Qp () |qgisk
that in its turn determines the asymptotic light cylinder radius. But which
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Figure 3.9: Comparison of asymptotic Qp = Vel with h = 0.2, g; = 2.71,
Zgisk = 5.0 Rg and Uy = 0.2 and a Keplerian rotation profile at the disk. The so-
lution of the asymptotic GSE (left top) gives some value for W (z), this corresponds
to a U along the disk (left bottom), that in turn gives the physical scaling of the
asymptotic rotation profile (right top) using a Keplerian rotation profile at the disk
(right bottom, solid line). In the right bottom figure, the normalized asymptotic
solution (striped line) is shown to have an idea what this physical rotation law this
normalization implies for the disk.

U* (r) actually collimates is determined again by the 2-D solution, so this
poses a problem.

Let us consider the Alfvén point that is determined by the conserved

quantities as follows:

M3 =1-Qp (V) L(V)/E (D) (3.23)

In the force-free case (M3 << 1), the Alfvén point approaches the light
cylinder, so then

Qp (V) = E(¥) /L () (3.24)

As we know, the light cylinder is defined as z.Qp (¥ (21)) = 1 so the
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light cylinder radius is determined by

me = L (V) /E(¥) (3.25)

So when the distribution along the disk is known and with it the L ()
and E (¥), then the asymptotic light cylinder still is not defined uniquely
beforehand. Because this relation might hold for any ¥U* along the disk and
beforehand it is not known which U* collimates exactly at the asymptotic
light cylinder. This is determined by the 2-D solution.

In the top-down approach the value for the asymptotic light cylinder
radius x;. can be chosen arbitrarily in principle (as long as Qg (7) |max < QBH),
but this choice then determines the conditions L (V) and E () at the disk. If
for example the physics of the disk are known, then to get the 2-D structure
of the jet, the asymptotic light cylinder has to be chosen in such a way that
these match, and is therefore not free of choice. This apparent free choice
of the asymptotic light cylinder radius is a consequence of the top-down
approach. With the alternative bottom-up approach one does not have this
problem, as will be explained in § 5.2.

3.6 Grid boundaries

3.6.1 Light surface

One of the main problems in solving the GSE was to find the correct grid.
Because the light surface is the singular surface of the GSE (see §4.1), it is
important that our boundaries for the inner grid as well as the outer grid
follow the light surface as accurately as possible. The inner and outer light
surfaces are given by

~2 o 2
@2 = <iQF — ) (3.26)

To see what the light surfaces for a given Qr look like, this equation can
be rewritten. At the light surface © = @;, then

a(r,0)

QF (T,G) = :t(:)(r,e)

+w (r,0) (3.27)
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On the right hand side of the equation there are only parameters of the
Kerr metric. It is possible to calculate the family of solutions that satisfy
Eq. 3.27 for all (r,0). Every constant Qg then constitutes a contour on this
surface that Qg (r, 0) builds. In Fig. 3.10 the contours are shown for different
constant (2. It can be seen that for the outer light surface, the light surface
moves outwards for smaller Qf (a higher radius is needed in order to maintain
x Qp (¥ (x)) = 1). For the inner light cylinder, which is due to the frame
dragging effect of the rotating black hole, the light surface moves inwards for
higher 27 and approaches the black hole surface.

For a constant rotation of the flux fields the light surface can be calculated
explicitly. This is different for a differentially rotating flux distribution. It is
only known for a flux field ¥ with an  (¥) that if it crosses the light surface
it will cross the light surface somewhere along the known surface of constant
Qr as plotted in Fig. 3.10. At which point along the light surface it will cross
depends on the internal force balance.

2.0

o
0.200006—
0.100006~]

Z/M

0 2 4 6 8 10 0.0 0.5 1.0 1.5 2.0

Figure 3.10: On the left, Inner- and outer light surfaces for different Qp =
0.05,0.1,0.2. On the right: Inner light surfaces blown up. The black hole sur-
face and the ergosphere are indicated as well (dashed).
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The problem is that Qp is now a function of W(x), which is exactly what is
to be calculated: The shape of our boundary is a result of our calculation for
which this shape is needed. A procedure to solve this problem was proposed
by FM2001: For the initial light surface boundary the light surface of the
angular velocity of the asymptotic solution €2p . is taken. For this grid
the solution is calculated with the n-element solver algorithm, so Qp (V) is
known at the boundary. This boundary will differ from the real light surface

by D =1 — (ﬁf =1- (W)2 Then the grid is changed with
Az o D(x,2)*. This procedure is repeated until D (z,z) ~ 0. FM2001

showed that this procedure successfully converges to the light surface as
determined by a consistent axisymmetric solution.

3.6.2 Outer jet surface

The same problem as with the light surface holds for the outer boundary of
the jet. The position of the boundary has to be specified in order to solve
the internal solution, but this position itself depends on that solution. In
principle the correct boundary can be searched for. To have an idea where to
start, the asymptotic GSE is first solved. This gives the position zj; of the
last flux surface in the collimated asymptotic region. The correct shape of
the boundary is the one that gives an consistent internal solution. Whether
the internal solution is consistent is determined at the light surface. This
'matching problem’ was studied by Fendt (1994). The internal solution is a
consistent solution to the 2-D GSE, if at the light surface the transition of
the flux surfaces across the light surface is smooth.

In order to find the correct solution the matching problem had to be
solved, i. e. a correct boundary for ¥ = 1 had to be found consistent with
the smooth crossing of the light surface. We chose to parameterize the outer
boundary of the jet by some general function as F1997b and FM2001 did. For
Z > Zyo the grid was divided evenly in dZ = (Zmax — Zyso) /Nelz With nep z
the number of elements in 7 direction. Here Zy, was chosen at double the
height of the crossing of the jet boundary at opening angle 6, with the light
surface 2Zi5min. We start at a fully collimated boundary down to fys © Zyso-
For the rest of the i elements the function R; = Rje; — dR (i — iys)" was
taken. The parameters Zys,, fyso, dIR and n were a free choice, enabling a
wide variety of shapes for the outer boundary (see Fig. 3.12).

