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ABSTRACT

We present the continued analysis of polarization and Faraday rotation for the supernova

remnants (SNRs) G46.8−0.3 and G39.2−0.3 in L-band (1-2 GHz) radio continuum in The

HI/OH/Recombination line (THOR) survey. In this work, we present our investigation of Fara-

day depth fluctuations from angular scales comparable to the size of the SNRs down to scales less

than our 16′′ beam (. 0.7 pc) from Faraday dispersion (σφ). From THOR, we find median σφ of

15.9 ± 3.2 rad m−2 for G46.8−0.3 and 17.6 ± 1.6 rad m−2 for G39.2−0.3. When comparing to po-

larization at λ6 cm, we find evidence for σφ & 30 rad m−2 in localized regions where we detect no

polarization in THOR. We combine Faraday depth dispersion with the rotation measure (RM) struc-

ture function (SF) and find evidence for a break in the SF on scales less than the THOR beam. We

estimate the RM SF of the foreground interstellar medium (ISM) using the SF of extra-Galactic radio

sources (EGRS) and pulsars to find that the RM fluctuations we measure originate within the SNRs

for all but the largest angular scales.

Keywords: ISM: supernova remnants — radio continuum: ISM — ISM: magnetic fields — polarization

1. INTRODUCTION

The Milky Way contains a multi-phase interstel-

lar medium (ISM) (Ferrière 2001; Klessen & Glover

2016). One component of the ISM is the magneto-ionic

medium, a mixture of interstellar plasma and mag-

netic fields (see, for example Beck et al. 1996; Heiles

& Haverkorn 2012, for a review). The magneto-ionic

medium causes linearly polarized radio waves to undergo
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a rotation of the polarization angle via the Faraday ef-

fect. The investigation of Faraday rotation measures

of synchrotron emission from pulsars and extragalactic

radio sources (EGRSs) allows one to study interstellar

magnetic fields and magnetic turbulence in the Milky

Way (Han 2001, 2017; Brown et al. 2007; Van Eck et al.

2011; Beck 2015; Haverkorn 2015; Jaffe 2019; Dickey

et al. 2022).

Supernova remnants (SNRs) are bright extended syn-

chrotron emitting sources in the Galaxy. Polarimetry of

a SNR reveals a blend of foreground and internal Fara-

day rotation. The study of Faraday rotation enables
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one to investigate internal turbulence in the expanding

shell, plus a contribution from electron density and mag-

netic field fluctuations within the Galactic ISM along

the line of sight between the SNR and the observer

(Velusamy & Kundu 1975; Milne 1990; Simonetti 1992;

Reich 2002; Wood et al. 2008; Harvey-Smith et al. 2010;

Reynolds et al. 2012; Farnes et al. 2017; Bykov et al.

2020; Shanahan et al. 2022). However, separating inter-

nal turbulence of the SNR from turbulence in the ISM

is challenging.

The simplest case of Faraday rotation occurs where

the polarization angle, χ, of a linearly polarized wave

changes with wavelength, λ, according to δχ = φλ2,

where the Faraday depth, φ, is defined as

φ = 0.81

∫ ( ne
cm−3

)(B‖
µG

)(
dl

pc

)[
rad m−2

]
. (1)

Here ne is the electron density, B‖ is the magnetic field

component along the line of sight, and l is the path

length from the emitting source to the observer (Burn

1966; Brentjens & de Bruyn 2005). This integral is

evaluated from the source to the observer, where φ > 0

indicates B‖ is pointing towards the observer ,and φ < 0

when B‖ is pointing away.

Complex Faraday rotation is a situation in which

a source is observed to have multiple Faraday depth

components associated with different Faraday rotating

regions within the beam. Complex Faraday rotation

can be observed as a nonlinear relation between χ and

λ2 and a change in fractional polarization (Π) with

wavelength. The observed wavelength range, when in-

vestigating polarization, is important for understanding

the type of Faraday rotation (Farnsworth et al. 2011;

Sun et al. 2015). For example, complex Faraday ro-

tation may appear as simple Faraday rotation when

observing over a limited wavelength range. Considering

these factors, complex Faraday rotation can be esti-

mated in multiple ways (Alger et al. 2021, and refences

within). For our purposes, we use the method of Stokes

QU fitting (Law et al. 2011; O’Sullivan et al. 2017).

Shanahan et al. (2022) presents polarimetry of SNRs

G46.8−0.3 and G39.2−0.3 in which variation of Faraday

rotation and polarized intensity is observed on scales of

their beam (16′′). They also observe complex Faraday

rotation in these SNRs, which they conclude is evidence

of Faraday depth structure internal to the SNRs. The

distribution of Faraday depths for subregions within

SNR G39.2−0.3 showed a narrow and broad peak which

they propose is a detection of polarization originating

from the near and far sides of the SNR shell, respectively.

In Section 2 we present a brief overview of the obser-

vations. For a more detailed description of the observa-

tions, calibration and imaging we refer to Beuther et al.

(2016) and Shanahan et al. (2022). In Section 3 we out-

line the methods used in our investigation of complex

Faraday rotation and magnetic turbulence. We present

our results in Section 4, where we present Faraday rota-

tion measure structure functions (Section 4.1), maps of

Faraday dispersion (Section 4.2), and foreground Fara-

day rotation (Section 4.3). We present a discussion of

potential selection effects and internal Faraday disper-

sion in Section 5. In Section 6 we present a summary

and conclusions.

