Non linear tomographic shear spectra from cosmological simulations

Dark Energy Workshop, Ringberg Castle, 2012

Luciano Casarini Universidade Federal do Espirito Santo (Brasil)

in collaboration with:

S.Bonometto, S.Borgani, M.Mezzetti & G.Murante (University of Trieste)

G.La Vacca (University of Milano Bicocca)

K.Dolag (Max Planck Institute for Astronomy - Garching)

Dark Matter, Dark Energy and Weak Lensing

Dark Matter, Dark Energy and Weak Lensing

Dark Matter, Dark Energy and Weak Lensing

Practically

- Tomographic cosmic shear:

measure of the whole matter distribution at various redshifts and scales (P(k,z))

Huterer & Takada, 2005, Aph, 23, 369: accuracy ~1% obtainable

- Strategic aim:

from P(k,z) to w(z) [& "all" cosmological parameters]

large tomographic shear survey dedicated (e.g. Euclid, DES, JPAS ...)

- From data to model:

have to build fitting procedure exploiting NON-LINEAR power spectra, BUT: no CAMB, no CMBFAST for matter to relate soon parameters to spectra.

Halofit expression (Smith+ 2003, MNRAS, 341, 1311) provide a prediction for only Λ CDM with not enough precision, and **do not include other models and baryons effect!**

P(k): Halofit VS N-body

 $P(k) \longrightarrow WL(l)$

1 1 1 1 1 1 1 1 1

10-8

10-9 10-10 ບີ 10-11 h Mpc⁻¹ 3 10-12 10 h Mpc⁻¹ 10² h Mpc⁻¹ 10⁻¹³ 10³ h Mpc⁻¹ 10^{-14} 100 1000 104 105 10 $P_{ij}(\ell) = H_0^3 \int_0^\infty \frac{dz}{E(z)} W_i(z) W_j(z) P_{nl}\left(\frac{H_0\ell}{r(z)}, z\right)$

ACDM-WMAP7,N-body Gadget III (Springel+ 2005) L = 410 Mpc/h, Np = 1024³

L.Casarini et al. 2012, A&A, 542, 126 Confirm L.Casarini et al. 2009, Hilbert et al 2009.

Cloud in Cell resolution

Simulation: ACDM-WMAP7, Gadget III L = 410 Mpc/h, Np = 1024³

Power Spectrum: CIC: particles to density grid Ncells=Ngrid³ (Ngrid=1024xf f=1,2,4,8,16,32) after FFT 3d

L.Casarini et al 2012, A&A, 542, 126

Grid Noise

DM : N-body N-body IC particles distribution 1024³ (m~2.7e9 M_s/h)

GH : hydro non radiative hydro IC particles distribution 1024³ (m~2.3e9 M_s/h) + 1024³ (m~3.9e8 M_s/h)

L.Casarini et al 2012, A&A, 542, 126

Grid Noise

DM : purely gravitational N-body classic IC particles distribution 1024³ (m~2.7e9 M /h)

 CSF : hydro sim with cooling, star formation, SN feedback, UV background

1024³ (m~2.3e9 M_s/h) + 1024³ (m~3.9e8 M_s/h)

 Λ CDM-WMAP7, Gadget III L = 410 Mpc/h , Np = 2 x 1024³

L.Casarini et al 2012, A&A, 542, 126

GH hydro sim, no cooling no star formation

CSF hydro sim with cooling, star formation, SN feedback, UV background

ACDM-WMAP7, Gadget III

L = 410 Mpc/h Np = 2×1024^3

L.Casarini et al. 2012, A&A, 542, 126

3 DM : N-body 2 TOT N-body IC particles distribution CDM 1024³ (m~2.7e9 M /h) GAS 0 Р_{рио} GH : hydro non radiative hydro IC particles distribution ΔР 1024³ (m~2.3e9 M₂/h) + 1024³ (m~3.9e8 M /h) 0.1 0.01

CSF GH z = 0.000.1 10 100 $k/(h Mpc^{-1})$

L.Casarini et al. 2012, A&A 542,126

from simulations to weak lensing

from simulations to weak lensing

$$P_{ij}(\ell) = H_0^3 \int_0^\infty rac{dz}{E(z)} W_i(z) W_j(z) \; P_{nl}\left(rac{H_0\ell}{r(z)},z
ight)$$

Halofit for every cosmology:

Halofit for P(k,z,w=const.)

Theoretical prediction for every w(z) P(k,z,w(z))!!!!

Spectral equivalence P(k,z,w(z))=P(k,z,w'=const.) w' is different for each z

Halofit for every cosmology:

Halofit for P(k,z,w=const.)

Theoretical prediction for every w(z) P(k,z,w(z))!!!!

Spectral equivalence P(k,z,w(z))=P(k,z,w'=const.) w' is different for each z

Spectral Equivalence

GASOLINE gas cooling, star formation, UV background, SN feedback L = 256 Mpc/h, Np = 2 X 256³

L.Casarini, A.Maccio', S.Bonometto & G.Stinson 2011, MNRAS, 412, 911

Conclusions

we need a theoretical tool to predict the non linear matter power spectrum

- Halofit works only for k<3 at >3% for N-body and LCDM
- future lensing data provide spectrum also at I>>10^3

we have to take in account:

in nature there are baryons! Large influence at non linear scales
 LCDM is not the only answer, for example we are interested to Dynamical Dark Energy

simulations accuracy:

- grid noise
- mass segregation
- box size sample variance
- AGN feedback

Dark Energy:

- there is a spectral equivalence from w(z) to w=const(z) working with baryons!
- finding a prediction for w=const models is sufficient!