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Abstract

I introduce a general, Bayesian method for modelling univariate time series data assumed to be drawn from
a continuous, stochastic process. The method accommodates arbitrary temporal sampling, and takes into
account measurement uncertainties for arbitrary error models (not just Gaussian) on both the time and signal
variables. Any model for the deterministic component of the variation of the signal with time is supported,
as is any model of the stochastic component on the signal and time variables. Models illustrated here are
constant, linear, sigmoidal, sinusoidal and quasi-sinusoidal models for the signal mean (and combinations
thereof) combined with a Gaussian stochastic component, as well as purely stochastic models, the Wiener
process and Ornstein–Uhlenbeck process. The posterior probability distribution over model parameters is
determined via MCMC (Metropolis, parallel tempering or emcee). Models can be compared using the evi-
dence or the “cross-validation likelihood”, in which the posterior-averaged likelihood for different partitions
of the data are summed. In principle this is more robust to changes in the prior than is the evidence (the
prior-averaged likelihood).

Much of the description of the mathematical method in this technical note is taken from the journal article
(Bailer-Jones 2012), but is repeated here so that this technical note can stand alone. The journal article
describes the application to a simulated data set and to brown dwarf light curves, which is not covered here.
Conversely, this technical note describes the various time series models as well as subsequent developments
such as additional models and MCMC methods. This note also describes the implementation of the method
into software using R, some of its internal workings, and how to use it. The code, ctsmod, is designed for
use under Linux (including Mac OS X), but not Windows (as it relies on forking for parallel processing).
The software is available from the above web site.
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1 Introduction

When confronted with a univariate time series, we are often interested in answering one or more of three
questions. Which model best describes the data? What values of the parameters of this model best explain
the data? What range of values does the model predict for the signal at some arbitrary time? These are
questions of inference from data, and can be summarized as model comparison, parameter estimation and
prediction, respectively.

Probabilistic modelling provides a self-consistent and logical framework for answering these questions. In
this article I introduce a general method for time series model comparison and parameter estimation. The
principle is straight forward. The time series data are a series of measurements of the signal at various times
(“events”), with measurement uncertainties generally in both signal and time. Working in the time domain,
we write down a parametrized model for the variation of the signal as a function of time. This could be a
deterministic function or a stochastic model or, more generally, a combination of the two. An example of a
combined model is a sinusoidal variation of the mean of the signal on top of which is a Gaussian stochastic
variation in the signal itself, which is not measurement noise. A purely stochastic model is one in which
the expected signal evolves according to a random distribution, e.g. a random walk. There may also be
an intrinsic stochastic variation in the times of the events, which again is unrelated to measurement errors.
Given these generative models, we then calculate the likelihood distribution of the data for different values
of the model parameters. Rather than identifying just the single best fitting parameters, I use a Monte Carlo
method to sample the posterior probability density function (PDF) over the model parameters. In addition
to providing uncertainties on the inferred parameters, this also used to determine a single number for the
goodness-of-fit of the overall model, such as the marginal likelihood (evidence), or the cross-validation
likelihood (defined here). In this way we can identify the best overall model from a set, something which
frequentist hypothesis testing can be notoriously bad at (e.g. Berger & Sellke 1987, Kass & Raftery 1996,
Jaynes 2003, Christensen 2005, Bailer-Jones 2009).

There of course exist numerous time series analysis methods which attempt to answer one or more of
the questions posed, so the reader may wonder why we need another one. For example, if we focus on
periodic (Fourier) models, then we can calculate the power spectrum or periodogram in order to identify
the most significant periods and to estimate the amplitudes of the components. Or if we work in the time
domain, we can do least squares fitting of a parametrized model (e.g. Chatfield 1996, Brockwell & Davis
2002). However, many of these methods can only answer one of the posed questions, are limited to a
restricted set of models or specific types of problems, cannot deal with uncertainties in the signal and/or time,
are limited to equally-spaced data, do not provide uncertainty estimates on the parameters, or make other
restrictive assumptions. The method introduced in the present work is quite general, and firmly embedded
in a probabilistic approach to data modelling. This makes it powerful, but at the price of considerably higher
computational speed. However, in many applications this is a price we should be willing to pay for hard-won
data, and should often be preferred to ad hoc, suboptimal recipes.