2. OBSERVATIONS

The THOR survey (Beuther et al. 2016) at the Karl

G. Jansky Very Large Array (VLA) covers the inner

Galaxy in the longitude range 14.◦5 < l < 67.◦4 and

latitude −1.◦25 < b < 1.◦25 in C configuration in L-band

(1 - 2 GHz). The survey includes OH lines, radio re-

combination lines, the λ21 cm line of atomic hydrogen,

along with the continuum. The continuum observations

consist of 512 channels ranging from 1 − 2 GHz, where

each channel has a frequency width of 2 MHz. The

λ21 cm line and total intensity continuum were com-

bined with archival data from the VLA Galactic Plane

Survey (VGPS; Stil et al. 2006) and the single-dish

observations at 1.4 GHz by the Effelsberg continuum

survey (Reich et al. 1990). Only C-configuration data

exist for continuum polarization, which samples the sky

at 1.5 GHz on angular scales ranging from ∼ 15′′ to ∼ 5′.

Radio frequency interference (RFI) flagging as well as

standard flux and phase calibration of the continuum

data is described in Beuther et al. (2016). Standard

procedures were followed for the polarization calibration

and imaging done in CASA as described in Shanahan

et al. (2022). The calibrated visibilities were averaged

into 8 MHz channels and imaged. These individual

images were combined into image cubes for Stokes I,

Q and U , where each 8 MHz channel has noise of ∼0.4

mJy beam−1.

We use the THOR catalog of polarized extra-Galactic

sources in the Galactic longitude range of 39◦ < ` < 52◦

presented in Shanahan et al. (2019), which are compiled

of compact sources brighter than 10 mJy beam−1 from

source lists in Bihr et al. (2016) and Wang et al. (2018).

The sample in Shanahan et al. (2019) includes addi-

tional polarized components of resolved sources, but ex-
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cludes sources that, upon visual inspection, were consid-

ered to be bright diffuse sources. As part of our analy-

sis we use polarized subregions of SNRs G46.8−0.3 and

G39.2−0.3, where each subregion we analyze is sized to

be ∼16′′, the approximate synthesized beam at 1.2 GHz

(Shanahan et al. 2022). For more information on the

imaging and calibration, we refer to Section 2 in Shana-

han et al. (2022).

3. METHODS

3.1. Faraday Rotation Measure Synthesis

The analysis of THOR polarization was done by im-

plementing Faraday rotation measure (RM) synthesis,

as described in Brentjens & de Bruyn (2005). We ex-

press linear polarization as a complex function of λ in

terms of the normalized Stokes parameters q = Q/I and

u = U/I as P = q + iu, where i =
√
−1. Through RM

synthesis we derive the dimensionless Faraday dispersion

function F̃(φ) by the Fourier transform

F̃(φ) =
1

K

∫ ∞
−∞
P(λ2)W (λ2) exp[−2iφλ2]dλ2. (2)

Here, K is the integral of the weight function, W (λ2).

W (λ2) = 1 where measurements exist and W (λ2) = 0

where there are no measurements, including when

λ2 < 0. The Faraday dispersion function is the complex

polarized surface brightness per unit of Faraday depth

(for details, see Brentjens & de Bruyn 2005). Different

rates of Faraday rotation can be blended by integrat-

ing over frequency, solid angle or different synchrotron

emission regions along a line of sight that results in

complex Faraday rotation.

The rotation measure spread function (RMSF) is the

Fourier transform of W (λ2) and acts as a point-spread
function in Faraday depth, where the full width half

max (FWHM) is our resolution in Faraday space. Af-

ter RFI flagging, we have a Faraday depth resolution of

∼103 rad m−2 that varies by ∼2 rad m−2 due to indi-

vidual channel flagging.

3.2. Stokes QU Fitting

We implement Stokes QU fitting through the use of

the RMtools 1 package (Purcell et al. 2020) by fitting a

Faraday rotation model to spectra of polarized emission.

For the simplest case of modelling a polarized signal with

the presence of Faraday rotation, we use the equation

P = P0exp[2iφλ2], (3)

1 https://github.com/CIRADA-tools/RM

where P0 = Π0exp[2iχ0] is the intrinsic amount of po-

larization of the synchrotron emission, Π0 is the intrinsic

fractional polarization, and χ0 is the intrinsic polariza-

tion angle.

The mixing of emitting and rotating mediums along

a line of sight can cause depolarization towards longer

wavelengths. For the case of turbulent magnetic fields,

depolarization occurs when many turbulent cells reside

within the synthesized beam (Burn 1966; Sokoloff et al.

1998; O’Sullivan et al. 2012),

P = P0exp[−2σ2
φλ

4]exp[2i(φλ2)]. (4)

Here, σφ is the dispersion about the mean φ across the

source, which we refer to as Faraday dispersion. For the

purpose of this work we only use this model, but for a

description of other models see Sokoloff et al. (1998).

Fitting Equation 4 to the data allows us to measure σφ
as shown in Shanahan et al. (2022). If the true depolar-

ization is different, we can at least get an approximate

value for the Faraday dispersion, which we will discuss

in Section 5.

3.3. Faraday Rotation Measure Structure Functions

Structure functions (SFs) are used to determine struc-

tural scales in fluids and magneto-hydrodynamic (MHD)

turbulence (Kolmogorov 1941; Goldreich & Sridhar

1995). Faraday rotation measure (or Faraday depth)

structure functions are used to probe variance in mag-

netic field strength and electron density as a way to in-

vestigate magneto-ionic turbulence in the ISM (Simon-

etti et al. 1984; Lazio et al. 1990; Clegg et al. 1992;

Haverkorn et al. 2004; Stil et al. 2011; Livingston et al.

