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I. INTRODUCTION

introduce the SN catalog; aim of the paper; previous
non-blind searches.........

The best evidence for an accelerated universe still
comes, after 15 years for the earliest results[2, 3], from
the supernovae Ia (SNIa). There are now several hun-
dreds SNIa useful for cosmological purposes, ranging in
distance up z ⇡ 1.7; every analysis performed on this
datasets confirms that the cosmological acceleration ex-
plains the data in a satisfactorily manner. The same
conclusions are now supported also by several other lines
of evidence ...

It is however necessary to continue investigating the
SNIa datasets in search of systematic effects and of addi-
tional cosmological information. On one side, in fact, we
know that many effects could come into play to alter the
SNIa apparent magnitude (contamination, dust, lensing
etc...). On the other, non standard cosmological models
might affect our parameter estimation: for instance, any
anisotropy in the expansion rate would show up as an
anisotropy in the SNIa cosmological parameters. There
have been of course many searches for such systematic
biases............ All of them, however, assume a specific
effect (eg lensing, anisotropy) and test whether this ef-
fect is enough to make some SNIa incompatible with the
others. In other words, one proceeds by testing a specific
prejudice.

In this paper we propose an alternative approach. We
wish to perform a systematic search of bias without hav-
ing any preferred selection criteria. In other words, we
try to answer the following question: is there any subset
of SNIa that is statistically incompatible with the others?
That is, is there a subset of SNIa that could be described
by parameters which are incompatible with those that
describe the other SNIa? In a sense, this is a direct gen-
eralization of the search for outliers. Instead of search-
ing for single outliers, i.e. SNIa that appear statistically
incompatible with the others (eg, some parameter that
describe their light curve is too far off all the others), we
search for subsets of, say, dozens of SNIa at once whose
parameters are incompatible with the others .

II. DEFINITION OF COMPATIBILITY

Let us first of all recall some statistical defintions in
the Bayesian context. The Bayesian evidence is defined
as
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i.e. the probability of having model M given the data.
We can finally use this probability to compare quanti-
tatively two models taking the ratio of probabilities (so
that p(x) cancels out):
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where we introduced the Bayes ratio
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we adopt this choice here. A Bayes ratio B
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Suppose now the likelihood is gaussian in the data with

covariance matrix ⌃ and zero mean, and the best fit gives
the �2 value
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corresponding to a likelihood maximum
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(where |..| denotes the determinant). If the likelihood
can be approximated by a Gaussian distributions also in

the parameters, we can evaluate the evidence analytically.
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Figure 5. ΛCDM model: 68.3%, 95.4%, and 99.7% confidence regions of the (Ωm, ΩΛ) plane from SNe Ia combined with the constraints from BAO and CMB.
The left panel shows the SN Ia confidence region only including statistical errors, while the right panel shows the SN Ia confidence region with both statistical and
systematic errors.

Figure 6. wCDM model: 68.3%, 95.4%, and 99.7% confidence regions in the (Ωm, w) plane from SNe Ia, BAO, and CMB are shown in both panels. The left
panel shows the SN Ia confidence region for statistical uncertainties only, while the right panel shows the confidence region including both statistical and systematic
uncertainties. We note that CMB and SN Ia constraints are orthogonal, making this combination of cosmological probes very powerful for investigating the nature of
dark energy.

corresponds to a look-back time of 6.62 ± 0.22 Gyr, about
the half of the age of the universe. Equality between the
energy density of dark energy and matter occurred later, at
z = 0.391 ± 0.033 or a look-back time of 4.21 ± 0.27 Gyr.

If we remove the flatness prior (labeled as oΛCDM in
Table 7), the best-fit Ωm and ΩΛ change by a fraction of their
errors with Ωk = 0.002+0.005

−0.005.

5.2. wCDM: Constant Equation-of-state Parameter

In wCDM models, w is constant but is allowed to be different
from −1. While few dark-energy theories give w "= −1 and
yet constant (Copeland et al. 2006), constraints on the constant
w model are still useful. The wCDM model contains fewer
parameters than the dynamical dark-energy models considered
in the following section, yet a value different from w = −1

18

The Astrophysical Journal, 746:85 (24pp), 2012 February 10 Suzuki et al.