This article describes this method. An example application can be found in the journal article on this
method, Bailer-Jones (2012). The method developed here is related to the artmod method introduced in
Bailer-Jones (2011; hereafter CBJ11), which is a model for time-of-arrival time series. The present method
extends this to model time series with noisy signal values at each measured time. artmod can be applied to
data sets in which there is a signal varying with time, but only if that signal can be interpreted as a normalized
probability density (such as the probability of an asteroid impact) rather than noisy measurements associated
with each event.

The notation is summarized in Table 1.
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Table 1: Primary notation

sj measured time of jth event
σsj standard deviation in sj
tj (unknown) true time of the jth event
yj measured signal of jth event
σyj standard deviation in yj
zj (unknown) true signal of the jth event
Dj = (sj , yj) measurements for the jth event
σj = (σsj , σyj ) estimated uncertainties in Dj

D = {Dj} set of measurements for J events
σ = {σj} estimated uncertainties in D
Dk set of measurements for events in partition k
D−k set of measurements for all events not in in partition k
M time series model
θ = (θ1, θ2, θ3), parameters of the time series model
η(t; θ1) deterministic model of the expected true signal (TSMod1)
log logarithm base 10
N (x;µ, V ) Gaussian in x with mean µ and variance V
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Figure 1: Example of a measured data set with four events

2 The time series method

2.1 Data and model definition

Let t and z denote the time and signal respectively. We have a set of J events. For each event j, our measure-
ment of the time of the event, tj , is sj with a standard deviation (estimated measurement uncertainty) σsj ,
and our measurement of the signal of the event, zj , is yj with a standard deviation (estimated measurement
uncertainty) σyj (see Figure 1). That is, tj and zj are the true, unknown values, not the measurements. De-
fine Dj = (sj , yj) and σj = (σsj , σyj ). The measurement model (or noise model) describes the probability
of observing the measured values for a single event given the true values and the estimated uncertainties, i.e.
it gives P (Dj |tj , zj , σj). Note that we consider σj as fixed parameters of the measurement model, and the
conditioning on the measurement model is implicit (as we do not want to compare measurement models in
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this work).

M is a stochastic time series model with parameters θ. It specifies P (tj , zj |θ,M), the probability of observ-
ing an event at time tj with signal zj .

The goal is (1) to compare the posterior probability of different modelsM , and (2) to determine the posterior
PDF over the model parameters for a given M . After describing the measurement and time series models in
the next two subsections, I will then show how to combine them in order to calculate the likelihood.

2.2 Measurement model

If t and z have no bounds, or can be approximated as such, and the known measurement uncertainties are
standard deviations, then an appropriate choice for the measurement model is a 2D Gaussian in the variables
(sj , yj) for event j. If we assume no covariance between the variables then this reduces to product of two
1D Gaussians

P (Dj |tj , zj , σj) =
1√

2πσsj
e
−(sj−tj)2/2σ2

sj
1√

2πσyj
e
−(yj−zj)2/2σ2

yj . (1)

(The two terms are normalized with respect to sj and yj respectively.) If we had additional information
about the measurement, e.g. asymmetric error bars or strictly positive signals, then we should adopt a more
appropriate distribution. If the uncertainty estimates we had were not standard deviations, then we may also
want to use a different measurement model.

2.3 Time series model

Without loss of generality, the time series model can be written as the product of two stochastic components

P (tj , zj |θ,M) = P (zj |tj , θ,M)P (tj |θ,M) (2)

which I will refer to as the signal and time components respectively. For many processes it is appropriate
to express the signal component using two independent subcomponents: the stochastic model itself and
a deterministic function which defines the time-dependence of its mean. This stochastic subcomponent
describes the intrinsic variability of the true signal of the physical process at a given time, with the PDF
P (zj |tj , θ′,M). I refer to this as TSMod2. An example is a Gaussian

P (zj |tj , θ′,M) =
1√
2πω

e−(zj−η[tj ])
2/2ω2

(3)

where θ′ = (η, ω) are the parameters of the distribution: η[tj ] is the expected true signal at true time tj ;
ω is a parameter which reflects the degree of stochasticity in the process. This is illustrated schematically
for a single point in Figure 2. The Gaussian is just an example, and would be inappropriate if z were a
non-negative quantity.