2021). The variation in φ on angular scales larger than

the beam can be expressed by the second order structure

function (SF),

D2(θ) =
1

N

∑
i

[φ(r)− φ(r + θ)]2i , (5)

where N is the number of pairs included in the sum.

For our purposes, we only consider the magnitude of

the separation where |θ| = θ, and include all pairs with

separation that falls within a narrow range around θ.

The assumption that the largest scale of magneto-

ionic variations is comparable to the driving scale of

fluid turbulence is required to relate the largest scale of

magneto-ionic turbulence to the angular scale where the

slope breaks (Seta et al. 2020; Livingston et al. 2021).

From turbulence theories presented in Kolmogorov

(1941) and Goldreich & Sridhar (1995) a power-law SF
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is expected, with less power on small scales than large

scales. Averaging within the beam causes high spatial

frequency cut off in the power spectrum that affects the

amplitude and slope in the SF (Laing et al. 2008). We

derive a similar correction for Faraday rotation SFs of

diffuse emission in our SNRs.

3.4. Simulated Structure Functions

For the purposes of simulating a turbulent Faraday

screen, we follow a similar procedure for simulations

as outlined in Miville-Deschênes et al. (2003). For our

simulations, we generate a two-dimensional image of

Faraday depth with structure similar to what is shown

in Figure 1 of Miville-Deschênes et al. (2003). This

is done by generating Gaussian random fields with a

power-law SF, where D2(θ) ∝ θα. We assume a power

spectrum form PF (k) ∝ kγ , where k is the wavenumber.

The input power spectral index of the simulation, γ, is

related to the SF index, α, by γ = −α− 2.

Although Faraday depth is an integral of neB‖ along

the line of sight (see Equation 1), only the total Faraday

depth affects our simulations. Laing et al. (2008) and

Tribble (1991) also used a two-dimensional distribution

of Faraday depth as a starting point. Simonetti et al.

(1984) and Xu & Zhang (2016) derive power-law SFs of

RM by integrating neB‖ through a turbulent medium.

For us, the details of the integral are less important

than the spatial structure of Faraday depth. The simu-

lation represents the total Faraday depth of a turbulent

medium in front of a uniform polarized background.

In Figure 1 we present SFs from three different sim-

ulations where γ = −2.1,−2.5, and −3 for the red,

green, and blue data respectively. The dots are SFs

for individual pixels within our simulated image. The

crosses are SFs of RM derived from QU fitting synthetic

Q and U spectra that were created by evaluating Stokes

Q and U for every pixel as a function of wavelength,

assuming a uniform polarized background, and applying

a Gaussian weight with a FWHM of 16′′ (50 pixels) to

the Q and U spectra to form a single spectrum for every

beam. We find that the resulting RMs are equivalent

with the Gaussian weighted RMs.

The SFs using a Gaussian weighted beam have a

lower amplitude as well as a higher slope than what we

find from the SFs of individual pixels. In Figure 1 we

observe that this effect becomes larger as γ → −2 (or

α→ 0). Fitting a power-law to the individual pixel SFs

yields α = 0.195±0.002, 0.502±0.004 and 0.950±0.004

for γ = −2.1,−2.5, and −3, respectively. After beam

averaging is applied, the SF becomes curved toward

small scales and fitting to a power-law is problematic.

In Figure 1 we notice that the slope gets larger while the

amplitude gets smaller. Laing et al. (2008) find a similar

relation for SFs before and after Gaussian convolution,

where, as the SF becomes flatter, the effect of beam

averging becomes more pronounced in both amplitude

and slope.

In our simulations, the SFs derived from individual

pixels can be interpreted as what would be found for

point sources. The SFs we find from applying a Gaus-

sian weight to synthesized Q and U spectra correspond

with diffuse emission, where Gaussian weighted aver-

aging occurs within the synthesized beam. From this

physical interpretation, we are presented with a problem

where the SFs of diffuse emission will misrepresent the

true SF of the source.

To account for the effect of beam averaging on a SF,

we impose a correction to the SFs of diffuse emission

sources. Since we cannot directly measure structures

smaller than our beam, we must use simulations to find

an approximate correction for unresolved structure. As

shown in Figure 1, this effect is approximately the same

as subtracting power on scales ∼1/3 the beam from the

SF. This happens because scales .1/3 the beam will

effectively average out in the convolution. This power

ends up as Faraday dispersion within the beam of our

observations. In order to correct for this effect and relate

complex Faraday rotation to structure on larger angular

scales, we match the observed SF of a SNR to the SF

from a simulation with beam averging.

4. RESULTS

4.1. RM Structure Functions

In Figures 2 (a) and (b) we present the simulated and

observed RM structure functions for G46.8−0.3 and

G39.2−0.3, respectively. The colored crosses in Figures

2 (a) and (b) are the SFs derived from the Faraday

depths presented in Figures 3 and 18 of Shanahan et al.

(2022). The black crosses are SFs derived from simula-

tions, where a 16′′ beam is applied. The black dots are

the SF derived from an individual pixel at the center of

the beam in our simulations, which we associate with

the SF for point sources. The colored solid lines in

Figure 2 are power-law fits to the SNR RM structure

function. We know that the SNR SFs are affected by

beam averaging; therefore, by simulating a beam aver-

aged SF that matches the SNR SF, we can derive a SF

for the SNR that is without the effect of beam averaging.
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Figure 1. Simulated RM structure functions. The
red, green, and blue data points correspond to γ =
−2.1,−2.5, and −3, respectively. The dots are SFs from in-
dividual pixels. The crosses are SFs after averaging Q and U
over the 16′′ beam (represented by the vertical black dashed
line), as explained in the text. The colored dashed lines are
power-law fits to the crosses. The solid lines are the dashed
lines plus a constant term. This constant term is the ampli-
tude of each single-pixel SF at 1/3 the beam.

