Revealing the physics of high-mass disks in observations and simulations

Peter Schilke Alvaro Sanchez-Monge

I. Physikalisches Institut Universität zu Köln

André Oliva I Institut für Astronomie und Astrophysik Eberhard Karls Universität Tübingen

Ringberg Meeting: Puzzles of Star Formation | MPIA | July 2021

Background illustration: André Oliva

Observations of disks around massive stars

ALMA et al (2015)

Cesaroni et al (2014)

40 M

Sánchez-Monge et al (2013)

Johnston et al (2015)

Observations of disks around massive stars

High-resolution observations are now possible! ALMA : VLT-I (or ELT) : about mas (or a few au)

Possible difficulties in the infrared (?):

- Disks can be highly embedded (i.e., obscured by dust) -
- -

Infrared emission obscured by dust

20-50 mas (or 40 au at 2 kpc / or 100 au at 5 kpc)

We can take advantage of geometrical configurations (e.g., disks seen "almost" face-on)

Infrared emission observable through the outflow cavity

High-resolution observations are now possible! ALMA :

l 2019, ApJ, 872, 54 σ et Ginsburg 20-50 mas (or 40 au at 2 kpc / or 100 au at 5 kpc)

High-resolution observations are now possible! ALMA : 20-50 mas (or 40 au at 2 kpc / or 100 au at 5 kpc)

Ginsburg et al 2019, ApJ, 872, 54

What are the best tracers ?

- 'normal' COMs may trace mainly envelope around the disk ?
- vibrational excited states ?
- salts (NaCl, KCl, ...)?, water?

Which sub-structures ?

- spiral arms ?
- rings ? (are similar to low-mass ?)
- large cavities due to binary disk truncation ?

stellar irradiation	thermal re-emission	
stellar evolution	dust sublimation and e	evaporation

sub-au max. resolution

initial conditions

High-resolution numerical simulations

Oliva & Kuiper 2020 A&A 644 A41

time

 time

 i

 time

 i

 time

 i

 time

 tim

 tim

From fragments to companions

midplane cut | run x16 | time: 4.3 kyr

500 au

 $ho \, ({
m g/cm^3})$ 10⁻¹⁵ 10⁻¹³ 10⁻¹¹ 10⁻⁹

From fragments to companions

BUILT

From fragments to companions

vertical cut | fragment 12 | run x16 | time: 5.7 kyr

50 au

10

But... could we observe this?

Oliva & Kuiper 2020, A&A,644, A41

ALMA: 20-50 mas (or 40 au at 2 kpc / or 100 au at 5 kpc)

Ahmadi et al 2019, A&A, 632, A50

Observations: Statistics are necessary

Large surveys will be possible!

ALMAGAL: 1000+ high-mass star forming sources across the Galaxy spatial resolution about 1000 au (disk candidates)

Properties of disks as a function of stellar mass, luminosity, evolutionary stage, ... and even more general environmental properties (see later)

Open questions

How massive will the companions formed by disk fragmentation be?

Post-processing chemistry and dust evolution

What is the role of magnetic fields on fragmentation?

How does the picture change in the case of a binary in the center?

Observations: Connecting to larger scales

BHB2007 low-mass star: Alves et al 2020, ApJ, 904, L6

Accretion streamers in low-mass disks (see Pineda/Segura-Cox discussion)

Observations: Connecting to larger scales

BHB2007 low-mass star: Alves et al 2020, ApJ, 904, L6

Accretion process... observationally ?

- How does accretion proceed ? (envelope to disk to star)
- Can we measure e.g. spectrum of accretion luminosity at different regions ?
- Do stellar accretion rates scale with large-scale infall rates ?