The solution of the GSE searched for is the combination of coupling con-
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W=1 % w=1

Figure 3.11: (Mis)match of the crossing flux surfaces at the light surface. The red
line indicates the light surface. The blue lines indicate the magnetic flux surfaces.
There are three possible configurations: The first two solutions do cross the light
surface smoothly. Only the third solution has a smooth crossing of the light surface,
and therefore the boundary corresponding to the internal force-balance.

stant gy, core-radius a, and steepness h that gives a consistent match at the
light surface for the inner and outer solution. Three possible situations at
the light surface, that might occur while matching the inner solution to the
outer solution, are shown in Fig. 3.11. Calculated examples of the matching
problem will be shown in the next section. The first two configurations in
Fig. 3.11 show a kink-like crossing at the light surface, which would require
jumps in the magnetic field distribution which are not present in the asymp-
totic distribution. These are only due to the mismatch of the adopted outer
boundary with the internal solution that is defined by the given combination
of coupling constant g;, core-radius a, and steepness h. The outer boundary
is then adjusted to have about the same shape as the internal field lines close
to the boundary. This adjustment is repeated until the match at the light
surface is found.

3.6.3 Disk & black hole boundaries

At the lower part of the grid, the disk and black hole are taken as boundaries.
The disk is assumed to be thin (Z = 0) and starts from the ergosphere
(rin = 2 Rg), which is somewhat less than the marginally stable orbit (for a
black hole with @ = 0.8, rms ~ 3 R;) and the disk goes out to 7gisk.

In principle it would be logical to take the inner light surface inside of the
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Figure 3.12: The parameterization of the outer boundary of the jet. The param-
eters Zyso, fyso, AR and n were a free choice.

ergosphere as a boundary near the black hole, because there then we have a
well defined boundary condition. In order to use this boundary an iterated
procedure to find this position is needed as well. The inner light surface
could be found by starting at the light surface for the lowest rotation, which
is furthest out from the horizon. Then the same iteration procedure as used
for the outer light surface could be used to move the inner boundary to the
inner light surface. This procedure will be very slow, because both the inner
and outer iteration procedures have to occur at the same time, as they depend
on each other. Because in general it is not clear how the flux emanates from
the black hole’s environment, we take for now the ergosphere as boundary.

3.6.4 Summary of the jet-model

The previous sections can be summarized as follows: The force balance across
the magnetic flux surfaces, that emanate from an accretion disk and the
central black hole’s environment and collimates into a jet, is calculated in two
regions: inside and outside of the light surface. The boundary conditions at
the disk are based on both phenomenological arguments (for the black holes
magnetosphere, based on Blandford & Znajek 1974; Okamoto 1992) and
studies of magnetized accretion disks (e. g. Khanna & Camenzind 1992). It
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is assumed that all of the magnetic flux collimates in the asymptotic region.
The boundary condition in the asymptotic regime is provided by solving the
1-D asymptotic GSE of a collimated jet structure.

The grid for the inner region to be calculated is seen in Fig. 3.13. An
opening angle 6, is defined at the disk boundary rgig from which the jet
boundary extends to the light surface. The grid-boundaries are given by the
jet-axis, black holes ergosphere, disk, jet boundary and the asymptotic jet.

The grid for the outer region to be calculated is seen in Fig. 3.14. An
outer boundary is defined that starts at the crossing point from the internal
region’s boundary up to the jet radius e in the asymptotic part.

Figure 3.13: The inner region: Calculation for the region inside the light surface.
The boundaries are given by the jet axis, the black hole ergosphere, the thin disk,
the jet boundary given by an adopted opening angle 6, of the last flux surface, the
light surfaces and the asymptotic collimated region.
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Figure 3.14: The outer region: Calculation for the region outside of the light
surface. The boundaries are given by the light surface, the asymptotic solution
that defines zje; and the adopted outer jet boundary which is connected to the
point at the light surface where internal flux crosses it at some opening angle 6.
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Chapter 4

Code Development/Testing

4.1 Developing the code

The FORTRANTT code for the finite element solver that included the Kerr
metric in the GSE (see F1997a) was used as a base to develop the necessary
code. The main idea behind the code was as follows: First a non-equidistant
grid was specified. Then the Dirichlet conditions were specified for each (r, 6).
An initial first guess for W (r, #), was given by applying the asymptotic solu-
tion to the whole grid. This proved to be a good choice for fast convergence
of the code. The initial solution was then used to solve the equation 6.8. The
maximal difference between the old and new value for ¥ was then used to
estimate the degree of convergence. This procedure was repeated until the
maximum difference |V, e — Wold|max < €conv. We chose for the converging
factor €cony = 1 104, which gave a good, and fast convergence of the code.
The final converged solution was set on an equidistant grid of 501 x 501
elements. Because this code was only suited for constant Q2 a number of
extensions had to be added in order to successfully solve Eq. 2.29 including
the differential terms:

The first step was to add the differential term, G2=2EQ (V|2 to the
source term J (see Appendix A). The functions of Q (V) and I (V) were
obtained by making a spline fit of the ¥ (z) and Q (z) and also for I ().
This had to be done, because the functions €2 (z) and also for I (z) had were
a result of numerical integration (see §3.2.3) and should be calculated in
the code for arbitrary 0 < W < 1. This spline also gave their derivatives
with respect to ¥, I' (¥) and Q% (¥). The function Qp was normalized by
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choosing the asymptotic light cylinder radius. This gives the normalization
factor fqo = 1/m. In Appendix A it is shown how the |V¥|? term was
calculated. Because the Qp is also present in the 1. h. s. of Eq. 2.29 the
same spline procedure had to be applied there as well.

The second step was to include the iteration procedure of the position
of the light surface. The first guess of the boundary for the light surface
was initially made by calculating the light surface for constant Qp = 1/x,
because this corresponds to the maximal possible Qp of the light surface
by definition (see Section 3.6.1). It turned out that for the non-constant
rotation profiles the initial choice of the boundary gave problems when chosen
too close to the light surface. Due to the initial choice of the boundary no
convergence of the solution on this grid could be obtained. This was probably
due to the fact that at the top, the boundary was, relative to the bottom, too
close to the real light surface, which gave too little room for readjustment
of the boundary during the iteration procedure. To solve this the initial
boundary was shifted by an amount of Ax; = 0.01z). inside, to be sure that
the whole boundary is well inside of the light surface. This method proved
to be successful. After each converged solution, for a given grid, for each cell
at the boundary corresponding to the light surface, the value for D (r, ) was
calculated by

D(r,0)=1— (&(r,0) [ (¥ (r,0) —w(rb)]/a(r))? (4.1)