The scaling of the simulated SF is done in two steps.

First the angular scale of a pixel is determined by equat-

ing the simulated beam to the resolution of our data.

Second, the amplitude of the simulated SF with beam

averaging is scaled to match the amplitude of the SNR

SF. The scaling accounts for the initially arbitrary scal-

ing of the power spectrum in the simulations. The same

scaling factor is applied to the corrected (single pixel)

SF and to the simulation of the complexity in the fol-

lowing subsection.

For SNR G46.8−0.3, we find that the observed RM

structure function has a power-law index, α = 0.42 ±
0.01, and for the corrected SF from simulations, α =

0.22 ± 0.01. For SNR G39.2−0.3, we find the observed

RM structure function has α = 0.39± 0.01, and for the

corrected SF from simulations, α = 0.16± 0.01. We see

how the effects of beam averaging causes the SFs for

each SNR to have a steeper slope and lower amplitude.

The SFs corrected for beam averaging may still contain

contributions from plasma anywhere along the line of

sight from within the SNR to the observer. The contri-

bution of the plasma between the SNR and the observer

will be estimated in Section 5.

4.2. Complex Faraday Rotation

RM fluctuations from beam to beam observed in

Shanahan et al. (2022) is the smallest angular scale in

our RM structure functions that we can measure di-

rectly. RM fluctuations smaller than the beam manifest

themselves as complex Faraday rotation, and the power

missing in the beam-averaged SF ends up in Faraday

dispersion. Realizing that the complexity includes RM

structure related to the full range of scales smaller than

the beam, we combine the measured complexity with

the structure function.

In Figures 3 (a) and 4 (a) we present our results of QU

fitting as σφ maps for SNRs G46.8−0.3 and G39.2−0.3,

respectively. Each colored subregion represents a lo-

cation where single component Faraday rotation is ob-

served (Shanahan et al. 2022). The blank subregions

with a purple border indicate where two-component

Faraday rotation is observed (Shanahan et al. 2022),

and are excluded in our σφ maps because we find a poor

fit to Equation 4.

In order to relate our simulations with σφ derived from

the data, we use the second moment of the Faraday

depth distribution. Complex Faraday rotation can be

defined as the second moment of the Faraday depth dis-

tribution,

M2 =

√√√√J−1
N∑
i=1

(φi − 〈φ〉)2Gi, (6)

where,

〈φ〉 = J−1
N∑
i=1

φiGi, (7)

(Livingston et al. 2021). Here, φi is a Faraday depth

component of the form expressed in Equation 2, Gi is

the Gaussian weight function at the location of φi, and

J is the integral over the beam.

We derive σφ from our simulations by generating a

Stokes Q and U spectrum across the THOR λ2 range.

This is achieved by adding φλ2 to the polarization an-

gle, where φ is the pixel value in the simulation. We

do this for each individual pixel within our beam out to

2×FWHM. Each beam gives us an integrated Stokes Q

and U spectrum to which we apply QU fitting in the

same λ2 range as the data. These integrated Q and U

spectra include complex Faraday rotation derived from

the Faraday depth structure down to scales smaller than

the beam. The distribution of Faraday depth is different

for every beam and its statistical properties are similar

to the models of Tribble (1991) with a power-law SF.

We use RMtools to fit Equation 4 to the synthesized

spectra and we retrieve the RM and σφ. We find that

M2 and σφ from QU fitting beam-averaged Q and U
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Figure 2. Observed and corrected SFs for SNRs G46.8−0.3 (a) and G39.2−0.3 (b). The colored solid line is a power-law fit to
the SNR SF. The black solid line is a power-law fit to the simulated point source (individual pixel) SF, which has been extended
to where it equals the median of the simulation box plot. The box plots are generated from the distribution of 2σ2

φ for the SNR
(colored) and the simulation (black). The red line in the box plots are the median of each 2σ2

φ distribution, the bottom and top
of the box are the first and third quartiles, respectively, and the whiskers extend to the maximum and minimum values in the
distribution. The vertical dashed line represents the THOR beam of 16′′. The structure functions are discussed in Section 4.1
and the box plots are discussed in Section 4.2.

data are equivalent.

The Faraday depth dispersion is the combined effect

of all structure within the beam with a range of angular

scales. Considering that the SF is a rising function with

increasing angular scale, and that the largest angular

scale is the size of the SNR, we may identify a charac-

teristic angular scale for the fluctuations contributing

to σφ. To this end, we associate the value 2σ2
φ from

the simulation with the SF amplitude within the beam,

and identify the angular scale where this amplitude is

achieved in the SF from the simulations. This occurs at

an angular scale of θ = 5.5′′ for G46.8−0.3 and θ = 6.7′′

for G39.2−0.3. We apply the same angular scale to

the value 2σ2
φ of the observations of each SNR. The

complete set of σφ measurements in a SNR is visualized

in Figure 2 in the form of a box plot that marks the

median, the lower and upper quartile, as well as the full

range of the distribution.

The black box plots present the distribution of 2σ2
φ

from our simulations. The σφ values from the simula-

tions were derived before any scaling was applied, we

then apply the same scaling factor for the simulated SFs

to the simulated 2σ2
φ values. From this we find both

black box plots have a median σφ ≈ 67 rad m−2. Po-

larized emission with such a Faraday dispersion would

depolarize in L-band, but we rely on the ability to scale

the depolarization solution according to λ2 ∝ 1/σφ as

explained in Tribble (1991).