The relationship between the expected true signal and the true time is given by a deterministic function,
η(t; θ1), where θ1 denotes another set of parameters. I refer to this deterministic subcomponent as TSMod1.
A simple example is a single frequency sinusoid

η =
a

2
cos[2π(νt+ φ)] + b (4)
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Figure 2: Conceptual representation of the stochastic nature of the signal component of the time series
model, P (zj |tj , θ′,M) (in red) of the true signal, z, at a true time tj (here shown as a Gaussian).

which has parameters θ1 = (a, ν, φ, b), the amplitude, frequency, phase, and offset. Having parametrized
the signal component of the time series model in this way, it is convenient to write θ′ = (θ1, θ2) in general,
where θ2 = ω in the example of equation 3.

The second component of the time series model in equation 2 describes the intrinsic randomness in time of
the events which make up the physical process. This is represented by P (tj |θ3,M), which I refer to this as
TSMod3. In the simplest case this would be a flat distribution in t between the earliest possible and latest
possible times, T1 and T2,

P (tj |θ3,M) =


1

T2 − T1
if T1 < tj < T2

0 otherwise

(5)

where θ3 = (T1, T2) are its parameters. We may instead have a process in which we expect the probability
of an event occurring to vary over time, as used in the modelling of impact cratering in Bailer-Jones (2011),
for example. In the present paper I will use a uniform distribution.

This three-subcomponent approach (TSMod1,2,3) to the time series model is conceptually a little complex,
so let us consider what it means. We have a physical process in which the expected value of the signal
varies with time in a deterministic manner. This is given by η(t; θ1), e.g. equation 4. At any given true time,
the actual signal of the process can vary due to intrinsic randomness in the process. This is described by
P (zj |tj , θ1, θ2,M), an example of which is equation 3. Finally, although the mean of the process signal is
considered to vary continuously in time, there may be a time varying probability that an event actually occurs
(e.g. palaeontological mass extinctions). This is described by P (tj |θ3,M). Note that the stochasticity in the
time series model has nothing to do with measurement noise. It is intrinsic to the process.

This description of the signal component as a stochastic model with a time-independent variance and a
(deterministic) time-dependence for the mean we might refer to as a partially stochastic process. A fully
stochastic process, in contrast, is one in which all the parameters of the PDF P (zj |tj , θ,M) have a time-
dependence, so this decomposition of the signal component into TSMod1 and TSMod2 is not possible. An
example is the Ornstein–Uhlenbeck process, which will be used in this work. It is described in appendix B.

The overall time series model is the combination of these three subcomponents

P (tj , zj |θ,M) = P (zj |tj , θ1, θ2,M)P (tj |θ3,M) (6)
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Table 2: Time series models of the three types, with parameters θ. The penultimate columns shows possible
prior PDFs over these parameters, which themselves have parameters α. These prior PDFs respect the limits
on θ listed in the final column. (In some cases there is more than one prior form possible.)

Name Function θ prior PDF, P (θ;α) θmin, θmax

TSMod1 = η(t; θ1)
FuncUniform b b Gamma(b; shape, scale) 0,∞

N (b; mean, sd) −∞,∞
FuncLinear m(t− t0) + z0 m Cauchy(m) (see section A.1) −∞,∞

t0 N (t0; mean, sd) −∞,∞
z0 Gamma(z0; shape, scale) 0,∞

N (z0; mean, sd) −∞,∞

FuncSigmoid a
(

1 + e−(t−t0)/λ
)−1

a Gamma(a; shape, scale) 0,∞

λ N (λ; mean, sd) −∞,∞
t0 N (t0; mean, sd) −∞,∞

FuncSigmoidZero a
(

1 + e−(t−t0)/λ
)−1

− a

2
as FuncSigmoid

FuncSinusoid
a

2

(
cos[2π(νt+ φ)] + 1

)
a Gamma(a; shape, scale) 0,∞

ν Gamma(ν; shape, scale) 0,∞
φ U(φ) 0, 1

FuncSinusoidZero
a

2
cos[2π(νt+ φ)] as FuncSinusoid

FuncQuasiSinusoid
a

2

(
cos[2π(νt+ φ+ Ψ[t])] + 1

)
a Gamma(a; shape, scale) 0,∞

ν Gamma(ν; shape, scale) 0,∞
φ U(φ) 0, 1

Ψ(t; fx) x ∈ (1, 2, 3, 4) see sec-
tion A.2

fx U(φ) −1,+1

FuncQuasiSinusoidZero
a

2
cos[2π(νt+ φ+ Ψ[t])] as FuncQuasiSinusoid

TSMod2
ProbGaussian 1√

2πσz
e−(z−η[t;θ1])2/2σ2

z σz Gamma(σz; shape, scale) 0,∞
ProbOUprocess see section B.2 τ Gamma(τ ; shape, scale) 0,∞