Each element at the light surface was shifted by Az = faD (z,y). Here
fa was a chosen factor that could be adapted during the calculation in order
to speed up the light surface iteration. It turned out that a good and fast
convergence was obtained by choosing fa as such that the amount of change
was about 10% of the D (r,6). After the shift of the outer elements, the
internal grid was rearranged as well, and then the converged solution of the
previous step was used as an initial condition for the calculation of the new
U (r,0). For constant rotation, the number of iteration steps was about
10-20 in order to obtain a convergence of €n = 1 107*. The initial few
iteration over the new light surface took the same amount of steps, but
gradually decreased to 2-3 steps to get the same convergence. This was
because when the increment gets smaller, as the boundary approaches the
real light surface, the converged solution on the previous grid will be much
closer to the real final solution. The light surface iteration was stopped once
D (z,y) .. <1107%

48



We encountered an unexpected problem when matching the 1-D solution
of the asymptotic GSE to the upper boundary condition. The height of the
grid was taken 5x). for the jets calculated in the next sections, where the
asymptotic light radius was chosen z;. = 10 Rg;. The Kerr metric has three
parameters of influence in the GSE, the red-shift « (r, ), the frame-dragging
w(r,0) and the @ (r,0). In the special relativistic regime far away from the
black hole, the first reduces to 1, the second to 0, and the third is equal
to the R-component in a cylindrical coordinate system. The values for the
Kerr parameters for different heights in terms of the asymptotic light cylinder
radius x). are given in Table 4.1.

height (xlc) o (rlm 91(:) w (’rlc, ch) w (Tlm ch) Tic (Rg)
5.00 0.9798 1.2825 107 9.7991 9.7978
10.00 0.9899 1.6249 106 9.8991 9.8988
15.00 0.9933 4.8054 107 9.9329 9.9327
20.00 0.9949 2.0229 10~ 7 9.9497 9.9496
00 1.0 0.0 10.0 10.00

Table 4.1: Values for Kerr parameters at different heights of the grid (for zjc o =
10 Ry)

At a height of 5x), = 50 Rq the light surface has is at a distance of
e = 9.7978 R, and has not yet reached its asymptotic value at zjc o =
10.0 Ry. The Table 4.1 shows that the Kerr parameters have not reached
their asymptotic values at this height. The question now arises whether
the asymptotic solution, which has been calculated in the special relativistic
regime, may be used as a valid boundary condition for the problem calculated
in the Kerr metric. There are two options how to interpret the asymptotic
solution. The first is to assume that both in the non-asymptotic region
as well as in the asymptotic region the field is perfectly collimated. This,
however, leads to some problems at the light surface. As can be seen in
Fig. 4.1 that the flux surfaces that originally crossed the light surface (at the
point where xQp (¥ (x)) = 1), now cross it back. This is a contradiction,
because Qp (V) is conserved, so it cannot possibly cross the light surface a
second time. Therefore all the flux that is outside the light surface must stay
outside the light surface. It would be obvious to increase the height of the
grid until the influence of the black hole becomes negligible. Because the
grid cells should not get too elongated, to avoid numerical problems, we can
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not set our boundary at arbitrarily high Z. For these we chose to normalize
the asymptotic solution with respect to the position of the light surface at
the top of our grid and not its asymptotic value. Because the difference of
this point to the asymptotic value is very small (less than 2%), the difference
between the asymptotically normalized jet and our adopted normalization
should be insignificant. This does not mean that the solution becomes less
accurate, it just implies a different rotation at the disk for some ¥*.

R=R | c(Z=5R_I C)

Z=inf

Z=5R |c

s : | .

Figure 4.1: A schematic view of the problem when applying the asymptotic dis-
tribution as a boundary condition to a region where the light surface has not
yet reached its asymptotic value. The assumed straight flux field will cross the
light surface for a second time, which is in contradiction with 2Qp (2) = 1. The
collimated flux surfaces (blue) and the light surface (red) are indicated in this fig-
ure. Note how in between the light surface and its asymptotic value the assumed
collimated field lines may re-cross the light surface.

4.2 Testing the code

To test the extended new code was applied it to the case of constant rotation
and differential rotation of the flux-fields.
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In order to obtain the consistent solution, we adopted the the model
parameters in a specific order. First an opening angle #, was chosen because
this parameter seemed to have to largest influence on the global structure.
This determined the internal solution. By assuming some outer boundary by
choosing the parameters Zy,, fyso, dR and n it was immediately apparent
whether the g; would have a possible 2-D solution with this opening angle.
When an opening angle was found that had a solution for which the outer
boundary gave an almost consistent solution, the opening angle was kept and
the outer solution was changed until a consistent solution was found.

4.2.1 Constant rotation

In the case of constant rotation of the flux surfaces the analytical solution
of Appl & Camenzind (1992) was used for the asymptotic boundary con-
dition in order to solve the 2-D GSE. The asymptotic form of the GSE

1—e 0¥

has, with the Ansatz that I (¥) = -=%—=-, the analytical solution ¥ (x) =

1—e=b
2
1/blog <1 + (%) ) The jet radius is then defined as zj; = ave’ — 1. The

parameters used originally by F1997a are given in Table 4.2. These were used
to re-calculate structure as found by F1997a. Unfortunately the parameters
describing the outer jet boundary used by F1997a were not specified in the
paper, so we had to look for the solution again.

ar a b 7,00 Upy
2.14 2.71 0.8 10 0.2

Table 4.2: Jet model parameters as calculated by F1997a.

An initial guess of the jet boundary is done by taking a initial 6y the
same as F1997a, which was about #y = 3/4 rad &~ 42°. The internal solution
shown in Fig. 4.2.

To illustrate the method how the correct outer boundary was found two
solutions for different boundaries are shown in Fig. 4.3. Both figures show
clearly what happens if the outer boundary (as was shown in Fig. 3.11) is too
different from the boundary that satisfies the internal force-balance. When
the boundary is moved more inwards (collimates more slowly) the kinks move
upwards. If the boundary is moved outwards, the kinks move downwards.
The smooth solution where the derivatives of the flux distributions in the
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Figure 4.2: The inner region as calculated for the parameters of F1997a, with an

opening angle of fy = 42°. The contour lines indicate the values for ¥ = 10_(0'1")2,

with n =1,2,..17.

inner region and the outer are equal, must have a boundary that is somewhere
in between these boundaries.