The characteristic angular scale associated with the

Faraday dispersion is approximately 1/3 of the beam,

depending on the slope of the SF. This is similar to the

scale of the power in the SF that is subtracted by beam

averaging (see Figure 1). We find that beam averaging

takes away some power from the beam-to-beam varia-

tions that ends up as Faraday depth dispersion within

the beam. The amount of power involved corresponds

to fluctuations on scales of ∼ 1/3 the beam. In this way

we connect Faraday dispersion with the fluctuations on

larger scales.

G46.8−0.3 has a median σφ of 15.9 rad m−2 with

a median error of 3.2 rad m−2 and a standard devi-

ation of 7.4 rad m−2. We find a local maximum of

σφ = 22.9 ± 2.1 rad m−2 at (`, b) = (46.◦783,−0.◦353),

which is within a region where we observe the high-

est density of detections in Figure 3 (a). Some of the

strongest signal is observed within this region (Shana-

han et al. 2022), yet we find that σφ is higher here

than in the surrounding areas. One may notice that

σφ decreases towards the edge of the SNR, with a local

minimum of σφ = 2.0± 1.5 at (`, b) = (46.◦805,−0.◦403).

We observe no counterpart to this structure in Fara-

day depth or fractional polarization (Shanahan et al.



Turbulence in G46.8−0.3 and G39.2−0.3 7

2022), as well as no correlation between σφ and Stokes

I brightness at λ21 cm.

Figure 3 (b) is a λ6 cm Effelsberg map of polarized

intensity with Stokes I contours (W. Reich private com-

munication) with a beam of 2.5′. In the brightest region

of G46.8−0.3 at (`, b) = (46.◦666,−0.◦329), we observe

a fractional polarization of ∼ 18% at λ6 cm and up-

per limits to fractional polarization < 1% at λ21 cm

(Shanahan et al. 2022). From these quantities we derive

a minimum σφ of 27.4 rad m−2. However, potential

beam depolarization in the Effelsberg map implies that

σφ could be larger. More about this in Section 5.

From Figure 4 (a) we find the distribution of σφ in

G39.2−0.3 to be relatively uniform with no obvious

counterpart in Faraday depth or fractional polarization

to deviations from the median σφ of 17.6 rad m−2.

Subregions within the second lowest contour in Figure

4 have a median error in σφ of 1.6 rad m−2 with a

standard deviation of 7.6 rad m−2. Subregions outside

the second lowest contour have a median error in σφ
of 2.4 rad m−2 with a standard deviation of 6.9 rad

m−2. In Figure 22 (b) of Shanahan et al. (2022), we

present an example of QU fitting for a high signal to

noise subregion of G39.2−0.3.

In Figure 4 (b) we present a λ6cm Effelsberg map of

polarized intensity with Stokes I contours (W. Reich

private communication). When comparing polarization

at λ21cm and at λ6cm, we find the general locations of

polarization are in agreement. However, we observe a

lack of polarization at λ21cm on the right side of the

SNR shell where weak polarization is observed at λ6cm.

For G46.8−0.3 and G39.2−0.3 we identify three loca-

tions where we compare λ6 cm polarization to λ21 cm

polarization (red circles in Figures 3 and 4). To account

for differing resolutions of the two surveys, we compare

the weighted average fractional polarization of subre-

gions at λ21 cm that fall within the Effelsberg beam

(Π̄21cm) to the λ6 cm fractional polarization closest to

the beam centre (Π6cm). We derive Faraday dispersion

using

σφ,calc =

√
−1

2(λ46cm − λ421cm)
ln

(
Π6cm

Π̄21cm

)
. (8)

Here, λ6cm = 0.06 m and λ21cm = 0.21 m, which is the

reference wavelength we obtained from RM-synthesis of

THOR polarization. In Table 1 we present a summary

of the relevant parameters for this comparison. We con-

sider σφ,calc to be a lower limit estimation of Faraday

dispersion for two reasons. Firstly, due to the larger

beam of the Effelsberg maps, beam depolarization could

cause the measured Π6cm to be low. Secondly, when ap-

plying a Gaussian beam of 2.5′ to our data, within each

beam there are subregions where we detect no polariza-

tion (white subregions). Some of the non-detections are

upper limits, implying the mean fractional polarization

(Π̄21cm) is lower.

4.3. Foreground Faraday Rotation

In Figure 5 we present the Faraday depth structure

function for EGRS within 37◦ < ` < 47◦ along with

the SNRs G46.8−0.3 and G39.2−0.3 after correcting

for beam averaging (see Section 3.4). The corrected

power-law index for G46.8−0.3 and G39.2−0.3 are

α = 0.22 ± 0.01 and α = 0.16 ± 0.01, respectively.

The SF for EGRS has a break in the power-law index at

θ ≈ 1◦, where we find α = 1.01± 0.25 for angular scales

. 1.25◦ and α = 0.02± 0.08 for angular scales & 0.5◦.

To estimate which fraction of the EGRS structure

function is contaminated by the foreground ISM, we use

the ratio of the SNR distances presented in Lee et al.

(2020) and distance between the observer and the edge

of the Milky Way. This distance is derived using using

a radius of 16.2 kpc for the Milky Way disk and the dis-

tance to the Galactic centre of 8.2 kpc (Goodwin et al.