Figure 3. Diagnostics plot for the individual data sets. From left to right: irreducible sample dispersion (filled circles) and variance-weighted rms about the best-fit
model (open circles); the average sample residual from the best-fit model (µmeasured − µmodel) excluding and including systematic errors; and the best-fit slope of the
Hubble residual (in magnitudes) vs. redshift—∂µresidual/∂z. Note that the errors on the sample dispersion include only statistical errors and do not include possible
systematic errors. The confidence intervals on the weighed rms are obtained with Monte Carlo simulations. The triangles in the sample residual plot show the effect
of including the filter shifts discussed in Section 4.4.1.

Figure 4. Hubble diagram for the Union2.1 compilation. The solid line represents the best-fit cosmology for a flat ΛCDM universe for supernovae alone. SN SCP06U4
falls outside the allowed x1 range and is excluded from the current analysis. When fit with a newer version of SALT2, this supernova passes the cut and would be
included, so we plot it on the Hubble diagram, but with a red triangle symbol.

from our survey, the rms is 0.19 ± 0.04, which is only slightly
larger than that measured for the first-year SN Ia sample from
SNLS, and equal to the median of all samples (shown as the
rightmost dashed line in Figure 3, left panel).

The two middle panels show the tension between data sets, the
first with statistical errors only and the second with statistical and
systematic errors (see Section 4.5). Most samples land within
1σ of the mean defined by all samples and about one-third lie

13
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Figure 2. Comparison between the exact compatibility CE

and its Fisher approximation CF for a random set of subsets.
Each subsets is represented by a point, which is color coded
according to the corresponding number of SNe. This analysis
clearly shows that the Fisher approximation holds for larger
subset sizes. See Section IV for more details.

partitions (the symbol is the Stirling number of second
kind). A complete scan of all subsets is therefore impos-
sible for N & 20. The issue then arises of which subset ⌅
among all possible partitions to form. We extract from
the entire Union 2.1 catalog a number T of subsets d

2

composed by a number s of SNe between s
min

and N/2
(half of the catalog size) chosen at random among all
the possible combinations. We adjust the selection so
as to obtain a distribution approximately uniform in s
(i.e. approximately equal number subsets for every value
of s)[explain why]. We call this particular set ⌅(T ),
and the following analysis depends on it. In particular T
gives the statistics of the analysis, while the definition of
⌅ determines the way the sets have been chosen. We will
consider different strategies in forthcoming work.

The upper limit of N/2 depends on the fact that, as we
are using the cosmological parametrization, the compat-
ibility is symmetric in the datasets d

1

, d
2

so that scan-
ning half of the catalog is enough. In order to discuss
s
min

it is important to stress that we consider a much
larger parameter space than the usual physical one, as
⌦

m

and ⌦

⇤

also parametrize the (possibly cosmology un-
related) systematic parameters. The range we adopt is
�10 < ⌦

m

< 10 and �20 < ⌦

⇤

< 10, and we exclude
the (⌦

m

,⌦
⇤

) region of the parameter space for which the
expansion rate H(z) is negative for z < 2, which well ac-
commodates the redshift range of the Union 2.1 dataset.
This is a relaxation of the usual no-big-bang excluded
region. See Fig. 1 for more details. The value of s

min

is therefore found by demanding that the likelihood of
the smaller subset d

2

has support within the parameter
space considered. We have found empirically that a value

of s
min

= 10 satisfies on average this requirement.
We will now explain how we actually computed the

compatibility. For subsets with s > s̄ we have found
that the likelihood can be adequately represented by a
Gaussian distribution in the parameter space, so as to
legitimate the Fisher approach. The advantage of using
the Fisher matrix is in the speed gain, as only the max-
imum of the likelihood and few derivatives have to be
found numerically. For smaller subsets s  s̄, however,
the likelihood deviates from a Gaussian distribution and
we are forced to integrate the likelihood numerically over
the full parameter space. In order to empirically find
s̄ we have computed both the exact compatibility C

E

(Eq. (17)) and its Fisher approximation C
F

(Eq. (29))
for a random set of subsets. In Fig. 2 we show how the
discrepancy decreases as the subset d

2

becomes larger.
We conclude that it is safe to use s̄ = 90.