c Gamma(c; shape, scale) 0,∞
b N (b; mean, sd) −∞,∞
µ[z1] N (µ[z1]; mean, sd) −∞,∞√
V [z1] Gamma(

√
V [z1]; shape, scale) 0,∞

ProbWienerprocess see section B.4 c Gamma(c; shape, scale) 0,∞
b N (b; mean, sd) −∞,∞
µ[z1] N (µ[z1]; mean, sd) −∞,∞√
V [z1] Gamma(

√
V [z1]; shape, scale) 0,∞

ProbOUprocNaive 1√
2πσz

e−(z−η[t;θ2])2/2σ(t;θ2)2 τ Gamma(τ ; shape, scale) 0,∞
see section B.1 (footnote 12) for
the functional forms of η(t; θ2) and
σ(t; θ2)

c Gamma(c; shape, scale) 0,∞
t0 N (t0; mean, sd) −∞,∞
z0 none −∞,∞

ProbIntOUprocNaive as ProbOUprocNaive, but with
different η(t; θ2) and σ(t; θ2)

as ProbOUprocNaive plus:
w0 N (w0; mean, sd) −∞,∞

TSMod3

ProbUniform


1

T2 − T1
if T1 < tj < T2

0 otherwise

T1 none −∞,∞

T2 none −∞,∞

8



Table 3: Compound models for TSMod1. The uniform component can be removed by making it a fixed
parameter

Name No. parameters

FuncCombUniformSigmoid 4
FuncCombUniformSigmoidZero 4
FuncCombUniformSinusoid 4
FuncCombUniformSinusoidZero 4
FuncCombUniformQuasiSinusoid 8
FuncCombUniformQuasiSinusoidZero 8
FuncCombUniformSigmoidSinusoid 7
FuncCombUniformSigmoidZeroSinusoidZero 7

where θ = (θ1, θ2, θ3). For the cases shown above, this model has seven parameters, θ = (a, ν, φ, b, ω, T1, T2),
although possibly we would fix (T1, T2) based on inspection of the time range of the data.

Table 2 shows some specific time series models and their parametrizations. Some clarification is necessary

• the choice of form for the prior for a given parameter is dictated in part by the support of the parameter,
as discussed in section 3.3

• the FuncLinear is explained in more detail in section A.1

• a uniform PDF has no parameters when the range is fixed. This is the case for the phase parameter, φ,
for FuncSinusoid

• in all TSMod1 models except FuncUniform, a is the total (peak-to-peak) signal amplitude

• in FuncSigmoid and FuncSinusoid the minimum value of the function (if evaluated over an ar-
bitrarily long time scale) is zero, whereas the two functions of the similar name but ending in “Zero”
are symmetric about zero. The former are better suited for signals which are positive everywhere

• “none” in the penultimate column means that these model parameters are fixed, typically derived from
the data or other prior assumptions (formally the prior is a delta function)

• other (compound) models for TSMod1 are formed by summing the listed functions, e.g.
FuncCombUniformSinusoidZero (4 parameters) or FuncCombUniformSinusoidSigmoid
(7 parameters). A complete list is given in Table 3

It should be apparent that this method (with the partially stochastic models) can be used to model any 2D
data set, not just temporal data. In particular, using the linear model (TSMod1=FuncLinear) it offers
a full Bayesian solution to the problem of fitting a straight line to data sets with arbitrary errors in both
variables (sometimes solved conventionally using “total least squares”).
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2.4 Likelihood

The probability of observing data Dj from time series model M with parameters θ when the uncertainties
are σj , is P (Dj |σj , θ,M), the event likelihood. We can write this as

P (Dj |σj , θ,M) =

∫
tj ,zj

P (Dj , tj , zj |σj , θ,M) dtjdzj

=

∫
tj ,zj

P (Dj |tj , zj , σj , θ,M)P (tj , zj |σj , θ,M) dtjdzj

=

∫
tj ,zj

P (Dj |tj , zj , σj)︸ ︷︷ ︸
Measurement model

P (tj , zj |θ,M)︸ ︷︷ ︸
Time series model

dtjdzj (7)

where the time series model and its parameters drop out of the first term because Dj is independent of this
once conditioned on the true variables, and the measurement model (via σj) drops out of the the second
term because it has nothing to do with the predictions of the time series model. For specific, but com-
mon, situations, this 2D integral can be approximated by a 1D integral or even a function evaluation (see
section C).