1998; Abuter et al. 2019). These ratios for G46.8−0.3

and G39.2−0.3 are 3.8 and 2.1, respectively. We divide

the fit to the EGRS SF by this ratio in order to give an

approximation of the Galactic RM structure function

for the foreground of the SNRs. This approximate SF

is presented in Figure 5 as the red region where the

upper and lower bounds are the EGRS SF divided by

the ratios for each SNR. We find that this approximate

foreground EGRS SF has a lower amplitude, and that

the largest angular scale of the SNR SFs falls within

this range.

Another way to constrain the SF of the foreground

ISM is by using pulsar data derived from the ATNF

pulsar catalogue2 (Manchester et al. 2005). For our

pulsar sample, we subtract the fit of RM versus disper-

sion measure (DM) from every pulsar RM to remove

the contribution of the large scale magnetic field to

the difference in RM between two pulsars. This does

not completely eliminate the complications related to

2 https://www.atnf.csiro.au/research/pulsar/psrcat/
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(a) (b)

Figure 3. (a) Map of σφ for SNR G46.8−0.3. Contour levels are 14, 19, 24, 29, 34 and 39 mJy/beam from THOR+VGPS
Stoke I at λ21 cm. Subregions with a purple border indicate two-component Faraday rotation from Shanahan et al. (2022) and
are not included when QU fitting using a model of single-component Faraday rotation with Burn depolarization. (b) Effelsberg
polarization intensity map of G46.8−0.3 at λ6 cm with Stokes I contours at 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4 K. The red circles
identify regions where we compare THOR polarization to Effelsberg polarization. The size of the red circles correspond to the
Effelsberg beam of 2.5′. The coordinates of each region are given in Table 1

(a) (b)

Figure 4. (a) Map of σφ for SNR G39.2−0.3. Contour levels are 20, 30, 55, 80, 110 and 140 mJy/beam from THOR+VGPS
Stoke I at λ21 cm. Subregions with a purple border indicate two-component Faraday rotation from Shanahan et al. (2022) and
are not included when QU fitting using a model of single-component Faraday rotation with Burn depolarization. (b) Effelsberg
polarization intensity map of G39.2−0.3 at λ6 cm with Stokes I contours at 0.5, 1.0, 2.0, 3.0 and 4.0 K. The red circles identify
regions where we compare THOR polarization to Effelsberg polarization. The size of the red circles correspond to the Effelsberg
beam of 2.5′. The coordinates of each region are given in Table 1

the fact that all pulsars in our sample are at different

distances, but we use the pulsar RM distances as one

way to constrain the small scale RM structure of the

ISM between us and the SNRs. The yellow crosses

in Figure 5 represent (RMi − RMj)
2 for pulsar pairs

after subtracting the RM-DM fit, representing individ-
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Table 1. Faraday Dispersion Metrics

SNR Region ` b Π̄21cm Π6cm σφ,calc σ̄φ Nsub

(◦) (◦) (%) (%) (rad m−2) (rad m−2)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 46.802 −0.406 6.8 ± 0.4 25.8 ± 0.1 18.6 ± 0.4 9.3 ± 0.5 31

G46.8−0.3 2 46.785 −0.356 4.6 ± 0.1 18.1 ± 0.1 18.9 ± 0.2 17.1 ± 2.3 59

3 46.864 −0.234 1.9 ± 0.1 11.0 ± 0.1 21.3 ± 0.2 19.2 ± 3.5 19

1 39.248 −0.358 2.4 ± 0.1 11.0 ± 0.3 19.8 ± 0.4 18.8 ± 1.4 52

G39.2−0.3 2 39.236 −0.308 1.6 ± 0.1 4.7 ± 0.1 16.5 ± 0.6 14.7 ± 0.9 23

3 39.194 −0.300 1.3 ± 0.2 2.6 ± 0.1 13.4 ± 1.8 14.5 ± 0.7 5

Note—We present polarization and Faraday dispersion metrics. Here, Π̄21cm is the weighted
mean fractional polarization at λ21 cm in the Effelsberg beam, Π6cm is the Effelsberg fractional
polarization at λ6 cm, σφ,calc is the calculated Faraday dispersion metric using Equation 8, σ̄φ
is the weighted mean σφ from QU fitting subregions within the Effelsberg beam (red circles in
Figures 3(a) and 4), and Nsub is the number of subregions within the Effelsberg beam. It should
noted that σφ,calc are lower limits due to potential depolarization within the Effelsberg beam.

10−2 10−1 100 101

θ (degr.)

104

105

106

D
2(
θ)

(r
ad

2
m
−

4 )

EGRS (37◦ < ` < 47◦)

Corrected G46.8-0.3
Corrected G39.2-0.3
Pulsar Median
Pulsar Pairs

Figure 5. Structure function for EGRSs and the corrected
SNR structure functions. The solid and dashed black lines
are power-law fits to EGRS at θ > 0.57◦ and θ < 1.25◦, re-
spectively. The purple and green solid lines are power-law
fits to the corrected SFs of G46.8−0.3 and G39.2−0.3, re-
spectively. The shaded red region is the approximate SF for
Galactic Faraday rotation in the foreground of the SNRs.
The yellow crosses are derived from the ATNF pulsar cata-
logue (Manchester et al. 2005). Each cross represents a pair
of pulsars with an angular separation of θ and an amplitude
derived with Equation 5 with N = 1. The blue squares,
from left to right, indicate the median values for angular
scales 0.1◦ < θ ≤ 1◦, 1◦ < θ ≤ 3◦ and 3◦ < θ ≤ 10◦.

ual terms in Equation 5. The blue squares in Figure 5

are the median values of the yellow crosses in three bins.