In Fig. 4.4 can be seen what happens when the opening angle 6, is
changed. Although the uniqueness of a this boundary is difficult to quan-
tify, practice shows that when a given opening angle and outer boundary
causing these kinks, these kinks can only be removed for one opening angle.
In the left of Fig. 4.4, when the boundary is changed inwards (because now
the kinks are downwards), the upper part of the distribution may become
smooth, but the lower part still has a large kink. By doing this for a range in
opening angles, it was found that fo too high opening angle we had this prob-
lem with upwards bending kinks, and for too low opening angles we had this
problem with downwards bending kinks. A smooth transition at the light
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surface could be found for the intermediate opening angle. The matching of
the light surface was done by hand, which is quiet unsatisfactory, although it
does give good results. An iterative procedure could be made by matchin the
derivatives of the distribution at the light surface, although it will be very
slow, because iteration would be needed over the outer boundary as well as
the opening angle.

R/R R/R
0 1 L2 3 0 1 L2 3
SOFTTT T T 5 SOFTTT T T 5
40 H 4 40 H 4
30 3 30 3
= o = o
5 NN N
20H 12 20H 2
10 10
i i
i i
I I
0 0

Figure 4.3: The inner region as calculated for the parameters of F1997a, with an
opening angle of g = 42°. The contour lines indicate the values for ¥ = 10*(0'1")2,
with n = 1,2,..17. On the left: The parameters describing the outer boundary
were Oy = 42°, Zyso = 1.5Z15 min, fyso = 6.5, dR = 0.0007 and n = 2. On the right:
The parameters describing the outer boundary were 6y = 42°, Zys, = 1.5Zi5 min,

fyso = 3.5, dR = 0.0008 and n = 2.

The boundary that shows the best match at the light surface is shown in
Fig. 4.5. The two shapes of the outer boundary are almost identical and the
internal solution looks consistent. Due to the constant rotation, the position
of the light surface is known in advance. The difference in the approach here,
is that the whole 2-D structure, inside as well as outside the light surface at
the same time was calculated by F1997a. The outer part was calculated
separately and then matched to the inner part, because it had to be suited
for finding the light surface of a differential rotation as well.

The solution seem very alike. Although the boundary may not be the ex-
act boundary satisfying the GSE, which probably would not have the bound-
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Figure 4.4: On the left: 2-D solution for higher opening angle than F1997a. The
contour lines indicate the values for ¥ = 10*(0'1”)2, withn =1,2,..17 (on the left)
and n = 1,.2,..25 (on the right). The parameters describing the outer boundary
were 6y = 49.2°, Zyso, = 2.0Z1gmins fyso = 8.4, dR = 0.000041 and n = 2.5.
On the right: The parameters describing the outer boundary were 6y = 32.7°,
Zyso = 2.0Zis min, fyso = 3.0, dR = 0.00018 and n = 2.0. With these opening
angles no outer boundary can be adopted, which gives a smooth transition at the
light surface.

ary in a straight line at an opening angle 6, from the disk, the match at the
light surface is so good the internal solution obtained with our approximate
jet boundary will be close to that with the boundary that gives the exact
solution of the GSE. In any case, the code was able to replicate the solution
by F1997a up to a good degree of accuracy. The accuracy of the code with
respect to the exact solution of the GSE will be discussed in § 5.1.
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Figure 4.5: On the left: axisymmetric jet structure for constant Qp, as calculated
with the new code. On the right: Same axisymmetric jet structure, as calculated by
F1997a. The contour lines indicate the values for ¥ = 10~(1")" withn = 1,2, ..17
(on the left) and n = 1, .2,..25 (on the right). The parameters describing the outer
boundary were 6y = 42°, Zyso = 2.0Z1g min, fyso = 5.3, dR = 0.00038 and n = 2.5.
Note the difference near the disk, as F1997a took the boundary condition along
the disk somewhat different Ugix = EWpay (r — 19)" with n = 3, ry = 1.76 and
FE = 0.03. Tt can be seen that the disk boundary condition does not affect the global
solution. This shows that for a constant rotation law, the new code successfully
reproduces the solution as found by F1997a.

4.2.2 Differential rotation

In order to compare our results with the previous work by FM2001 where
only the differential rotation of the flux surfaces was included the exponential
rotation profile Q% () = Vel was chosen, with a steepness of h = 0.2.
For the current density distribution I (z) = (z/a)’ /(1 + (/a)” was taken.
The parameters used are given in Table 4.3. Because the solution obtained
by FM2001 was normalized with respect to the asymptotic light cylinder, we
had to re-normalize the asymptotic light cylinder radius in terms of the grav-
itational radius (as discussed in Section 3.2.4) to calculate the 2-D structure.
For the test, the asymptotic radius was chosen at z;. = 25 R,, which gives
with the disk size r4isc = 5 Ry like F1997a the same light surface to disk size
ratio as FM2001.

As initial opening angle #, = 75° was chosen. The solution for the inner
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ar a h Tle,00 Ygn
25 1.0 0.2 250 0.2

Table 4.3: Jet model parameters as calculated by FM2001.

region with the initial choice of the outer boundary are shown in Fig. 4.6.
The initial inner solution was shifted 0.1 Ry to the left of the light surface
for Qp = 1/r. = 0.04. Tt took 140 steps for the iteration procedure, which
moves the outer boundary to the light surface, to converge to D (z,y),,.. <
1 10~*. The combined solution for the inner and outer regions is shown in
Fig. 4.7. The solution as calculated by FM2001 is shown in Fig. 4.8. Again
the global solutions are very alike, as they are determined by the asymptotic
free functions as found by F1997a. The solution near the disk differ however.
This is for a part due to a different boundary condition taken along the disk

and the central object. FM2001 took at the disk a distribution of

Wi () = %m (1 4 (x _in“>2> (4.2)

a

with @ the core radius of the flux at the disk and b = In (1 + (Taisk — xin)2 /ELZ).

