Dark Energy and the Cosmic Microwave Background

Ruth Durrer Université de Genève Départment de Physique Théorique et Center for Astroparticle Physics

Dark Energy and Simulations

Ringberg June 28, 2012

Ruth Durrer (Université de Genève, DPT & CAP)

Dark Energy and the CMB

Dark Energy, Rinberg, 2012 1 / 23

Dark Energy and the CMB at the last scattering surface

- Oark Energy and the CMB at low redshift
 - ISW
 - CMB lensing

The CMB data

WMAP 7 year CMB sky

The WMAP Team

• The CMB data is precise and well understood.

- Most of it can be calculated within linear perturbation theory to percent accuracy.
- The resulting anisotropy and polarization spectra depend on a few cosmological parameters and a few parameters describing the initial conditions of the fluctuations. Which can also be determined accurately.

Minimal ACDM parameters (WMAP 7yr + ACT from Dunkley et al. '11)

Parameter	
$\omega_b\equiv\Omega_b h^2$	0.02214 ± 0.00050
$\omega_c\equiv\Omega_ch^2$	0.1127 ± 0.0054
Ω_{Λ}	0.721 ± 0.030
ns	0.962 ± 0.013
	0.087 ± 0.014
$10^9\Delta_R^2$	2.47 ± 0.11

- The CMB data is precise and well understood.
- Most of it can be calculated within linear perturbation theory to percent accuracy.
- The resulting anisotropy and polarization spectra depend on a few cosmological parameters and a few parameters describing the initial conditions of the fluctuations. Which can also be determined accurately.

Minimal ACDM parameters (WMAP 7yr + ACT from Dunkley et al. '11)

Parameter	
$\omega_b\equiv\Omega_b h^2$	0.02214 ± 0.00050
$\omega_c\equiv\Omega_ch^2$	0.1127 ± 0.0054
Ω_{Λ}	0.721 ± 0.030
ns	0.962 ± 0.013
	0.087 ± 0.014
$10^9 \Delta_R^2$	2.47 ± 0.11

- The CMB data is precise and well understood.
- Most of it can be calculated within linear perturbation theory to percent accuracy.
- The resulting anisotropy and polarization spectra depend on a few cosmological parameters and a few parameters describing the initial conditions of the fluctuations. Which can also be determined accurately.

Minimal ACDM parameters (WMAP 7yr + ACT from Dunkley et al. '11)

Parameter	
$\omega_b\equiv\Omega_b h^2$	0.02214 ± 0.00050
$\omega_c\equiv\Omega_ch^2$	0.1127 ± 0.0054
Ω_{Λ}	0.721 ± 0.030
ns	0.962 ± 0.013
	0.087 ± 0.014
$10^9\Delta_R^2$	2.47 ± 0.11

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- The CMB data is precise and well understood.
- Most of it can be calculated within linear perturbation theory to percent accuracy.
- The resulting anisotropy and polarization spectra depend on a few cosmological parameters and a few parameters describing the initial conditions of the fluctuations. Which can also be determined accurately.

Minimal ACDM parameters (WMAP 7yr + ACT from Dunkley et al. '11)

Parameter	
$\omega_b \equiv \Omega_b h^2$	0.02214 ± 0.00050
$\omega_{c}\equiv\Omega_{c}h^{2}$	0.1127 ± 0.0054
Ω_{Λ}	0.721 ± 0.030
ns	0.962 ± 0.013
au	0.087 ± 0.014
$10^9 \Delta_R^2$	$\textbf{2.47} \pm \textbf{0.11}$

イロト イポト イヨト イヨト

Prominent feature in the CMB: peaks from coherent acoustic oscillations of the baryon photon plasma prior to recombination.

- Scale: sound horizon $r_s(z_*) = (1 + z_*)^{-1} \int_0^{t_*} (1 + z(t)) c_s(t) dt$, depends on $\omega_m, \omega_b, \omega_\gamma$. Angle: $\theta_S = r_s/D_A(z_*)$.
- Amplitude: $\Delta_{\mathcal{R}}^2$, n_s , ω_m .
- Relative amplitude of even and odd peaks: ω_b.
- Damping enveloppe: ω_b , n_s .
- Relative amplitude of 2nd and 3rd peak: ω_m .

Dark energy enters here only over $D_A(z_*)!$

$$D_A(z_*) = \frac{1}{1+z_*} \int_0^{z_*} \frac{dz}{H(z)}$$

= $\frac{h}{H_0(1+z_*)} \int_0^{z_*} \frac{dz}{\sqrt{\omega_r(1+z)^4 + \omega_m(1+z)^3 + \omega_k(1+z)^2 + \omega_{de}(z)}}$

 $(h/H_0 = 2998 \text{Mpc}).$

3

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Prominent feature in the CMB: peaks from coherent acoustic oscillations of the baryon photon plasma prior to recombination.

