Testing Gravity with Large-Scale Structure (i.e., the leftovers)

Fabian Schmidt Caltech

Ringberg, 6/29/12

Outline

- Phasespace of clusters: an extension of "E_G" to non-linear scales
- Some remarks on the Vainshtein mechanism

• Compare (non-rel.) dynamics with lensing: $\Psi = \Psi_N + rac{1}{2}\phi \qquad \Psi - \Phi = \Psi_N - \Phi_N$

• Compare (non-rel.) dynamics with lensing: $\Psi = \Psi_N + rac{1}{2}\phi \qquad \Psi - \Phi = \Psi_N - \Phi_N$

- *Linear regime:* redshift distortions vs weak lensing Zhang et al 08, Reyes et al 2010

- Compare (non-rel.) dynamics with lensing: $\Psi = \Psi_N + rac{1}{2}\phi \qquad \Psi \Phi = \Psi_N \Phi_N$
 - *Linear regime:* redshift distortions vs weak lensing Zhang et al 08, Reyes et al 2010

- Non-linear regime: dynamical mass vs lensing mass Schwab et al, Smith 09

> X-ray; SZ; galaxy dynamics in clusters; dynamics within galaxies

FS, 2010

- Compare (non-rel.) dynamics with lensing: $\Psi = \Psi_N + rac{1}{2}\phi \qquad \Psi \Phi = \Psi_N \Phi_N$
 - *Linear regime:* redshift distortions vs weak lensing
 r > 50 Mpc/h Zhang et al 08, Reyes et al 2010
 - Non-linear regime: dynamical mass vs lensing mass
 r < 5 Mpc/h Schwab et al, Smith 09 FS, 2010

Phase-Space around Clusters

Distribution of V_{los} as

function of r_{perp} Measured from spectroscopic galaxy sample

Density distribution measured from lensing

Lam et al, 2012

Phase-Space around Clusters

• RMS dispersion of V_{los} as function of r_{perp}

Stronger effect than virial scaling

$$\propto \sqrt{G_{
m eff}/G}$$

Eventually approaching linear scaling

 $\propto G_{
m eff}/G$

Lam et al, 2012

Phase-Space around Clusters

• RMS dispersion of V_{los} as function of r_{perp}

Lam et al, 2012

Challenge: Hubble flow

- Increasingly difficult towards larger r_p
- Complementary to redshift distortions
 - Black: velocities only
 - Red: including Hubble flow

Vainshtein mechanism

 DGP (+Galileons, massive gravity, ...) evades Solar System through non-linear interactions of the scalar d.o.f.:

$$\nabla^2 \varphi + \frac{r_c^2}{3\beta a^2} [(\nabla^2 \varphi)^2 - (\nabla_i \nabla_j \varphi) (\nabla^i \nabla^j \varphi)] = \frac{8\pi G a^2}{3\beta} \delta \rho$$

Quasi-static approximation: sub-horizon scales

Non-linear interactions

$$\nabla^2 \varphi + \frac{r_c^2}{3\beta a^2} [(\nabla^2 \varphi)^2 - (\nabla_i \nabla_j \varphi) (\nabla^i \nabla^j \varphi)] = \frac{8\pi G a^2}{3\beta} \delta \rho$$

- Hard: non-linear in derivatives of $\boldsymbol{\phi}$
 - No superposition principle
 - Fully non-linear (as opposed to quasi-linear)

Non-linear interactions

$$\nabla^2 \varphi + \frac{r_c^2}{3\beta a^2} [(\nabla^2 \varphi)^2 - (\nabla_i \nabla_j \varphi) (\nabla^i \nabla^j \varphi)] = \frac{8\pi G a^2}{3\beta} \delta \rho$$

• Two analytically solvable cases:

- 1. Plane wave:
$$\varphi \sim e^{i\mathbf{k}\cdot\mathbf{x}} \Rightarrow -k^2\varphi = \frac{8\pi Ga^2}{3\beta}\delta\rho$$

Non-linearity cancels !

- 2. Spherically symmetric mass

Vainshtein mechanism

- Spherical mass:
 - Field suppressed within characteristic scale, Vainshtein radius: $r_* \propto (r_c^2 r_s)^{1/3}$

Simulating Modified Gravity

Self-consistent solution of field & particles

- Particle-mesh code:
 - "particles" stand for chunks of dark matter (in phase space)
 - Density and potential are evaluated on cubic grid N_q^3
 - Typically,

$$N_p = (256 - 512)^3$$

$$N_g = 512$$

Main task: solve for potential

- Newtonian potential Ψ_N :
 - Obtained via Fourier transform of density
- Brane-bending mode φ :
 - Quasistatic approx.: no time derivatives
 - Non-linear relaxation scheme
 - Parallelized with multi-grid acceleration

• Finally:
$$\Psi = \Psi_N + rac{1}{2} arphi$$

Currently no working AMR implementation

Solving for brane-bending mode

- Write φ equation as: $L(\varphi) = f$
 - All quantities discretized on grid: $\varphi(x,y,z)
 ightarrow \varphi_{i,j,k}$

Solving for brane-bending mode

- Write φ equation as: $L(\varphi) = f$
 - All quantities discretized on grid: $\varphi(x,y,z)
 ightarrow \varphi_{i,j,k}$
- Non-linear relaxation:
 - Run over cells i, j, k
 - Replace $\varphi_{i,j,k}$ with solution of: $L(...,\varphi_{i,j,k},...) = f_{i,j,k}$

Solving for brane-bending mode

- Write φ equation as: $L(\varphi) = f$
 - All quantities discretized on grid: $\varphi(x,y,z)
 ightarrow \varphi_{i,j,k}$
- Non-linear relaxation:
 - Run over cells i, j, k
 - Replace $\varphi_{i,j,k}$ with solution of: $L(...,\varphi_{i,j,k},...) = f_{i,j,k}$
 - In our case, L is non-linear, hence use Newton's method to guess solution:

$$\varphi_{i,j,k} \leftarrow \frac{L(\dots,\varphi_{i,j,k},\dots) - f_{i,j,k}}{\partial L/\partial \varphi_{i,j,k}}$$

Newton-Gauss-Seidel

Code Tests

- Spherical mass (top-hat profile):
 - Compare with analytical solution

Convergence issues in cosmological simulations

- Non-linearities + particle noise increase residuals
 - r_{*} for particle ~ cell size
- Two tricks:
 - Increase number of particles
 - Smooth RHS of ϕ eqn

Gaussian filter radius 1 grid cell

Vainshtein in action

 Ψ φ

22 Slices through cosmological simulation (64 Mpc/h, z=0)

Non-linear suppression of brane-bending mode

Dynamical vs Lensing Mass

- Mass-weighted average of force modification, vs halo mass
 - Vainshtein mechanism *mass-independent*
 - Small effects due to profile evolution
 - Orthogonal to chameleon effect

Conclusions

- Phasespace around massive halos: a possible avenue to measuring velocities on intermediate scales (few – 30 Mpc) – complementary to RSD
- Vainshtein mechanism: a challenge to simulators...