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Ohservations of disks around massive stars
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Ohservations of disks around massive stars
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Ubservations: Disks (sub-)structure

High-resolution observations are now possible!
ALMA 20-50 mas (or 40 au at 2 kpc / or 100 au at 5 kpc)

VLT-I (or ELT) : about mas (or a few au)

Possible difficulties in the infrared (?):
- Disks can be highly embedded (i.e., obscured by dust)
- We can take advantage of geometrical configurations (e.g., disks seen “almost” face-on)
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Ubservations: Disks (sub-)structure

High-resolution observations are now possible!
ALMA 20-50 mas (or 40 au at 2 kpc / or 100 au at 5 kpc)

Orion KL

What are the best tracers ?

‘normal” COMs may trace mainly
envelope around the disk ?
vibrational excited states ?

salts (NaCl, KCl, ...)? , water ?

Disk seen in NaCl

Which sub-structures ?

spiral arms ?

rings ? ( are similar to low-mass ? )
large cavities due to binary disk
truncation ?

Ginsburg et al 2019, ApJ, 872, 54



(gas) hydrodynamics ngh_ I'esS OIUtlon
numerical simulations

self-gravity
Oliva & Kuiper 2020 A&A 644 A41

stellar irradiation thermal re-emission
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From fragments to companions
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From fragments to companions

vertical cut | fragment 12 | run x16 | time: 5.7 Kyr
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But... could we ohbserve this?

ALMA: 20-50 mas (or 40 au at 2 kpc / or 100 au at 5 kpc)

R.A. Offset (1000 au)

R.A. Offset (1000 au)

Oliva & Kuiper 2020, A&A,644, A4l
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Ubservations: Disks (sub-)structure
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- disk velocity structure if fragments or binary systems ?
- smaller disks around fragments ?




Observations: Statistics are necessary

Large surveys will be possible!

Properties of disks as a function of
stellar mass, luminosity, evolutionary stage, ...
and even more general environmental properties (see later)

ALMAGAL.: 1000+ high-mass star forming sources across the Galaxy
spatial resolution about 1000 au (disk candidates)

ALMA (ACA—7M), mJy/beam ALMA (@ 0.€ arcsec), mJy/beam First results (work in progress)
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Open questions

How massive will the
formed by disk fragm

Post-processing chemistry
and dust evolution




Ubservations: Connecting to larger scales

CO gas filaments SOl Accretion streamers in low-mass disks
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BHB2007 low-mass star : Alves et al 2020, ApJ, 904, L6



Ubservations: Connecting to larger scales
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Observations: "Time-domain™ astronomy

Caratti o Garatti et al 2017, Nature Physics, 13, 276 Hunter et al 2017, ApJ, 837, L29
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Episodic accretion in high-mass stars

Seen as outburst in IR, mm, masers and multiple eject in outflows

It could explain the excess of radio emission observed in about 30% of HIl regions ?
Can we identify objects that will undergo an outburst event ?

Large surveys (e.g., ALMAGAL-like) can provide useful pre-burst data for the future
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Observations: "Time-domain™ astronomy

Chemistry of episodic accretion

MHD + chemical simulations predict
observable chemical changes in outbursts
Can we observe them ?
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Observations: "Time-domain™ astronomy

Chemistry of episodic accretion

MHD + chemical simulations predict
observable chemical changes in outbursts
Can we observe them ?
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Open questions

What is the light curve of an accretion b

How often do

What are the effects of the environment ¢

Gravitational i



Ubservations: Missing pieces of the puzzle

What are the best tracers ? Which sub-structures ?

‘normal” COMs may trace mainly - spiralarms ?

envelope around the disk ? - rings ? ( are similar to low-mass ? )

vibrational ?, salts ? , water ? - large cavities due to binary disk truncation ?
Binarity / disk fragmentation Accretion ... observationally ?

disk velocity structure if binary / fragments ? - Envelope to disk to star

smaller disks around fragments ? - Do stellar accretion rates scale

with large-scale infall rates ?

Episodic accretion in high-mass stars

Outburst in IR, mm, masers and outflows Chemistry of accretion

Excess of radio emission in Hll regions ? MHD + chemical simulations predict
Objects that will undergo an outburst event ? observable chemical changes

Large surveys will be possible!

Properties of disks as a function of stellar mass, luminosity, evolutionary stage, ...
Large surveys (e.g., ALMAGAL-like) can provide useful pre-burst data for time variability



Embracing Diversity

= People tend to look for THE solution for
astrophysical problems

(in)famous example:

monolithic collapse vs. competitive
accretion

= Most people accept now that none of these
captures reality entirely, but have we gone
consistently from aiming to find THE solution to
looking for the parameter space of solutions?



Why not?

Theory
- Very expensive to do models
- Prohibitively expensive to explore large parameter space

- Easier to pretend one silver bullet solution can be found

Observations
- Low statistics of observations (this is slowly changing)

- Looking for commonalities rather than differences



Caveats

Confirmation bias

- Tendency to look for confirmation of anticipated properties

- Both in planning observations and in interpreting results

- If you fit a Keplerian rotation curve to a disk, you will get some kind of result,
but you will never probe if the disk is not Keplerian

- Effect gets amplified if using Maching Learning: ML can only find what it has
been taught to find: challenge of designing and creating realistic and complete

training sets
1-event statistics
- From a recent paper on high-mass disks reporting the detection of one disk:

- These results suggest that accretion disks around massive stars are more massive
and hotter than their low-mass siblings, but they still are quite stable.



Questions/Path forward

Pushing the borders, both in observations and theory

What is the range of parameters that can realize e.g. high-mass disks in
Nature?

(angular momentum, turbulence, magnetic field strength, magnetic field
orientation, initial mass, connection to a larger mass reservoir,
metallicities...)

...and what do the results look like?

(size, fragmentation, spiral arms, properties of resulting binary or multiple
systems)
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Further evolution of disk fragments into companions

time =—p

first Larson core expected evolution =— companion

Hydrogen dissociation

0K
6 kyr 7 kyr 8 kyr second collapse

second Larson
~ few R®




2.9l Rad.-n.i0.-MHD simulations 74

Oliva & Kuiper i prep.
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