- Scale: sound horizon $r_s(z_*) = (1 + z_*)^{-1} \int_0^{t_*} (1 + z(t)) c_s(t) dt$, depends on $\omega_m, \omega_b, \omega_\gamma$. Angle: $\theta_S = r_s/D_A(z_*)$.
- Amplitude: $\Delta_{\mathcal{R}}^2$, n_s , ω_m .
- Relative amplitude of even and odd peaks: ω_b .
- Damping enveloppe: ω_b, n_s.
- Relative amplitude of 2nd and 3rd peak: ω_m .

Dark energy enters here only over $D_A(z_*)!$

$$D_A(z_*) = \frac{1}{1+z_*} \int_0^{z_*} \frac{dz}{H(z)}$$

= $\frac{h}{H_0(1+z_*)} \int_0^{z_*} \frac{dz}{\sqrt{\omega_r(1+z)^4 + \omega_m(1+z)^3 + \omega_k(1+z)^2 + \omega_{de}(z)}}$

 $(h/H_0 = 2998 \text{Mpc}).$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Prominent feature in the CMB: peaks from coherent acoustic oscillations of the baryon photon plasma prior to recombination.

- Scale: sound horizon $r_s(z_*) = (1 + z_*)^{-1} \int_0^{t_*} (1 + z(t)) c_s(t) dt$, depends on $\omega_m, \omega_b, \omega_\gamma$. Angle: $\theta_S = r_s/D_A(z_*)$.
- Amplitude: $\Delta_{\mathcal{R}}^2$, n_s , ω_m .
- Relative amplitude of even and odd peaks: ω_b.
- Damping enveloppe: ω_b, n_s.
- Relative amplitude of 2nd and 3rd peak: ω_m .

Dark energy enters here only over $D_A(z_*)$!

$$D_A(z_*) = \frac{1}{1+z_*} \int_0^{z_*} \frac{dz}{H(z)}$$

= $\frac{h}{H_0(1+z_*)} \int_0^{z_*} \frac{dz}{\sqrt{\omega_r(1+z)^4 + \omega_m(1+z)^3 + \omega_k(1+z)^2 + \omega_{de}(z)}}$

 $(h/H_0 = 2998 \text{Mpc}).$

Prominent feature in the CMB: peaks from coherent acoustic oscillations of the baryon photon plasma prior to recombination.

- Scale: sound horizon $r_s(z_*) = (1 + z_*)^{-1} \int_0^{t_*} (1 + z(t)) c_s(t) dt$, depends on $\omega_m, \omega_b, \omega_\gamma$. Angle: $\theta_S = r_s/D_A(z_*)$.
- Amplitude: $\Delta_{\mathcal{R}}^2$, n_s , ω_m .
- Relative amplitude of even and odd peaks: ω_b .
- Damping enveloppe: ω_b, n_s.

• Relative amplitude of 2nd and 3rd peak: ω_m .

Dark energy enters here only over $D_A(z_*)$!

$$D_A(z_*) = \frac{1}{1+z_*} \int_0^{z_*} \frac{dz}{H(z)}$$

= $\frac{h}{H_0(1+z_*)} \int_0^{z_*} \frac{dz}{\sqrt{\omega_r(1+z)^4 + \omega_m(1+z)^3 + \omega_k(1+z)^2 + \omega_{de}(z)}}$

 $(h/H_0 = 2998 \text{Mpc}).$

Prominent feature in the CMB: peaks from coherent acoustic oscillations of the baryon photon plasma prior to recombination.

- Scale: sound horizon $r_s(z_*) = (1 + z_*)^{-1} \int_0^{t_*} (1 + z(t)) c_s(t) dt$, depends on $\omega_m, \omega_b, \omega_\gamma$. Angle: $\theta_S = r_s/D_A(z_*)$.
- Amplitude: $\Delta_{\mathcal{R}}^2$, n_s , ω_m .
- Relative amplitude of even and odd peaks: ω_b .
- Damping enveloppe: ω_b , n_s .
- Relative amplitude of 2nd and 3rd peak: ω_m.