It is worth stressing the point that the compatibility is
intrinsically a statistical quantity, as natural fluctuations
within the elements of a dataset will give subsets more or
less compatible with the complementary, and even a very
low-compatibility subset is not necessarily a sign of sys-
tematics effects. We have therefore to study the proba-
bility distribution function of the compatibility (CPDF),
which encapsulates all the information regarding the pos-
sible presence of systematic-driven SNe. However, as it
can be seen from Eq. (29), the CPDF is a highly non-
trivial object: a combination of �2 distributions – with
degrees of freedom between s

min

and N � s
min

– which
depends nonlinearly on the cosmological parameters. It
is, therefore, a perfect candidate for a Monte Carlo anal-
ysis, with which the behavior of the object at hand is
understood by means of a large controlled input. In the
next Section we will discuss the results of our analysis of
the CPDF as far as the Union 2.1 dataset is concerned.

V. RESULTS

In analyzing the Union 2.1 catalogue of 580 SNe we
will restrict to the case of the ⇤CDM model, i.e., we allow
for spatial curvature but not for a varying dark energy
(w = �1). The cosmological parameters are therefore
⌦

m

and ⌦

⇤

. We will consider other parameterizations in
forthcoming work.

A. Analysis of Union 2.1 SN dataset

We have computed the compatibility of the Union 2.1
catalogue for the set ⌅(T ), which has been built with
a statistics of T = 5 · 105 subsets. In order to assess
the importance of systematic effects within the catalogue,
we have generated 100 mock catalogues with the best-fit
model of Union 2.1 as the fiducial model, i.e., (⌦

m

,⌦
⇤

) =

(0.28, 0.73). More precisely we have kept fixed the red-
shifts and errors of the Union 2.1 catalogue, and changed
the distance modulus to m

mock

= m
fiducial

+ m
random
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Figure 2. Comparison between the exact compatibility CE

and its Fisher approximation CF for a random set of subsets.
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clearly shows that the Fisher approximation holds for larger
subset sizes. See Section IV for more details.
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composed by a number s of SNe between s
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(half of the catalog size) chosen at random among all
the possible combinations. We adjust the selection so
as to obtain a distribution approximately uniform in s
(i.e. approximately equal number subsets for every value
of s)[explain why]. We call this particular set ⌅(T ),
and the following analysis depends on it. In particular T
gives the statistics of the analysis, while the definition of
⌅ determines the way the sets have been chosen. We will
consider different strategies in forthcoming work.
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is therefore found by demanding that the likelihood of
the smaller subset d
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has support within the parameter
space considered. We have found empirically that a value
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= 10 satisfies on average this requirement.
We will now explain how we actually computed the

compatibility. For subsets with s > s̄ we have found
that the likelihood can be adequately represented by a
Gaussian distribution in the parameter space, so as to
legitimate the Fisher approach. The advantage of using
the Fisher matrix is in the speed gain, as only the max-
imum of the likelihood and few derivatives have to be
found numerically. For smaller subsets s  s̄, however,
the likelihood deviates from a Gaussian distribution and
we are forced to integrate the likelihood numerically over
the full parameter space. In order to empirically find
s̄ we have computed both the exact compatibility C

E

(Eq. (17)) and its Fisher approximation C
F

(Eq. (29))
for a random set of subsets. In Fig. 2 we show how the
discrepancy decreases as the subset d

2

becomes larger.
We conclude that it is safe to use s̄ = 90.

It is worth stressing the point that the compatibility is
intrinsically a statistical quantity, as natural fluctuations
within the elements of a dataset will give subsets more or
less compatible with the complementary, and even a very
low-compatibility subset is not necessarily a sign of sys-
tematics effects. We have therefore to study the proba-
bility distribution function of the compatibility (CPDF),
which encapsulates all the information regarding the pos-
sible presence of systematic-driven SNe. However, as it
can be seen from Eq. (29), the CPDF is a highly non-
trivial object: a combination of �2 distributions – with
degrees of freedom between s

min

and N � s
min

– which
depends nonlinearly on the cosmological parameters. It
is, therefore, a perfect candidate for a Monte Carlo anal-
ysis, with which the behavior of the object at hand is
understood by means of a large controlled input. In the
next Section we will discuss the results of our analysis of
the CPDF as far as the Union 2.1 dataset is concerned.