If we have a set of J events for which the ages and signals have been estimated independently of one another,
then the probability of observing these data D = {Dj}, the likelihood, is

P (D|σ, θ,M) =
∏
j

P (Dj |σj , θ,M) (8)

where σ = {σj}.

3 Model comparison

3.1 Evidence

The evidence, E, is obtained by marginalizing the likelihood over the parameter prior probability distribu-
tion, P (θ|M).

E ≡ P (D|σ,M) =

∫
θ
P (D, θ|σ,M) dθ

=

∫
θ
P (D|σ, θ,M)︸ ︷︷ ︸

likelihood

P (θ|M)︸ ︷︷ ︸
prior

dθ . (9)

Note that the evidence is conditioned on both the measurement model (via σ) and the time series model,
M . For a given set of data, we calculate this evidence for the different models we wish to compare, each
parametrized by θ. The parameter prior, P (θ|M), encapsulates our prior knowledge of the plausibility of
different parameters. (This is independent of σ, which is why it was removed in the above equation.) As the
evidence (and the likelihood) have an uninterpretable scale, we usually examine the ratio of the evidence of
a model relative to some base model (the Bayes factor).

The final step is to use Bayes’ theorem to calculate the model posterior probabilities for each model, which
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for one particular model M0 is (omitting the explicit dependence of the evidence on σ)

P (M0|D) =
P (D|M0)P (M0)

P (D)

=
P (D|M0)P (M0)

k=K∑
k=0

P (D|Mk)P (Mk)

=
1

1 +
∑k=K
k=1 P (D|Mk)P (Mk)
P (D|M0)P (M0)

(10)

=
1

1 +
∑k=K

k=1 BFk0Rk0

. (11)

where P (Mk) is the prior probability for model k, BFk0 ≡ P (D|Mk)/P (D|M0) is the Bayes factor of
model Mk relative to model M0, and Rk0 ≡ P (Mk)/P (M0) is the ratio of prior probabilities for these
models. These model posterior probabilities are usually difficult to determine, because it demands that we
can specify all plausible models.

3.2 Cross validation likelihood

The evidence is often sensitive to the parameter prior PDF. For example, in a single-parameter model,
if the likelihood were constant over the range 0 < θ < 1 but zero outside of this, then the evidence
calculated using a prior uniform over 0 < θ < 2 would be half that calculated using a prior uniform over
0 < θ < 1. In a model with p such parameters the factor would be 2p. If we had no reason to limit the
prior range, then the evidence would be of limited use in this example. In cases where the parameters have
a physical interpretation and/or where we have reasonable prior information, then we may be able to justify
a reasonable choice for the prior. But in any case we should explore the sensitivity of the evidence to “fair”
changes in the prior. A fair change is one which we have no reason not to make. For example, if there were
no reason to prefer a prior which is uniform over frequency rather than period, then this would be a fair
change. (See Bailer-Jones 2011 for an illustration of this on real data.) If the evidence changes enough to
alter the significance of the Bayes factors when making fair changes, then the evidence is over-sensitive to
the choice of prior, making it impossible to draw robust conclusions without additional information.

When the parameters do not have a physical interpretation, it will be very difficult to identify a reasonable
prior PDF, and if neutral changes are a problem, then the evidence is not useful. We may then choose to use
one of the many “information criteria” which have been defined. The two most popular are (e.g. Kadane &
Lazar 2004)

Akaike Information Criterion (AIC) = −2 ln L̂+ 2Nθ (12a)

Bayesian Information Criterion (BIC) = −2 ln L̂+ 2NθJ (12b)

where L̂ = P (D|σ, θ̂,M) is the maximum likelihood, Nθ is the number of model parameters, J is the num-
ber of data points (events), and the natural logarithm is used. In both cases the second term acts a regularizer
to the bare maximum likelihood. In both cases L̂ would normally be found via a direct maximization of the
likelihood function (not currently implemented in ctsmod).