Dark energy enters here only over $D_A(z_*)$!

$$D_A(z_*) = \frac{1}{1+z_*} \int_0^{z_*} \frac{dz}{H(z)}$$

= $\frac{h}{H_0(1+z_*)} \int_0^{z_*} \frac{dz}{\sqrt{\omega_r(1+z)^4 + \omega_m(1+z)^3 + \omega_k(1+z)^2 + \omega_{de}(z)}}$

 $(h/H_0 = 2998 \text{Mpc}).$

Prominent feature in the CMB: peaks from coherent acoustic oscillations of the baryon photon plasma prior to recombination.

- Scale: sound horizon $r_s(z_*) = (1 + z_*)^{-1} \int_0^{t_*} (1 + z(t)) c_s(t) dt$, depends on $\omega_m, \omega_b, \omega_\gamma$. Angle: $\theta_S = r_s/D_A(z_*)$.
- Amplitude: $\Delta_{\mathcal{R}}^2$, n_s , ω_m .
- Relative amplitude of even and odd peaks: ω_b .
- Damping enveloppe: ω_b , n_s .
- Relative amplitude of 2nd and 3rd peak: ω_m.

Dark energy enters here only over $D_A(z_*)!$

$$D_A(z_*) = \frac{1}{1+z_*} \int_0^{z_*} \frac{dz}{H(z)}$$

= $\frac{h}{H_0(1+z_*)} \int_0^{z_*} \frac{dz}{\sqrt{\omega_r(1+z)^4 + \omega_m(1+z)^3 + \omega_k(1+z)^2 + \omega_{de}(z)}}$

 $(h/H_0 = 2998 \text{Mpc}).$

Prominent feature in the CMB: peaks from coherent acoustic oscillations of the baryon photon plasma prior to recombination.

- Scale: sound horizon $r_s(z_*) = (1 + z_*)^{-1} \int_0^{t_*} (1 + z(t)) c_s(t) dt$, depends on $\omega_m, \omega_b, \omega_\gamma$. Angle: $\theta_S = r_s/D_A(z_*)$.
- Amplitude: $\Delta_{\mathcal{R}}^2$, n_s , ω_m .
- Relative amplitude of even and odd peaks: ω_b .
- Damping enveloppe: ω_b , n_s .
- Relative amplitude of 2nd and 3rd peak: ω_m.

Dark energy enters here only over $D_A(z_*)!$

$$D_A(z_*) = \frac{1}{1+z_*} \int_0^{z_*} \frac{dz}{H(z)}$$

= $\frac{h}{H_0(1+z_*)} \int_0^{z_*} \frac{dz}{\sqrt{\omega_r(1+z)^4 + \omega_m(1+z)^3 + \omega_k(1+z)^2 + \omega_{de}(z)}}$

 $(h/H_0 = 2998 \text{Mpc}).$

(日)

Distance scaling of CMB spectra

In Vonlanthen, Räsänen & RD '10 we have studied how well we can fit the CMB with a cosmological model which is Einstein de Sitter up to last scattering and the distance to last scattering is arbitrary, $D_A = SD_{A,EdS}$.

Features on the lss are then simply seen under a different angle,

$$\mathcal{C}_\ell = \mathcal{S}^{-2} \mathcal{C}^{\textit{EdS}}_{\mathcal{S}^{-1}\ell}$$
 .

With this we can fit all present CMB data with $\ell \gtrsim 40$.

 \Rightarrow CMB data with $\ell > 40$ measures very precisely ω_b , ω_m , n_s and $D_A(z_*)$ or *S*, but it cannot determine the nature of dark energy.

Scaled spectra from curved cosmologies

(from Vonlanthen, Räsänen & RD '10)

(from Vonlanthen, Räsänen & RD '10)

Scaled spectra from curved cosmologies

(from Vonlanthen, Räsänen & RD '10)

Ruth Durrer (Université de Genève, DPT & CAP)

Dark Energy and the CMB

Dark Energy, Rinberg, 2012 10 / 23

Scaled spectra from Λ cosmologies

(from Vonlanthen, Räsänen & RD '10)

Reionization

(from Vonlanthen, Räsänen & RD '10)

Ruth Durrer (Université de Genève, DPT & CAP)

Dark Energy and the CMB

æ

ヘロト ヘヨト ヘヨト

Reionization

(from Vonlanthen, Räsänen & RD '10)

Ruth Durrer (Université de Genève, DPT & CAP)

Dark Energy and the CMB

크

Reionization

(from Vonlanthen, Räsänen & RD '10)

Ruth Durrer (Université de Genève, DPT & CAP)

Dark Energy and the CMB

Cosmological parameters

Ruth Durrer (Université de Genève, DPT & CAP)

Cosmological parameters

(from Vonlanthen, Räsänen & RD '10)

Dark Energy and the CMB

æ

The integrated Sachs Wolfe effect (ISW)

On there way into our telescope CMB photons loose/gain energy if they move through a time-dependent gravitational potential:

$$\left(rac{\Delta T}{T}
ight)_{ISW}(\mathbf{n}) = \int_{t_0}^{t_*} \partial_t (\Phi + \Psi)(t, \mathbf{x}(t)) dt$$

In a flat pure matter Universe $\partial_t \Psi = \partial_t \Phi = 0$. When Λ takes over, the gravitational potentials decay.

