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Outline

● Phasespace of clusters: an extension of 
“E

G
” to non-linear scales

● Some remarks on the Vainshtein 
mechanism
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“Direct” Tests of Gravity

● Compare (non-rel.) dynamics with lensing:
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“Direct” Tests of Gravity

● Compare (non-rel.) dynamics with lensing:

– Linear regime: redshift distortions vs weak lensing
Zhang et al 08, Reyes et al 2010
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“Direct” Tests of Gravity

● Compare (non-rel.) dynamics with lensing:

– Linear regime: redshift distortions vs weak lensing

– Non-linear regime: dynamical mass vs lensing mass

Zhang et al 08, Reyes et al 2010

Schwab et al, Smith 09
FS, 2010

X-ray; SZ; galaxy dynamics in clusters;
dynamics within galaxies
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“Direct” Tests of Gravity

● Compare (non-rel.) dynamics with lensing:

– Linear regime: redshift distortions vs weak lensing

– Non-linear regime: dynamical mass vs lensing mass

Zhang et al 08, Reyes et al 2010

Schwab et al, Smith 09
FS, 2010
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2
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r > 50 Mpc/h

r < 5 Mpc/h
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ΛCDM simulations

Phase-Space around Clusters

Distribution of V
los

 as 

function of r
perp

Measured from 
spectroscopic galaxy 
sample

Density distribution 
measured from          
lensing

Lam et al, 2012
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Phase-Space around Clusters

● RMS dispersion of V
los

 as function of r
perp

f(R)

Stronger effect than 
virial scaling

Eventually approaching 
linear scaling

/
p
Ge®=G

/ Ge®=G

Lam et al, 2012
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Phase-Space around Clusters

● RMS dispersion of V
los

 as function of r
perp

DGP

Stronger effect than 
virial scaling

Eventually approaching 
linear scaling

/
p
Ge®=G

/ Ge®=G

Lam et al, 2012
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Challenge: Hubble flow

● Increasingly 
difficult towards 
larger r

p

● Complementary 
to redshift 
distortions

– Black: velocities 
only

– Red: including 
Hubble flow
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● DGP (+Galileons, massive gravity, ...) 
evades Solar System through non-linear 
interactions of the scalar d.o.f.:

Vainshtein mechanism

Quasi-static approximation: sub-horizon scales

r2'+
r2c
3¯ a2

[(r2')2 ¡ (rirj')(rirj')] =
8¼Ga2

3¯
±½



12

Non-linear interactions

● Hard: non-linear in derivatives of ϕ
– No superposition principle
– Fully non-linear (as opposed to quasi-linear)

r2'+
r2c
3¯ a2

[(r2')2 ¡ (rirj')(rirj')] =
8¼Ga2

3¯
±½
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Non-linear interactions

● Two analytically solvable cases:

– 1. Plane wave: 

– 2. Spherically symmetric mass

Non-linearity cancels !

r2'+
r2c
3¯ a2

[(r2')2 ¡ (rirj')(rirj')] =
8¼Ga2

3¯
±½

' » eik¢x ) ¡k2' = 8¼Ga2

3¯
±½
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Vainshtein mechanism

● Spherical mass:
– Field suppressed within characteristic scale, 

Vainshtein radius:

Deviation of g from 
Newtonian valueϕ field profile

GR restored 
for r << r

*

r¤ / (r2c rs)1=3
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Simulating Modified Gravity

Self-consistent solution of field & particles
● Particle-mesh code:

– “particles” stand for chunks of dark matter 
(in phase space)

– Density and potential are 
evaluated on cubic grid

– Typically, 

N3
g

Np = (256¡ 512)3

Ng = 512
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Main task: solve for potential

● Newtonian potential      :
– Obtained via Fourier transform of density

● Brane-bending mode    :
– Quasistatic approx.: no time derivatives
– Non-linear relaxation scheme

● Parallelized with multi-grid acceleration

● Finally:

● Currently no working AMR implementation

ªN

'

ª = ªN +
1

2
'
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Solving for brane-bending mode

● Write ϕ  equation as:
– All quantities discretized on grid:

L(') = f

'(x; y; z)! 'i;j;k
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Solving for brane-bending mode

● Write ϕ  equation as:
– All quantities discretized on grid:

● Non-linear relaxation:
– Run over cells 
– Replace           with solution of:

L(') = f

'(x; y; z)! 'i;j;k

i; j; k

'i;j;k L(:::; 'i;j;k; :::) = fi;j;k
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Solving for brane-bending mode

● Write ϕ  equation as:
– All quantities discretized on grid:

● Non-linear relaxation:
– Run over cells 
– Replace           with solution of:

– In our case,     is non-linear, hence use Newton's 
method to guess solution:

Newton-Gauss-Seidel

L(') = f

'(x; y; z)! 'i;j;k

i; j; k

'i;j;k L(:::; 'i;j;k; :::) = fi;j;k

'i;j;k Ã L(:::; 'i;j;k; :::)¡ fi;j;k
@L=@'i;j;k
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Code Tests

● Spherical mass (top-hat profile):
– Compare with analytical solution

Deviation of g from 
Newtonian valueϕ field profile
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Convergence issues in 
cosmological simulations

● Non-linearities + particle noise increase 
residuals

– r
*
 for particle ~ cell size

● Two tricks:
– Increase number of   

particles

– Smooth RHS of ϕ eqn
Gaussian filter radius 1 grid cell
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Vainshtein in action

Slices through cosmological simulation (64 Mpc/h, z=0)
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Non-linear suppression of 
brane-bending mode

Average halo profiles:
– brane-bending mode
– acceleration in DGP and 

GR

GR is restored inside 
halos
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Dynamical vs Lensing Mass

● Mass-weighted average 
of force modification, 
vs halo mass
– Vainshtein mechanism 

mass-independent
– Small effects due to 

profile evolution
– Orthogonal to chameleon 

effect
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Conclusions

● Phasespace around massive halos: a 
possible avenue to measuring velocities on 
intermediate scales (few – 30 Mpc) – 
complementary to RSD

● Vainshtein mechanism: a challenge to 
simulators...
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