Another criterion is based on the deviance,D(θ) = −2 lnL+C, where L = P (D|σ, θ,M) is the likelihood
and C is a constant which will cancel out in any useful measures based on the deviance (Spiegelhalter et al.
2002). This is used to define the

Deviance Information Criterion (DIC) = 2D(θ)−D(θ) (13)
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where the means are taken over samples of θ drawn from the posterior PDF, typically by MCMC.1 The
advantage of these various information criteria is that they are simple recipes and quick to calculate, but
they all make (possibly unreasonable) assumptions. Extensive discussions can be found in the literature.

Another approach is a form of K-fold cross validation (CV). We (randomly) split the data set (J events)
into K disjoint partitions, where K ≤ J . Denote the data in the kth partition as Dk and its complement as
D−k. The idea is to calculate the likelihood ofDk usingD−k, without having an additional dependence on a
specific choice of model parameters. That is, we want P (Dk|D−k, σ,M), which tells us how well, in model
M , some of the data are predicted using the other data. Combining these likelihoods for all k = 1 . . .K
gives an overall measure of the fit of the model. By marginalization

P (Dk|D−k, σ,M) =

∫
θ
P (Dk|D−k, σ, θ,M)P (θ|D−k, σ,M)dθ

=

∫
θ
P (Dk|σk, θ,M)︸ ︷︷ ︸

likelihood

P (θ|D−k, σ−k,M)︸ ︷︷ ︸
posterior

dθ (15)

where D−k drops out of the first term because the model predictions are independent of these data once the
parameters have been specified. (σ−k and σk drop out of the first and second terms, respectively, also for
reasons of independence.) (Cf. equation 10 of Vehtari & Lampinen 2002.) If we draw a sample {θn} of size
N from the posterior P (θ|D−k, σ−k,M), then the Monte Carlo approximation of this integral is

Lk ≡ P (Dk|D−k, σ,M) ≈ 1

N

n=N∑
n=1

P (Dk|σk, θn,M) (16)

i.e. the mean of the likelihood of the data in partition k. I will call Lk the partition likelihood. Note that
here the posterior is sampled using the data D−k only.

Because Lk is the product of event likelihoods, it scales multiplicatively with the number of events in
partition k. An appropriate combination of the partition likelihoods over all partitions is therefore to take
their product, i.e.

LCV =
k=K∏
k=1

Lk or logLCV =
∑
k

logLk (17)

which I call the K-fold cross validation likelihood, for 1 ≤ K ≤ J . If K > 1 and K < J then its value
will depend on the choice of partitions. If K = J there is one event per partition (a unique choice). This is
leave-one-out CV (LOO-CV), the likelihood for which I will denote with LLOO−CV. If K = 1, we just use
all of the data to calculate both the likelihood and the posterior. I will refer to this as the posterior-averaged
likelihood, and denote it with LPA. This is not a very correct measure of goodness-of-fit, however, because
it uses all of the data both to draw the posterior samples and to calculate the likelihood. It is analogous to
the evidence, which is the likelihood averaged over the prior. We can also compare it to −D(θ)/2, which is
the (log base e) likelihood at the average (over the posterior) parameters.

The required posterior PDF is given by Bayes’ theorem. It is sufficient to use the unnormalized posterior
(as indeed we must, because the normalization term is the evidence), which is

P (θ|D−k, σ−k,M) ∝ P (D−k|σ−k, θ,M)P (θ|M) (18)

1I note in passing that Neff = D(θ)−D(θ) is considered as the effective number of parameters, so

DIC = D(θ) + 2Neff , (14)

which makes the parallel to the AIC clearer (and −D(θ)/2 is a log likelihood). Spiegelhalter et al. (2002) make the point that the
number of free parameters in a Bayesian analysis is far from obvious, as we realize when we think of marginalizing over parameters
in a hierarchical model: do we count them? This undermines the usefulness of AIC and BIC.
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i.e. the product of the likelihood and the prior. LCV therefore still depends on the choice of prior (discussed
in section 3.3). However, the likelihood will often dominate the prior (unless the data are very indetermi-
nate), in which case LCV will be less sensitive to the prior than is the evidence.