ALMA observations

dust thermal emission

Accretion streamers in low-mass disks (see Pineda/Segura-Cox discussion)

Observations: "Time-domain" astronomy

Caratti o Garatti et al 2017, Nature Physics, 13, 276

Episodic accretion in high-mass stars

- Seen as outburst in IR, mm, masers and multiple eject in outflows
- It could explain the excess of radio emission observed in about 30% of HII regions ?
- Can we identify objects that will undergo an outburst event?
- Large surveys (e.g., ALMAGAL-like) can provide useful pre-burst data for the future

Hunter et al 2017, ApJ, 837, L29

ZUU au

midplane cut | run x16 | time: 4.7 kyr

500 au

x [au]

2000 18

Observations: "Time-domain" astronomy

Can we observe them ?

Observations: "Time-domain" astronomy

Can we observe them ?

Nassim Tanha (PhD Thesis)

Open questions

What is the light curve of an accretion burst?

How often do they happen?

What are the effects of the environment on accretion?

Gravitational interactions from neighboring stars?

Observations: Missing pieces of the puzzle

What are the best tracers ?

- 'normal' COMs may trace mainly envelope around the disk ?
- vibrational ?, salts ? , water ?

Binarity / disk fragmentation

- disk velocity structure if binary / fragments ?
- smaller disks around fragments ?

Episodic accretion in high-mass stars

- Outburst in IR, mm, masers and outflows
- Excess of radio emission in HII regions?
- Objects that will undergo an outburst event?

Large surveys will be possible!

Properties of disks as a function of stellar mass, luminosity, evolutionary stage, ... Large surveys (e.g., ALMAGAL-like) can provide useful pre-burst data for time variability

Which sub-structures ?

- spiral arms ?
- rings ? (are similar to low-mass ?)
- large cavities due to binary disk truncation ?

Embracing Diversity

People tend to look for THE solution for astrophysical problems

> (in)famous example: monolithic collapse vs. competitive accretion

Most people accept now that none of these captures reality entirely, but have we gone consistently from aiming to find THE solution to looking for the parameter space of solutions?

- Theory
 - Very expensive to do models

 - Prohibitively expensive to explore large parameter space - Easier to pretend one silver bullet solution can be found
- **Observations**

 - Low statistics of observations (this is slowly changing) - Looking for commonalities rather than differences

Why not?

Confirmation bias

- Tendency to look for confirmation of anticipated properties
- Both in planning observations and in interpreting results
 - If you fit a Keplerian rotation curve to a disk, you will get some kind of result, but you will never probe if the disk is not Keplerian
 - Effect gets amplified if using Maching Learning: ML can only find what it has been taught to find: challenge of designing and creating realistic and complete training sets
- **1-event statistics**
 - From a recent paper on high-mass disks reporting the detection of one disk: ____
 - These results suggest that accretion disks around massive stars are more massive and hotter than their low-mass siblings, but they still are quite stable.

Caveats

Questions/Path forward

- Pushing the borders, both in observations and theory
 - Nature?
 - orientation, initial mass, connection to a larger mass reservoir, metallicities...)
 - ...and what do the results look like?
 - systems)

- What is the range of parameters that can realize e.g. high-mass disks in

- (angular momentum, turbulence, magnetic field strength, magnetic field

- (size, fragmentation, spiral arms, properties of resulting binary or multiple

Revealing the physics of high-mass disks in observations and simulations

Peter Schilke Alvaro Sanchez-Monge

I. Physikalisches Institut Universität zu Köln

André Oliva I Institut für Astronomie und Astrophysik Eberhard Karls Universität Tübingen

Ringberg Meeting: Puzzles of Star Formation | MPIA | July 2021

Background illustration: André Oliva

Reserve slides

Resolution uncovers phenomena

disk scale height

spiral arms

fragments

x16

disks around fragments

hydrostatic cores

Further evolution of disk fragments into companions

first Larson core

expected evolution —

8 kyr

7 kyr

second collapse

second Larson core $\sim \text{few R}_{\odot}$

2.5D Rad.-n.id.-MHD simulations

Oliva & Kuiper in prep.

v: 10 km/s 🔶

B:

100 km/s -

1000 km/s/

 $M_{\rm Cl} = 100 \, {\rm M}_{\odot}$ 125.0 au