The second difference is the influence of the Kerr metric near the rotating
black hole. The global solutions are the same as those determined by the
asymptotic free functions as found by F1997a. The outer boundary is slightly
different, but for the purpose of testing the combining of the two methods,
this is quite satisfactory.
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Figure 4.6: On the left: Converged solution for the initial choice of the outer
boundary that was shifted 0.1 R, inside of the light surface for Qp = 1/r. = 0.04.
The opening angle is 8y = 75°. On the right: The final inner solution after 140
iteration steps of the light surface. Both are for a steepness h = 0.2. The contour
lines indicate the values for ¥ = 10-(01")° with n = 1,2, ..17.
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Figure 4.7: The axisymmetric jet structure for a differentially rotating flux-
distribution with steepness h = 0.2, including the Kerr metric. The contour lines
indicate the values for ¥ = 10*(0'1")2, with n = 1,2,..17. The parameters describ-
ing the outer boundary were 6y = 75°, Zys, = 1.7Zi5 min, fyso = 1.8, dR = 0.000091

and n = 3.0.
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Figure 4.8: The axisymmetric jet structure for a differentially rotating flux-
distribution jet structure, as calculated in a special relativistic treatment by
FM2001. The contour lines indicate the values for ¥ = 10*(0'1”)2, with n =
1,.2,..25 (on the right).
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Chapter 5

Discussion & Future Work

5.1 Discussion

In calculating the force balance across the magnetic flux fields, the combina-
tion of the Kerr metric with the differential rotation of the field lines appears
to be successful. In the case of constant rotation the same solution as cal-
culated by F1997a was found. Because the outer boundary exact shape as
found by F1997a was not conserved, we had to find the boundary again. We
found a slightly different jet boundary than F1997a (see Fig. 4.5), but the so-
lutions look almost exactly alike. What can be seen is that in the region near
the disk the solutions differ somewhat. This is due to the slight difference
in boundary conditions along the disk and the different boundary near the
black hole. F1997a took the light surface as the inner boundary, we took the
ergosphere. The global solution is not affected by the difference in boundary
conditions at the disk. This is because both have the same free functions
I(U) and Qp(¥ as determined from the asymptotic analytical solutions of
Appl & Camenzind (1993). Because the code was based on the code that
calculated the same solution, so we expect no difference in the accuracy of
the code. This is somewhat different in the case of replicating the solution
of FM2001. By comparing the solution as found by our code with that of
FM2001 we can say that we found almost the same solution. Although there
are still some small kinks left at the light surface this approximate solution
closely resembles that of FM2001. For testing the code, this result is good
enough to be sure that the combination of the Kerr metric and the differential
rotation has been successful.
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Top-down approach and the rotation profile 2y  The problems when

adopting some rotation profile 2z in the top-down approach were described
in Section 3.2.4. When trying to match this profile to some physical rotation
profile the steepness (in our case h = 0.2) in combination with the coupling
constant g; was too small, based on arguments concerning the ratio of max-
imal and minimal rotation of the asymptotic rotation profile and the disk
rotation profile. When the steepness was increased, this showed that the
light surface returned in the asymptotic regime. A second problem, was that
according to some arguments the rotation of the flux fields around the black
hole’s environment rotate at constant rotation at some fraction of the black
hole’s rotation Qp = fQpy (Punsly 2001). Therefore an asymptotic rotation
profile should have some cut-off value that corresponds to this rotation. We
did some investigation with a modified rotation profile

for x > xpp
0 el/((@=zpn)" +1) -

for x < apy
Qp = e'/f (5.2)

with f =1/log(h (1 —zpn)™ +1) — (1 — zpn)". Here zyy is the position
normalized in asymptotic light cylinder radii, where the rotation profile be-
comes constant. The parameters m, n can be chosen such that a high rotation
is obtained inside the light cylinder and a low fall off for higher x, making
sure that no returning light cylinder was close to the jet boundary. The same
IDL procedure as used in Section 3.2.3 was used to solve the asymptotic GSE
for this rotation profile (see Fig. 5.2).

The main drawback of this method was that yet more parameters xy;,, m, n
had to be chosen, and for example zp;, is determined by the internal force
balance. Also to obtain an exact match between a Keplerian profile and the
asymptotic rotation profile while conserving Qp (V) will always stay a prob-
lem while using the solution of the asymptotic jet to determine the internal
structure. Although it must be stressed that the solutions, obtained with the
top-down approach, do give exact solutions for the jet structure, for these
reasons in Section 5.2 an alternative bottom-up approach will be explained
and its advantages and disadvantages will be discussed.
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Figure 5.1: Profile for Qp (z) as in Eq. 5.1. For zp, = 0.2, and different (m,n):
dotted (1,1), solid (2,2), striped (2,3).

Jet collimation Although the jet does not propagate through a vacuum,
this is not necessary for collimation. When the electromagnetic pressure
exceeds the ambient pressure the shape of the jet will not be affected. The
pressure of the ambient confining medium spans a wide range, from values of
1072 dyn cm? in the broad line region to 1072 dyn cm? in the intergalactic
medium (Appl & Camenzind 1993). The ambient pressure can be related
to jet pressure. For a jet to be in equilibrium, the sum of stresses on the
boundary inside and outside must cancel

1 1
o (Bg + Bj — E?a) o = Fext F gB;,m (5.3)

The dimensionless pressure can be expressed as p = (R /¥2,..) P which
has the units
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Figure 5.2: Asymptotic flux distribution as calculated for rotation profile as in
Eq. 5.1. Herea=1, B=1, h =0.2, zjey = 0.2, g7 = 1.97 and (m,n) = (2,2).
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The jet is defined by the set of nested flux surfaces with 0 < ¥ < 1.
This can be done for a saturating profile at ¥ = 1 because then there is no
poloidal field left beyond this point (d¥/dz = 0). In principle, one can dis-
tinguish between two different regimes for a jet (Appl & Camenzind 1993): a
current-confined (or self-confined) or a pressure-confined jet. Self-collimation
is shown to be possible by time-dependent simulations for particular cases
(Ouyed & Poudritz 1997), but the spatial scales were far below the scales of
the collimating regime. There are also arguments based on current-closure
that confinement cannot occur without external help (Okamoto 1997, 1999).
For now we assume that the jet is current-confined and the external pressure
can be neglected.

Possible follow-up studies may be done in order to include external gas
pressure. A possible idea might be to make the pressure gradient as a function
of the flux-fields VP (¥). Then it could be included as an extra term in the
source term. It is not really clear what kind of function one then would take
for the pressure distribution though. A constant external pressure and a zero
pressure in the force-free jet would lead to an infinite high gradient at ¥ =1,
so one needs some idea on what to take for the gradient at the jet boundary.
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Whether this can work or not still has to be investigated.

Jet stability Having found these solutions for the axisymmetric jet struc-
ture, the question arises whether they are stable or not. We have not found
the time to address this problem yet, and this will have to be done in the
future. Many studies have been done on the stability of stationary MHD
jet solutions (e. g. Appl 1996; Lery 1996; Lery & Frank 2000) show that
solutions for MHD jets, especially current carrying ones are more stable than
hydrodynamic ones. The stability will probably depend on the type of cur-
rent distribution I (¥) (see Fig. 3.3). The current profile taken is a profile
where most of the current is located inside the core radius a (in our solution
in Section 4.2.2 @ = 1, which corresponds to the asymptotic light cylinder)
and then drops off for larger W (a profile similar to what Khanna & Camen-
zind (1992) obtained for their stationary disk solutions). A parameter study
of the core radius a, the coupling constant g; will have to be done in order
to see what effect they have on the jet structure and see whether it is indeed
stable.