We find that the approximate pulsar SF has a lower

amplitude and a steeper slope than what is observed

for the EGRS SF on similar angular scales. The median

pulsar distance of our sample is 4.8 kpc, which, at an an-

gular separation of 1◦, translates into a distance of 83.8

pc. This value agrees with the approximate maximum

scale for energy injection of turbulence in the Milky Way

(Gaensler et al. 2005; Haverkorn et al. 2006). We expect

the pulsars to probe somewhat smaller scales than the

EGRSs and find that the SF of EGRSs to be flatter than

that of pulsars. Here we are mainly interested in using

pulsars as an additional constraint to the SF of the fore-

ground ISM, where the pulsar data give a lower limit to

the foreground SF.

5. DISCUSSION

In this paper we connect the complex Faraday rota-

tion to the rotation measure structure function on larger

scales in order to describe the properties in the magne-

tized plasma of the SNRs over the largest possible range

of scales. We find that Faraday dispersion indicates a

small range of Faraday depths on scales smaller than

the beam than what is extrapolated from the rotation

measure SF. We discuss potential selection effects re-

lated to QU -fitting that may arise by deriving σφ by

fitting Burn depolarization (see Equation 4) to the data

and possible selection effects related to our λ2 coverage

before discussing possible interpretation.

5.1. Selection Effects Of σφ
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In order to understand how selection effects could

bias σφ, we first must question whether the Burn depo-

larization model is adequate. A consequence of Tribble

(1991) is that Burn depolarization underestimates σφ at

longer wavelengths. Tribble (1991) demonstrates that

wavelength dependent depolarization is not as extreme

as the Burn model suggests and that the Burn model

is only a good approximation when the scale of fluc-

tuations is much less than the beam. Tribble (1991)

suggest that if σφλ
2 < 1 the Burn depolarization model

provides a good approximation of σφ. If σφλ
2 > 1

Burn depolarization underestimates the true σφ of the

source because a given amount of depolarization can

be achieved with a smaller σφ. We fit Equation 4 to

our data because the model is readily available in the

QU -fitting code.

10−2 10−1

λ2 (m2)

10−2

10−1

100

P
/P

0

Figure 6. Depolarization across wavelengths expected from
turbulence cells within the synthetized beam according to
the modelling in Burn (1966) and Tribble (1991) (see Section
5.1 for details). The red curves represent Tribble (solid) and
Burn (dashed) for σφ = 67 rad m−2. The blue curves repre-
sent Tribble (solid) and Burn (dashed) for σφ = 30 rad m−2.
The green dots indicate where σφλ

2 = 1 in each case.
The black dots are data from the subregion at (`, b) =
(39.◦238,−0.◦372), for which we find σφ = 42.6±5.3 rad m−2.
The vertical black dashed line shows where λ = 6 cm.

In Figure 6 we present a comparison of Burn and

Tribble depolarization in the context of our SNRs. The

solid lines represent Tribble depolarization of a power

law structure function, where each individual line comes

from an independent simulation. For the Tribble model

we define σφ as the standard deviation of Faraday depth

in the half power radius of the beam. In order to ob-

serve the spread in Tribble depolarization at longer

wavelengths, the simulation was repeated 54 times for

each value of σφ.

As in Tribble (1991), we see that the Burn model leads

to stronger depolarization at the same wavelength. The

range of depolarization factors for the Tribble model

increases with wavelength, because every beam repre-

sents a random selection of turbulent structure in RM.

This leads to an important concept that a range of σφ
is to be expected when applying Burn depolarization

to a partially resolved turbulent plasma with a single

power-law RM SF.

The black dots in Figure 6 are data from (`, b) =

(39.◦238,−0.◦372) in Region 1 of G39.2−0.3 with

σφ = 42.6 ± 5.3 rad m−2. We plot Πλ/Π6cm, where

Πλ is the fractional polarization derived from THOR

at wavelength λ and Π6cm is the fractional polarization

observed from Effelsberg at λ6 cm. At longer wave-

lengths we observe a relatively flat spectrum and an

uptick at shorter wavelengths. We observe similar be-

havior in various Tribble simulations where the curve

either flattens or increases at longer wavelengths. The

data show an example that is not well fitted by Burn

depolarization.

For both G46.8−0.2 and G39.2−0.3 we find σφ ≈
30 rad m−2 to be on the high side of what we detect

with the Burn model. For σφ = 30 rad m−2, the point

where σφλ
2 = 1 occurs at λ = 18.3 cm, which falls

roughly in the middle of the THOR continuum wave-

length range (see Figure 6). If there are regions where

σφ & 30 rad m−2 we would not detect them, because

of the strong depolarization in our wavelength range.

However, we may occasionally detect significantly higher

values of σφ as in (`, b) = (39.◦238,−0.◦372), because of

the sporadic extended wing of the Tribble depolariza-

tion curves. There could be higher values of σφ in the

SNRs, but we cannot justify σφ as high as 67 rad m−2

because the SNRs would be completely depolarized in

L-band (see Figure 6). However, it is possible we are

missing polarization in the THOR data in regions where

polarization is observed with Effelsberg.

Figure 8 of Patnaik et al. (1990) presents a polariza-

tion map at λ6 cm of G39.2−0.3 with a resolution of

25′′, which is similar to the 16′′ beam of THOR. We

find that regions where polarized emission is observed

at λ6 cm in Patnaik et al. (1990) agree with the lo-

cations where we detect polarized emission at λ21 cm.

