SYSTEMATIC SEARCH FOR SYSTEMATIC BIAS IN SN IA DATA

Valerio Marra

IN COL LABORATION WITH L. AMENDOLA \&\& M. QUARTIN

ARXIV: 1207.XXXX

Basic idea

look for "robustness" among subsets in a systematic and blind way

$$
d 1 \cup d 2=d
$$

$d 1$ and $d 2$ do not overlap

Definition of (internal) robustness

$\hat{R}=\frac{\text { experiment is internally robust }}{\text { experiment is not internally robust }}$
$=\frac{E_{\mathrm{comb}}}{E_{\mathrm{ind}}}=\frac{E\left(d ; M_{C}\right)}{E\left(d_{1} ; M_{C}\right) E\left(d_{2} ; M_{S}\right)}$

Robustness is an estimator "orthogonal" to FoM
see for more details
March, Amendola, Huterer \& Trotta, MNRAS 2011

$$
R \equiv \log \hat{R}=R_{0}+\frac{1}{2} \log \left(\frac{S_{0,1} S_{0, S}}{S_{0}} \frac{\left|F_{1} F_{S}\right|}{|F|}\right)-\frac{1}{2}\left(\chi_{t}^{2}-\chi_{1}^{2}-\chi_{2}^{2}\right)
$$

Union2.1 SNIa dataset

Suzuki etal, ApJ 2012

Try and find the biased subset

Systematic parameters

> We use the cosmological parameters Ω_{m} and Ω_{Λ} to parametrize the (possibly cosmology unrelated) systematic parameters.

Consequently we consider a larger parameter space than the usual physical one

$$
\begin{aligned}
& -10<\Omega_{m}<10 \\
& -20<\Omega_{\Lambda}<10
\end{aligned}
$$

Scanning the subsets

The robustness is a statistical quantity, which has to be studied by building a PDF

> There are $\approx 10^{0.3 N}=10^{174}$ possible partitions: a complete scan is impossible

We need to define a strategy Ξ in selecting the subsets, the PDF will depend on it.

Here we choose a uniform distribution in the size of d 2

so that the likelihood of d 2 has support because of within the parameter space considered

Fisher or not to Fisher...

$$
\hat{R}=\frac{E\left(d ; M_{C}\right)}{E\left(d_{1} ; M_{C}\right) E\left(d_{2} ; M_{S}\right)}
$$

We switch to Fisher for size of $\mathrm{d} 2>90$

Necessity for mock unbiassed catalogues

$$
R=R_{0}+\frac{1}{2} \log \left(\frac{S_{0,1} S_{0, S}}{S_{0}} \frac{\left|F_{1} F_{S}\right|}{|F|}\right)-\frac{1}{2}\left(\chi_{t}^{2}-\chi_{1}^{2}-\chi_{2}^{2}\right)
$$

the full R-PDF is a highly nontrivial object: we need to compare with mock unbiased data, which we generate randomizing the magnitudes
only, with the best-fit model of Union2.1 as fiducial model

(very preliminary!) results: Union 2.1

- Union 2.1: 500k statistics.
- Mocks: 100 catalogues from which the (100) PDF are generated with 30 k statistics

For the comparison with mocks, the "cosmology" fluctuations are more important than the "sampling" fluctuations

Average CPU time per partition is $\sim 3 \mathrm{~s}$. Luckily it can be easily parallelized

Biased mock (1)

Mock catalogue with 100 SNe drawn from EdS as fiducial model (and not the best-fit model of Union 2.1)

However, $\bar{\chi}^{2}=1.40$: can we still see the signal if we impose $\bar{\chi}^{2}=1$?

Biased mock (2)

It looks as we can still detect the signal, which is now focused on the lowrobustness tail of the PDF. In order to assess the significance of the signal we have to properly treat the bin statistics of the mocks... coming soon!

Union2.1 including previously excluded SNe (1)

135 SNe did not pass the quality cuts and make it into the final Union2.1. Can we confirm that these SNe are dominated by systematics?

Again, $\bar{\chi}^{2}=1.73$: can we still see the signal if we impose $\bar{\chi}^{2}=1$?

Union2.1 including previously excluded SNe (2)

Next...

- as the signal is clearly in the low-robustness tail, try another scanning strategy so as to focus on the tail
- try to speed up the calculation of R
- try to find part of the systematics-driven SNe
- apply to other datasets
- use different sets of parameters for cosmology / systematics
- apply to (many) other observables

THANKS

