Baryons and Dark Matter distribution

Andrea V. Macciò

Max Planck Institute for Astronomy Heidelberg G. Stinson, C. Brook, R. Kannan, C. Penzo

Baryons, really?

Can't we simply ignore them?

Cosmological Model (DE & DM)

Nbody Simulation

Dark Halo properties

• (Large scales)

Small scales

...and Baryons?

Making Galaxies in a Cosmological Context The MaGiCC project

- Cosmological hydro simulations
- Gasoline SPH code
- SN feedback
- Chabrier IMF
- Massive stars rad. pressure
- Higher resolution
- Diffusion to suppress SPH artifacts (Stinson, Brook, Macciò+12, MNRAS)

...and the DM distribution?

Dark Matter density profile

12.5

 $log(M_{halo}[M_{\Theta}])$

13.0

Flattening of the Dark Matter profile

Strong and quick energy injection

NON adiabatic expansion Pontzen & Governato 2011

Movie from Stinson+12 MaGiCC project

Effects of different DE models can be washed out

Dark Matter halo shape

Velocity distribution Vel. anysotropy PSD proxy (ρ/σ^3) etc... Macciò+2012 in prep.

The halo is less triaxial and more spherical

Possibly not enough baryons/feedback in local faint dwarf galaxies to remove the CDM cusp

Conclusions

Baryons do matter

On small and intermediate scales they can alter the DM properties (see also Joop's talk)

Pure Nbody simulations in any cosmological model could be misleading

DM & DE should be 'coupled' with baryons (Camilla's PhD thesis)

DM less affected in faint dwarf galaxies

THANK YOU

DM GAS Nbody= gravity

Hydro + cooling + Star Formation + feedback