Figure 8 of Patnaik et al. (1990) does show more po-

larization at λ6 cm in the top right part of the SNR

shell where Stokes I is brightest (Region 3 in Figure 4).
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In this region we detect polarized emission as well as

fractional polarization upper limits < 1% (see Figure 23

of Shanahan et al. 2022). Patnaik et al. (1990) present a

fractional polarization of ∼ 6%, which we use to derive

σφ,calc ≈ 22 rad m−2. We find this to be significantly

higher than σφ,calc using Effelsberg data (see Table 1).

In the lower right side of the SNR shell of G46.8−0.3

we find a similar region where polarization is detected

at λ6 cm that is depolarized at λ21 cm. However, the

comparison is not as robust due to the large difference

in angular resolution between THOR and Effelsberg

observations. Nonetheless, with these considerations it

is possible that we only detect polarization in areas that

happen to have σφ . 30 rad m−2.

The corrected SFs presented in Figure 2 suggest much

higher fluctuations than the observed Faraday disper-

sion. While σφ,calc technically provides a lower limit to

σφ, it is interesting that σ̄φ and σφ,calc in Table 1 tend to

agree, with the exception of Region 1 in G46.8−0.3. In

locations where we have a higher density of detections,

such as Region 1 in G46.8−0.3, RM fluctuations might

be locally lower than the global average that is indicated

by the SF. There could be higher values of σφ elsewhere

in the supernova remnants, but we cannot justify σφ be-

ing as high as the extrapolation of corrected SF suggests.

We conclude that the observed Faraday dispersion is

lower than the extrapolation from the corrected SF for

regions where we detect polarization.

5.2. Internal Faraday Dispersion Of SNRs

Shanahan et al. (2022) provide an analysis of Faraday

rotation and polarization of G46.8−0.3 and G39.2−0.3

in L-band from the THOR survey. They observe two-

component complex Faraday rotation, which they argue

is evidence for internal Faraday rotation within the

SNRs that can be separated as signal from the near

and far sides of the SNR shell. This internal Faraday

rotation is of the order of ∼ 150 rad m−2.

With the considerations provided in Section 5.1, we

can justify that the global depolarization for both SNRs

is not as severe as the extrapolation of our corrected

SF suggests. We also acknowledge that the distribu-

tion of the observed values of σφ is lower than what we

expect when comparing THOR polarization to λ6 cm.

Therefore, the distribution of σφ must fall somewhere

between the observed and simulated box plots in Figure

2. The observed complexity associated with the fiducial

scale we derive indicates a slope that is comparable

within the range of uncertainty to the transition from

2D turbulence corrected to 3D and Kolmogorov 3D

turbulence. There are other models of turbulence that

predict different slopes (for examples see, Bec & Khanin

2007; Falgarone et al. 2015). Our data do not allow to

discriminate between different turbulent models. Even

when considering selection bias in our data, we propose

that the observed distribution of Faraday dispersion

provides evidence for a break in the power-law of the

SFs for G46.8−0.3 and G39.2−0.3 at scales less than

our beam.

In Figure 5 we present an approximate SF for Galac-

tic Faraday rotation in the foreground of the SNRs as a

red region. At the largest angular scales of G46.8−0.3

and G39.2−0.3, we find the amplitudes of the SNR SFs

agree with our estimation of the foreground ISM Fara-

day depth structure. This is an indication that the RM

structure at large angular scales of the SNRs could be

affected by Faraday rotation in the foreground ISM. It is

evident that the SFs for G46.8−0.3 and G39.2−0.3 de-

viate in both slope and amplitude from our foreground

estimation for Galactic Faraday rotation at smaller an-

gular scales. This deviation suggests that the SFs of

the SNRs originate from internal Faraday depth struc-

ture as opposed to foreground turbulence in the ISM

and that the power on smaller scales is dominated by

internal turbulence of the SNR.

6. SUMMARY AND CONCLUSIONS

In this work we present a continuation of the study of

polarization and Faraday rotation of SNRs G46.8−0.3

and G39.2−0.3 presented in Shanahan et al. (2022).

Here we investigate turbulence in these SNRs over a

range of scales traced by Faraday rotation.

By simulating turbulent Faraday screens with various

SF slopes, we demonstrate how beam averaging affects

the resulting SF in concordance with previous results

by Laing et al. (2008). We find that SFs without beam

averaging have a flatter slope as well as a higher ampli-

tude than SFs where Gaussian weighted beam averaging

is applied. We correct for this effect through the use of

simulations.

We use Stokes QU fitting to derive the Faraday disper-

sion for each subregion where single-component Fara-

day rotation is observed in Shanahan et al. (2022).

We observe a median σφ of 15.9 ± 3.2 rad m−2 and

17.6 ± 1.6 rad m−2 for G46.8−0.3 and G39.2−0.3, re-

spectively.
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We use Effelsberg λ6 cm polarization as a way to

verify and extend our measurements of σφ. We found

evidence for σφ & 30 rad m−2 in localized regions where

we detect no polarization in THOR. Following previous

modelling of Faraday dispersion, we assume the Fara-

day dispersion derived from Stokes QU fitting to be a

lower limit to the true Faraday dispersion. However,

the comparison to polarization at λ6 cm suggests only

a marginal increase in σφ from what we detect from

THOR.

We use simulations to compare the corrected SNR SF

to the observed Faraday depth dispersion. Even when

considering selection bias in the observed σφ, we find

evidence for a break in the RM SF on scales smaller

than our beam (16′′).

We provide an approximate SF for foreground Galac-

tic Faraday rotation from which the SNR SFs deviate

at scales . 0.5◦. We attribute this deviation as an in-

dication of Faraday depth structure which is internal to

the SNR as opposed to originating from the Galactic

foreground.
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