5.2 Calculating the flux structure from disk
physics

The top-down approach used in this thesis, takes the asymptotic version of
the GSE, to calculated the asymptotic boundary condition used by the 2-D
GSE. To solve this, for the current distribution I (V) and for the rotation
profile Qp (V) assumption had to be made. The top-down approach uses
the results of studies made by Appl & Camenzind (1993) and F1997b of the
asymptotic special relativistic GSE which assumes some current-distribution
and rotation profile as a function of z (in terms of the asymptotic light
cylinder radius z).). From these functions then a consistent solution for the
asymptotic GSE can be calculated. This can give some complications, how-
ever, when trying to match these functions to the physical properties, such
as the rotation of the magnetic fields at the disk. An alternative bottom-up
approach would be to base the distributions of ¥ (x), I (x) and Qp () on the
physical properties of the disk and around the black hole, which can be based
on calculations done by for example Khanna & Camenzind (1992), Okamoto
(1992) and others. When one has these descriptions of these three distribu-
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tions, one also has the functions Qg (¥) and I (¥) which are needed to solve
the 2-D GSE. The question is now, how to find the appropriate asymptotic
boundary condition. As already mentioned in Section 3.2.2, when we have
the situation that there is no returning light surface into the asymptotic re-
gion, the light surface can be used as a boundary condition for calculating
the structure inside the light surface. In our approach, for this region the
asymptotic Dirichlet boundary condition is not mandatory. A homogeneous
Neumann boundary condition (e. g. fully collimated field lines) is enough.
The problem is that the position of the outer boundary in the asymptotic
region i is now unknown, because we only have Qp (¥) and I (¥) and not
I (z) and Qp (x) which can be used to integrate the asymptotic GSE. We
now start with the rotation profile normalized in the dimension of the Kerr
metric, but the true scaling is a result of the internal solution that we want
to calculate (as discussed in Section 3.2.4). In Section 4.1 we showed the pos-
sibility of starting inside of the light surface and use an iterative procedure
to find it. It could therefore be possible, to start at a low position and use
the same procedure to find the unknown light surface and with it the correct
scaling of the asymptotic light cylinder radius. The regularity condition at
the light surface will make sure this is possible. It is not as straightforward to
find a solution for the region outside of the light surface, because the position
of the jet outer boundary is not known in advance either.

We propose a method to find the boundary by solving the 2-D GSE in
the asymptotic regime with our code. Because the scaling of the asymptotic
light surface can be found, the exact position is known and we can try to
find the true solution by varying the outer boundary where ¥ = 1.

As a first test of this idea we used the analytical solution of Appl &
Camenzind (1992) for ¥ (z) and the adopted I (z) and Qp (z) to get the
functions for 7 (¥) and Qp (¥). Because the real solution is known by inte-
grating the asymptotic equation, we can examine how the solution changes
when a different zje (U = 1) is taken. We used a rectangular grid far from
the black hole, so that the light surface becomes a cylinder. We chose only
Dirichlet boundary conditions at the inner part ¥ (z) = 0 and at the bound-
ary ¥ (zj;) = 1, and chose the scaling of the asymptotic light surface of
71 = 100 R, which gives a jet radius of xacjer = 213.80 Rg. We do not set
the boundary conditions at the top and bottom of the grid! In Fig. 5.3 the
solutions are shown for the Zje, = Tacjet — 9, Tacjer and Tacjer + 30. No
converging solution could be obtained for zje; = Tac jet — 10, Zac jer + 50.

From Fig. 5.3 it can be seen that for the boundary taken at zac ey the
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Figure 5.3: Solutions for the 2-D GSE by varying the boundary of the jet xje.
The dashed line indicates the jet with the boundary zac jet, the dotted line with
TACjet — O and the solid line with zac jet + 30. Because the solutions are plotted
against the equidistant grid points, the asymptotic light cylinders are not on the
same position in the plots. It is clear that kinks appear around the asymptotic
light cylinders for the boundaries that do not correspond to zAc jet-

same solution is obtained as that from the integration. For small devia-
tion from zacje a kink d*¥/dz? = 0 appears around the asymptotic light
cylinder. For larger deviations the code did not converge at all. The solu-
tion only converged for smaller xjey < Zacjet for smaller deviations than for
Tjet > Tac,jet- The maximum deviation was about 10% of the jet radius for
Tiet > Tac,er and about 2% for zjee < wacjes. The direction of the bump
changes as well when 2 ac jetr is passed, which might be an indication for the
correct solution.

Although care should be taken in over interpreting these results, it is an
indication that the boundary may be found by examining the behavior of the
converged solutions around the light cylinder. This may be done by starting
to take the value of zje; from the light surface and increase the value in small
steps, and look for converged solutions. The true solution must lie in between
the point where the kinks change sign. It is still unclear how accurate this
method might be to obtain the exact solution. Whether this holds for an
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arbitrary I () and Qp (¥) is also still unclear. This has to be studied more
extensively.

In order to use the bottom-up approach the full distributions of Q (),
I (x) and ¥ (x) have to be specified for the black hole/accretion disk system.
Although there have been some studies of this, a fully consistent disk model
has not yet been found. Because in the bottom-up approach the jet struc-
ture is determined mainly by these quantities, this might be a useful method
also to test disk models. It could be seen that for different disk boundary
conditions, the same global solution was obtained. Because the top-down
approach uses the asymptotically determined free function, this is expected.
It would be interesting to study how the disk physics will influence the global
solution for the bottom-up approach, because in this case, the whole axisym-
metric solution is entirely determined by it and not only locally as in the
top-down approach.