There is a close relationship between the partition likelihood and the evidence. Whereas the evidence in-
volves integrating the likelihood (for D) over the prior (equation 9), the partition likelihood involves inte-
grating the likelihood (for Dk) over the posterior (for D−k) (equation 15). We can further use the product
rule to write the partition likelihood as

Lk ≡ P (Dk|D−k, σk,M) =
P (D|σ,M)

P (D−k|σ−k,M)
. (19)

The partition likelihood is equal to the ratio of the evidence calculated over all the data to the evidence
calculated on the subset of the data used in the posterior sampling. As the same prior PDF enters into both
terms, it will, in some vague sense, “cancel” out (although I stress that there is still a prior dependence).

It is important to realize that the model complexity is taken into account by the model comparison with the
K-fold CV likelihood (and therefore the LOO-CV likelihood), just as it is with the Bayesian evidence. That
is, more complex models are not penalized simply on account of having more parameters.

3.3 Parameter priors

All of the model measures mentioned – the evidence, the K-fold CV likelihood, also the DIC – are calcu-
lated by averaging the likelihood over the model parameter space. This parameter space must therefore be
sampled, and this requires that we specify a prior PDF, P (θ|M), over these parameters (the parameters of
the time series model).

We invariably have some information about values of the model parameters, such as bounds or plausible
values. For example, standard deviations, frequencies and amplitudes cannot be negative, and a phase must
lie be between 0 and 1. I therefore adopt simple distributions which respect these constraints, in particular
the gamma distribution for the former case. This distribution is characterized by two parameters, shape and
scale (both positive). It may be useful to recall that the mean of this distribution is shape times scale, and its
variance is the mean times scale.

The components of the time series models used in this article, along with their prior distributions, are shown
in Table 2.

We have to assign values for the parameters, α, of the prior PDFs. Although we rarely have sufficient
knowledge to specify these precisely, we can use our knowledge of the problem and the general scale of
the data to assign them. I adopt the following procedure for assigning what I call the canonical priors
(appropriate for the data which are analysed in Bailer-Jones 2012). Some parameters are set according to
the standard deviation of the signal values, ςy =

√
1

J−1

∑
j(yj − yj)2, where yj is the mean signal.

• For the Off model (parameter b), I use a Gaussian with zero mean and standard deviation 1–2 times
ςy. The exact value is determined by visual inspection of the light curve.

• For the Sin model, I use a gamma prior on the frequency, ν, with shape=1.5 and scale=0.5 for all light
curves (Fig. 3). This assigns significant prior probability to a broad range of frequencies believed to
be plausible based on knowledge of the problem, the temporal sampling, and the total span of the light
curves. For the amplitude, a, I use a gamma prior with shape=2 and scale 1–3 times ςy.

• For the Stoch model (parameter ω), I use gamma prior with shape=2 and scale 1–2 times ςy.
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Figure 3: Three examples of the gamma PDF, used as the prior for non-negative model parameters. The
solid line, with shape=1.5, scale=0.5, is used as the prior PDF over frequency in units of inverse hours.

• For the OU process, I use a gamma prior on both τ and c with shape=1.5. τ is a decay timescale, so I
set its scale parameter to one quarter of the duration of the time series. The long-term variance of the
OU process is cτ/2. Equating this to ς2

y , I therefore set the scale of the diffusion coefficient, c, to be
2ς2
y/τ . The parameters b and µ[z1] are both assigned Gaussian priors with a standard deviation equal

to ςy. The mean of the former is set to zero, and the mean of the latter to y1, the signal value of the
first data point. The final parameter,

√
V [z1], a standard deviation, is assigned a gamma distribution

with shape=1.5 and scale=ςy.

This scheme of “data-based” priors was arrived at after some experimentation, and generally the results are
robust to small changes in the priors (as demonstrated later).

4 Parameter estimation

For an arbitrary sample of parameters, obtained in any way, we can explicitly calculate the posterior PDF
at each parameter and then just plot this. However, unless the sample has been well chosen to sample all
the variations, it may not show the relevant structure of the PDF. In particular, it may miss the peak(s). If
instead the set of parameters, {θ}, has been drawn from the posterior PDF itself (typically by MCMC), then
this gives an “ideal” sampling. In that case we could (should) instead use a density estimation algorithm
to estimate the PDF directly from these samples, i.e. without using the posterior density values themselves.
(Indeed, some MCMC algorithms, such as MCMCmetrop1R{MCMCpack} in R, only return the samples
and not the function estimates.) Note that in both cases the distributions plotted will not be normalized.