ISW from correlation with LSS

Correlation of the WISE (wide field infrared survey explorer) with WMAP 7year. A 3.1 σ detection.

Is the detected ISW too large?

(from Nadatur, Hotschkiss & Sarkar '11

CMB lensing

On their path into our antennas, CMB photons are deflected by the gravitational potential of the large scale matter distribution, the lensing potential:

CMB lensing

크

- The strongest signal of dark energy in the CMB is via its effect on the distance to the lss, $D_A(z_*)$.
- At present this is the only signal of dark energy safely (more than 5σ significance) detected in the CMB.
- One can fit the observed data perfectly well without dark energy by a simple rescaling of *D_A(z_{*})* for *l* > 20. We found 2∆ log *L* = 22 (2591 data points) for *l*_{min} = 2 and 2∆ log *L* ≲ 1 for *l*_{min} ≥ 20.
- The ISW expected for ΛCDM is detected at about (3–4)σ by several experiments but it seems rather high.
- CMB lensing is another effect which contains information about dark energy and, especially modified gravity which will be explored in future high precision CMB experiments.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The strongest signal of dark energy in the CMB is via its effect on the distance to the lss, D_A(z_{*}).
- At present this is the only signal of dark energy safely (more than 5σ significance) detected in the CMB.
- One can fit the observed data perfectly well without dark energy by a simple rescaling of *D_A(z_{*})* for *l* > 20. We found 2∆ log *L* = 22 (2591 data points) for *l*_{min} = 2 and 2∆ log *L* ≲ 1 for *l*_{min} ≥ 20.
- The ISW expected for ΛCDM is detected at about (3–4)σ by several experiments but it seems rather high.
- CMB lensing is another effect which contains information about dark energy and, especially modified gravity which will be explored in future high precision CMB experiments.

- The strongest signal of dark energy in the CMB is via its effect on the distance to the lss, D_A(z_{*}).
- At present this is the only signal of dark energy safely (more than 5σ significance) detected in the CMB.
- One can fit the observed data perfectly well without dark energy by a simple rescaling of $D_A(z_*)$ for $\ell > 20$. We found $2\Delta \log \mathcal{L} = 22$ (2591 data points) for $\ell_{min} = 2$ and $2\Delta \log \mathcal{L} \lesssim 1$ for $\ell_{min} \ge 20$.
- The ISW expected for ΛCDM is detected at about (3–4)σ by several experiments but it seems rather high.
- CMB lensing is another effect which contains information about dark energy and, especially modified gravity which will be explored in future high precision CMB experiments.

- The strongest signal of dark energy in the CMB is via its effect on the distance to the lss, D_A(z_{*}).
- At present this is the only signal of dark energy safely (more than 5σ significance) detected in the CMB.
- One can fit the observed data perfectly well without dark energy by a simple rescaling of $D_A(z_*)$ for $\ell > 20$. We found $2\Delta \log \mathcal{L} = 22$ (2591 data points) for $\ell_{min} = 2$ and $2\Delta \log \mathcal{L} \lesssim 1$ for $\ell_{min} \ge 20$.
- The ISW expected for ΛCDM is detected at about (3–4)σ by several experiments but it seems rather high.
- CMB lensing is another effect which contains information about dark energy and, especially modified gravity which will be explored in future high precision CMB experiments.

- The strongest signal of dark energy in the CMB is via its effect on the distance to the lss, D_A(z_{*}).
- At present this is the only signal of dark energy safely (more than 5σ significance) detected in the CMB.
- One can fit the observed data perfectly well without dark energy by a simple rescaling of $D_A(z_*)$ for $\ell > 20$. We found $2\Delta \log \mathcal{L} = 22$ (2591 data points) for $\ell_{\min} = 2$ and $2\Delta \log \mathcal{L} \lesssim 1$ for $\ell_{\min} \ge 20$.
- The ISW expected for ΛCDM is detected at about (3–4)σ by several experiments but it seems rather high.
- CMB lensing is another effect which contains information about dark energy and, especially modified gravity which will be explored in future high precision CMB experiments.