5.3 Solving the energy equation along the flux
surfaces

With the calculated magnetic flux distribution that was obtained solving the
cross-field force balance it is now possible to calculate the flow properties
along the flux surfaces, which gives for example the final flow of the acceler-
ated plasma. These follow from the force-balance along the field lines, called
the Wind Equation (also known as the Bernoulli Equation), which represents
the integrated stationary MHD energy equation. The most general version
of the stationary relativistic wind equation (Camenzind 1986; Takahashi et
al. 1990) is given in terms of the relativistically defined poloidal velocity

u, = yv,/c by

E>2 kOkQ + O'kaQMf‘

2
u, +1=—0o, | —
! (u (ko + 0 M3)?

with kg = g330% + 2903QF + goo, k2 = 1 — QF%’ and

g3+ 2g0sL/E + gOOLQ/EQ

k4 = 2
903 — Jo0933
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Fendt & Camenzind (1996) did these calculations for a calculated flux
distribution for constant rotation to study the influence of the magnetization
o on various parameters of the flow (see Fig. 5.4). It would be interesting to
study the influence of the Kerr metric and the differential rotation on these

parameters.

oy Rl R B Bl B i R R R R B R i P2 TS

P
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Figure 5.4: On the left: Overall structure of the critical surfaces of the collimated
jet. The regions indicated are the sub-Alfvénic (sA), super-Alfvénic, but sub-
fastmagnetosonic(A /sFM), and super-fastmagnetosonic (FM) (taken from Fendt &
Camenzind 1996). On the right: The dynamical parameters along the flux surface
U = (.726 for various degrees of magnetization o,,. The dynamical properties are
the total energy minus the rest energy £ = E (¥)—1, the maximal poloidal velocity
near the asymptotic radius, ups, the poloidal velocity near the fast magnetosoinc
point v, and the Alfvén point u4. Also the positions of the fas magnetosonic
point zpys and the Alfvénic point 4. The particle density N in cm™ at the
position of ujys. Fast magnetosonic Mach number M, and the poloidal current T,
in units of Upnay/ Ry, (taken from Fendt & Camenzind 1996).

Although Qp () is conserved even in a non-force-free plasma (as it fol-
lows from the axisymmetry assumption), I (V) is not. In order to calculate
the dynamics of the stream the force-free assumption has to be dropped, be-
cause the inertial terms are essential to get the acceleration of the flow. The
approach is therefore not entirely consistent. To do it really consistently, an
iteration over the current distribution should be adopted: A initial current
distribution is taken and a force-free calculation of the cross-field balance
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is done. That field distribution is used to calculate the force balance along
the fields including inertial terms, which gives a new current distribution.
Of course the question whether such an iteration iteration would converge
should be investigated, and because it is probably very time-consuming and
maybe as a good approximation it may be left out, especially for highly
magnetized flows. This must investigated further.

5.4 Polarization of the jet synchrotron emis-
sion

Another interesting follow-up from the work done, is the possibility to calcu-
late the synchrotron polarization from radio emission. Pariev, Istomin and
Beresnyak (2003) recently published their calculations for the degree of po-
larization of synchrotron emission in force-free MHD jets. They assumed a
simplified model for the structure and the rotation profile of the fully colli-
mated magnetic flux surfaces (see Fig.5.5).

Their adopted rotation profile was

O = 0 (1 - (%)2> (5.6)

With €2 the dimensionless strength of the rotation, and R the boundary
of the jet. The Stokes parameters for their configurations were given by

C+7/3 /R /¢2 ( h
I = k dh )RR N —", 5.7
(+1 ) 0 b1 B, sin @ sin? ¢ ¢ (5.7)

Q:k(u)/ORdh-

2 -~ r“cos“ @ — (csm bt + {2prsin ¢ sin
/¢ 1B, | 32 [Q25r? cos’ ¢ in ) 4 Qprsin ¢si 9233hd¢
L + c2sin fsin’ ¢
(5.8)
U=V=0 (5.9)



Figure 5.5: Structure adopted by Pariev et al. (2003) for their calculations of

the polarization of synchrotron emission in collimated jets (taken from Pariev et
al. 2003).

They found that the strength of the rotation {2 has a strong influence on
the degree of polarization of the synchrotron emission (see Fig. 5.6). Their
adopted structure and rotation profile however do not satisfy the cross-field
force balance. What would be interesting is to redo these calculations using
the flux surface distributions calculated by the method presented in this the-
sis. Then from the rotation law of the disk, a more consistent calculation can
be done for the degree of polarization of the synchrotron emission. We cannot
directly compare our results to the work of Pariev, Istomin and Beresnyak
(2003) and predict the polarization as expected using our solution, because
in their paper they assume constant B, and a different rotation profile while
doing the derivation and their presented equations are not immediately ap-
plicable to our obtained solutions. When this is done the calculated emission
might be a useful tool to probe the collimation region of the jet.
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Figure 5.6: Dependence of linear polarization IT on the strength of the angular
rotational velocity of the magnetic flux surfaces and different angles of view. On
the left: For a homogeneous distribution of emitting particles. On the right: For
emitting particles concetrated close to the Alfvénic resonance surface (both taken
from Pariev et al. 2003)
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Chapter 6

Conclusion

In this thesis I studied the force-free force balance across the surfaces of con-
stant magnetic flux in collimating relativistic jets with the inclusion of the
differentially rotating term of the magnetic field structure in a background
of the Kerr metric of the central black hole. The focus was primarily on the
problems encountered when combining the separate studies done by F1997a
on the Kerr metric, and FM2001 who included the differential term in a
special relativistic treatment. The advantage of this combination is the pos-
sibility of consistently matching the calculated structure of the collimated jet
to physical properties of the disk and the central black hole. Also the influ-
ence of the metric on the electromagnetic fields is consistently incorporated
in this treatment. For this thesis the code that calculated the force-balance
in a Kerr metric using a finite element approach was extended to include the
differential rotation of the magnetic field lines. The calculations done by the
resulting code were compared to those done by F1997a and FM2001. These
tests out that the new code can successfully obtain the same results. The
solution shown in Fig.4.7 is therefore a full solution that includes the differ-
ential rotation of the flux surfaces and the general relativistic description of
the space-time.

In order to solve the GSE the free functions of the the differential rotation
profile Qp (V) and I (V) had to be specified. We did this according to a top-
down approach as adopted by FM2001, which uses the analytical studies
of asymptotically collimated jets done by Appl & Camenzind (1993) and
F1997b to obtain the free-functions Qp (V) and I (¥). These were then used
to calculate the global solution by solving the axisymmetric GSE.

By studying the asymptotic GSE, we found the possibility for a relativistic
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core structure in the asymptotic collimated jet. For some rotation profiles,
the light surface (the Alfvénic surface in the case of high magnetization)
can return into the asymptotic regime, thereby dividing the jet into an inner
sub-relativistic part, a relativistic core, and an outer sub-relativistic envelope.
As far as we know, this has not been mentioned yet in previous studies on
asymptotically collimated jets. It does resemble the super-Alfénic core Casse
& Keppens (2002) see in their time-dependent non-relativistic simulations.
Up till now, studies of relativistic jets have been concerned only with jets
having an inner sub-relativistic region and an outer relativistic envelope.
Due to the extra complexity of the relativistic core structure, we do not yet
treat these structures with returning light surface.