V. RESULTS

In analyzing the Union 2.1 catalogue of 580 SNe we
will restrict to the case of the ⇤CDM model, i.e., we allow
for spatial curvature but not for a varying dark energy
(w = �1). The cosmological parameters are therefore
⌦

m

and ⌦

⇤

. We will consider other parameterizations in
forthcoming work.

A. Analysis of Union 2.1 SN dataset

We have computed the compatibility of the Union 2.1
catalogue for the set ⌅(T ), which has been built with
a statistics of T = 5 · 105 subsets. In order to assess
the importance of systematic effects within the catalogue,
we have generated 100 mock catalogues with the best-fit
model of Union 2.1 as the fiducial model, i.e., (⌦

m

,⌦
⇤

) =

(0.28, 0.73). More precisely we have kept fixed the red-
shifts and errors of the Union 2.1 catalogue, and changed
the distance modulus to m

mock

= m
fiducial

+ m
random

We use the cosmological parameters         and        to 
parametrize the (possibly cosmology unrelated) 

systematic parameters.

Consequently we consider a larger parameter space 
than the usual physical one

⌦⇤⌦m



Scanning the subsets

The robustness is a statistical quantity, 
which has to be studied by building a PDF

There are                                 possible partitions: 
a complete scan is impossible
⇡ 100.3N = 10174

We need to define a strategy     in selecting 
the subsets, the PDF will depend on it.

⌅

50 100 150 200 250
0

10000

20000

30000

size of d2

Here we choose a uniform 
distribution in the size of d2

10
so that the likelihood of d2 has support 
within the parameter space considered

N/2=290
because of 
symmetry



Fisher or not to Fisher...
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We switch to Fisher for size of d2 > 90

R̂ =
E(d;MC)
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Necessity for mock unbiassed catalogues

the full R-PDF is a highly nontrivial object: we need to compare with 
mock unbiased data, which we generate randomizing the magnitudes 

only, with the best-fit model of Union2.1 as fiducial model

R = R0 +
1

2

log

✓
S0,1S0,S

S0

|F1FS |
|F |
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� 1
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(very preliminary!) results: Union2.1

Union2.1
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• Union2.1: 500k statistics.

• Mocks: 100 catalogues from which the (100) PDFs are generated with 30k statistics

Average CPU time per partition is ~3 s. Luckily it can be easily parallelized

For the comparison with mocks, the “cosmology” fluctuations are more important than the “sampling” fluctuations

provisional 
bands!



Biased mock (1)

Union2.1

Mock with 100 EdS SNe
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Mock catalogue with 100 
SNe drawn from EdS as 

fiducial model (and not the 
best-fit model of Union 2.1)

However,                    : can we still see the signal if we impose               ?�̄2 = 1.40 �̄2 = 1



Biased mock (2)

It looks as we can still detect the signal, which is now focused on the low-
robustness tail of the PDF. In order to assess the significance of the signal 
we have to properly treat the bin statistics of the mocks... coming soon!

Mock with 100 EdS SNe & c2=1
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Union2.1 including previously excluded SNe (1)

135 SNe did not pass the quality cuts and make 
it into the final Union2.1. Can we confirm that 

these SNe are dominated by systematics?
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Again,                    : can we still see the signal if we impose               ?�̄2 = 1�̄2 = 1.73



Union2.1 with excl. SNe & c2=1
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Union2.1 including previously excluded SNe (2)

Union2.1 with excl. SNe & c2=1
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• as the signal is clearly in the low-robustness tail, try another 
scanning strategy so as to focus on the tail

• try to speed up the calculation of R

• try to find part of the systematics-driven SNe

• apply to other datasets

• use different sets of parameters for cosmology/systematics

• apply to (many) other observables

• …

Next...



THANKS


