Setting the Stage for Planet Formation

Measurements and Implications of the Fundamental Disk Properties

Drishika Nadella MVSem 2023: Protostars and Planets

Contents

- 1. Introduction
- 2. Disk Mass
 - a. Case study: TW Hya
- 3. Disk Surface Density
- 4. Disk Outer Radius
- 5. Disk Temperature
- 6. Disk Vertical Structure
- 7. Conclusion
- 8. Sources

Young Stellar Objects

Persson, Magnus Vilhelm (2014). Current view of protostellar evolution

Disk Substructures

DSHARP (2018)

Disk Structure

DISK MASS

Disk Mass: Dust Mass

- Key to terrestrial planet formation
- Continuum flux emission

$$F_{\nu} = \frac{B_{\nu}(\overline{T}_d)\overline{\kappa}}{d^2}M_{dust}$$

Disk Mass: Dust Mass

- Dust mass dependent on stellar age
- Caveats:
 - High opacity
 - Grain shape/size

Dust Mass: Opacity and Grain Effects

Self-made using optool (Dominik et al. 2021)

Self-made using optool (Dominik et al. 2021)

Disk Mass: Gas Mass (H₂ / HD emission)

- Forms bulk of disk mass
- Determines disk physics and evolution
- H_2 most abundant species faint emission
- Proxy: HD emission
- Lack of observations for HD

Gas Mass: CO emission

- CO 2nd most abundant species
- Chemically stable
- Several isotopologue tracers
- Probe varying optical depths

Disk Mass: Gas Mass (CO emission)

Disk Mass: Case Study with TW Hya

- Pre-main sequence star
- 59 +/- 1 pc (Gaia Collab et al. 2018)
- Highly studied disk

Disk Mass: Case Study with TW Hya

- Disk masses vary widely based on method and tracer
- Not enough mass to form planets
- Planet formation may begin at Class 0/I stage

Disk Mass

Dust Mass: Continuum emission Gas Mass: CO emission Highly entangled with a_{grain} , τ and T Large uncertainties

DISK SURFACE DENSITY

Disk Radial Structure: Dust Surface Density $\Sigma_d(r)$

- Determines planet architecture
- Inferred from SEDs
- Minimum mass solar nebula: (Weidenschilling 1977, Hayashi 1981)

$$\Sigma(r) = 1700 \left(\frac{r}{1AU}\right)^{-\gamma} g/cm^2$$

- a_{grain} and τ uncertainties

Disk Radial Structure: $\Sigma_d(r)$ with Substructures

Disk Radial Structure: Gas Surface Density $\Sigma_g(r)$

Disk Radial Structure: Role of Substructures in Σ(r)

MAPS Survey, Law et al. (2021)

Gas shows less substructure compared to dust

Disk Surface Density

Dust Σ : Power law profile Gas Σ : CO emission Gas substructure < Dust substructure

DISK OUTER RADIUS

Disk Radial Structure: Dust Outer Radius R_{dust}

 R_N: Radius that encircles N% of luminosity

- Typically, N=68 (Tripathi et al. 2017)
- Continuum vs scattered light disk radius

Disk Radial Structure: Gas Outer Radius R_{co}

R_{CO}: 90% of measured ¹²CO flux

- R_{CO} greater than R_{dust}
- Faint CO emission:
 Compact disks

DISK TEMPERATURE

Disk Radial Structure: Dust Temperature T_d(r)

- Controls disk chemical composition

 Stellar radiation intercepted by grains

- Decreases radially outward

 $T \alpha R^q$

Disk Radial Structure: Gas Temperature T_g(r)

Inner disk (1-3 AU):

- Terrestrial planets
- CO, OH, H_2O emission lines
 - 500 1700K

Outer disk (10-few 100 AU):

- Outer planets
- Abundant molecular lines (HCN vs CN)
 - CO Snowlines
 - ~20K

DISK VERTICAL STRUCTURE

Disk Vertical Structure

29

Disk Vertical Structure: Temperature T(z)

- Surface layers warmer
- Optically thick CO emission
 - Snowlines to infer T
- Substructures can affect profile

Conclusions

- 1. Disk properties determine planet architecture and composition
- 2. M_{disk} not well-constrained, underestimated
- 3. Gas has greater spatial extent, lesser substructures
 - 4. Disk vertical structure important
 - 5. Better measurement techniques and more observations required

Sources

- Miotello et al. (2022)
- Chiang E. I. and Goldreich P., 1997 ApJ, 490, 1, 368
- Bergin E. A. et al., 2013 Nature, 493, 7434, 644
- Calvet N. et al., 1991 ApJ, 380, 617
- D'Alessio P. et al., 1998 ApJ, 500, 1, 411
- Birnstiel T. et al., 2010 A&A, 516, L14
- Dullemond C. P. et al., 2007 A&A, 473, 2, 457
- Gaia Collaboration et al., 2018 A&A, 616, A1
- Hogerheijde M. R. et al., 2011 Science, 334, 6054, 338
- Kamp I. and Dullemond C. P., 2004 ApJ, 615, 2, 991
- Kenyon S. J. and Hartmann L., 1987 ApJ, 323, 714
- Natta A. et al., 2004 A&A, 416, 179
- Pascucci I. et al., 2016 ApJ, 831, 2, 125
- Tazzari M. et al., 2016 A&A, 588, A53
- Weidenschilling S. J., 1977 Ap&SS, 51, 1, 153
- Tsukagoshi T. et al., 2016 ApJL, 829, 2, L35
- Ansdell M. et al., 2018 ApJ, 859, 1, 21
- Tripathi A. et al., 2017 ApJ, 845, 1, 44
- Tychoniec Ł. et al., 2018 ApJS, 238, 2, 19