Although this approach did give a consistent solution to Eq. 2.29, it pre-
sented some problems when trying to match the structure to the disk/black
hole physics. For some disk models that imply some distributions Qp (),
I (x) and ¥ (z) to find the jet-structure that fits these distribution, the top-
down approach did not give a direct match, because it was not clear what
asymptotic distributions to take for the asymptotic rotation profile Qp ().
The rotation profile as used for the solution in Fig. 4.7 is too flat to match a
Keplerian rotation at the disk.

An alternative bottom-up approach was introduced to solve the axisym-
metric structure by starting from the disk distributions instead of the asymp-
totic distributions. Instead of determining the free functions Qp (¥) and
I (U) from the asymptotic regime, these were taken from the disk/black hole
physics itself. The rotation profile in combination with the flux distribution
gives the formal asymptotic light surface for any flux U*. Whether this flux
collimates at the light surface is a result of the 2-D solution. We showed that
the light surface could successfully be obtained when starting out inside of
the surface and then shift the boundary outwards bit-by-bit, which was pos-
sible due to the regularity condition at the light surface. Therefore it should
be possible to obtain the light surface. Instead of now solving the asymptotic
version of the GSE, we propose to solve a asymptotic version of the 2-D GSE
using the newly developed code. The only unknown is the outer boundary
position xje;. By varying the boundary zje;, (¥ = 1) there are indications that
the solution can be found by these means. Because there was too little time
to fully study this approach, more extensive work is needed. The asymp-
totic solution obtained in this way can then be used to calculate the global
solution as done by FM2001. The bottom-up approach would then give a
consistent match between the jet structure and the black hole/accretion disk
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boundary conditions. The bottom-up approach may also show out whether
the rotation profile at the disk will have a relativistic core structure or a rel-
ativistic envelope structure. Possible follow-up studies were discussed were
the solution obtained with the newly developed code could be used in order
to solve the force-balance along the field lines, allowing for estimations of
the final velocities of the plasma. Also the solutions give the possibility to
calculate the polarization of the jet emission. In future work the stability
of our solutions also has to be examined. Also a parameter study has to
be done for various parameters like the coupling constant g;, and the core
radius a of the current distribution.

We realize that the many assumptions (stationarity, axisymmetry, force-
freeness, full collimation of the asymptotic jet) may weaken our treatment of
the jet structure, although reasonable arguments have been given to justify
them, but we note that for the moment these kind of treatments are the
only possible way to treat the jet in a global sense. This is needed in order
to learn from the global jet structure the internal processes that are yet
(and will remain) unobservable. To fully understand how the jet is initiated,
collimates and propagates, a time-dependent study that includes the disk,
central object and the environment in a consistent way is inevitable, but for
objects as complex as relativistic jets this is still far away for now.
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Appendix A: Finite elements
solver

The GSE equation was solved by using the method of finite elements, which
is suited to solve second-order partial differential equations like the GSE.
The procedure was based on work on the special relativistic GSS originally
introduced by Camenzind (1987), that was further developed by Haehnelt
(1990), who included Kerr metrics. Fendt (1994, 1995, 1997) extended the
code to get solutions extending throughout the outer light cylinder. More
recently, Memola (2001) has worked on the special relativistic code including
differential rotation of the field lines. For the purpose of this master-thesis,
the code has been extended to include both the source term due to differential
rotation of the field lines as well the Kerr metric.

In general, for problems that cannot be solved by Variational methods,
a Galerkin ansatz of weighted Residues is used (see Schwarz 1984): The
integration area (G is discretized in a grid of finite elements with each element
containing m knots. The function ¥ (r,0) is approximated at each grid-
element (e) by an expansion into m linearly-independent functions,

U (r,0) =3 NS (r,0) (6.1)
=1

(e)

where the the knot-variables c;

. (e)
function value ;™.
The solution on the whole area can be represented by combining all the

initial expansions of the individual grid elements,

are chosen such that they represent the

U (r,0) = Z N (r, 0) (6.2)

k=1
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where the summation now is over all n knot-points of the grid, and the set
of global form-functions N, (€) (r,0) are taken from the element-form-functions
N (r,6), that have the value of one in knot-point .

With this Ansatz, the differential equation will only be fulfilled up to
a Residual R (r,0). The accuracy depends on the number of knots, or the
number of expansion coefficients. The Method of Galerkin demands for mini-
mizing the Residual, that the integral of the Residual, weighted with a specific
weight-function WW; over the integration area, dissapears,

/ R (r,0) W, (r,0) dA = 0 (6.3)

in case of the GSE the Residual is

R (r,0) = GV - {Z—?v (I; TN (r, 9))} _J (6.4)

where .J is the source-term of the GSE. If the m functions V; are taken as
the weight-function, a set of m linear independent equations remain for each
grid element, that can be solved in principle to the coefficients W;. Then the
solution W (r, ) is fully determined.

The integral can be done by using Green’s Identity so that one retains
the ’weak form’ of the GSE,

// WIN, - VUi = //JNdAJr?f@Ng—fds (6.5)

This gives a matrix,

aD drdf
Aij:// 5 (AN, N; + Ny N;) (6.6)

and a vector

2
p D
B; :// NI drde fTNiaan/d 6.7
- ~ rdf + 5 s(6.7)

For the set of ¥, the following equation holds,

A(D) ¥ = B (D) (6.8)
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Appendix B : Choosing the grid

A grid was used with 128x128 finite elements. Each of the isoparametric
curvilinear finite element (Schwarz 1984; Cesari 1994) is formed of 8 grid
points, or nodes, which gives a total of 49665 grid-points for the whole grid
at which the GSE is discretized. For the inner solution from 128 elements in
the z-direction, 27 grid points were used at the black hole ergosphere, and
24 grid points at the accretion disk.

The structure of the grid is shown in Fig. 6.1. For the inner grid shape
of the left and right boundaries were specified. The elements were divided
in steps of equal (dR,d7) in both directions. A straight line then connected
the left and the right elements in a straight line. For each line, the spacings
of (dR,dZ) were equal.

nxrl=257 nxrl=257

nyrl-nde2-nde3 = 206

nyrl=257

nyrl=257

nxrl=257

nde2=27
nde3=24

nxrl=257

Figure 6.1: setup of grids chosen for inner and outer region
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