When the samples have been drawn directly from the posterior, then we can easily estimate statistical quan-
tites of the distribution. For example, the mean and standard deviation of the posterior are just the mean and
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standard deviation of the samples, i.e.

θ =
1

N

∑
n

θn (20)

σ =

√
1

N − 1

∑
n

(θn − θ)2 (21)

respectively. If the samples have instead been drawn from some other distributionQ(θ) (which also need not
be normalized), then we have to reweight them in order to calculate statistical quantities, a method known
as importance sampling. In this case

θ =
1∑
nwn

∑
n

wnθn (22)

where wn = P (θn)/Q(θn) and P (θ) is the posterior PDF. The more different Q(θ) is from P (θ), the less
accurate this estimate will be (or the more samples we will need to achieve given accuracy).

There is no single correct answer to the question of how we best summarize the posterior PDF. The mean
and mode are common, but which is preferred depends on many factors. The PDF should always be plotted,
in 1D or 2D projections. The global mode – sometimes called the Maximum A Posterior or MAP estimate
– can easily be found, but it may not correspond to the maximum of the posterior PDF found by density
estimation. This is because density estimation smooths (and then samples) the posterior PDF. A common
approach is to use 1D density estimation to plot the posterior PDFs over each of the parameters separately,
thereby marginalizing over all the other parameters. The maxima of these – the “1D modes” – will generally
be more stable than the MAP. The ctsmod code provides utilities for estimating both the 1D modes and
the MAP (see section D.7).

One should be careful when summarizing PDFs for parameters with periodic boundary conditions. Take the
phase a sinusoidal model, with domain 0–1. If the true value were near 1, then the MCMC sampling could
have values slightly above 0 and slightly less than 1. Their mean would be 0.5. The mode would be a better
estimator here, but only if the periodicity of the value is taken into account. We would need to modify our
density estimation routine to take this into account. This is done in the function plot.postSamp1d()
in the file utilities.R by wrapping the data.

5 Numerical sampling and integration

Whether calculating the evidence or the K-fold CV likelihood, we need appropriate methods for doing
numerical integration. This is done by using a Monte Carlo method of sampling the appropriate probability
distribution. I use four different methods:

1. simple Monte Carlo samping of the prior to estimate the evidence;

2. Metropolis sampling of the posterior to estimate the K-fold CV likelihood;

3. parallel tempering sampling of the posterior to estimate the K-fold CV likelihood. The resulting
chains can also be used to estimate the evidence (known as thermodynamic integration);

4. sampling the posterior using the affine-invariant ensemble sampler of Goodman & Weare (2010) to
estimate the K-fold CV likelihood.
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The first samples the prior. All the others are types of Markov Chain Monte Carlo (MCMC) method and
are used to sample the posterior. The resulting samples can therefore be used to estimate the parameter
posterior probability distributions also. These methods are now explained. Alternative possible methods for
estimating the evidence are summarized in section F.

5.1 Simple Monte Carlo

This can be used to approximate the evidence (equation 9).

Uniform sampling. The most straight-forward approach is to sample θ from a uniform distribution over
a hyperrectangle with sufficiently large bounds. In one dimension the Monte Carlo approximation is∫

θ
f(θ)dθ ≈

n=N∑
n=1

f(θn)δθ =
∆Θ

N

n=N∑
n=1

f(θn) (23)

where f(θ) = P (D|θ,M)P (θ|M), the sample {θn} is drawn from a uniform distribution, ∆Θ is the range
of θ from which they are drawn, and δθ = ∆Θ/N is the average spacing between the samples. (We could
instead sample regularly.) If P (θ|M) = 1/∆Θ then this just reduces to the average of samples. This was
used in Bailer-Jones (2011), but is not used in ctsmod.

Sample the prior (arithmetic mean of likelihoods). The generalization of the Monte Carlo principle is
that for a function f ′(θ)∫

θ
f ′(θ)P (θ)dθ ≈ 1

N

n=N∑
n=1

f ′(θn) (24)

where the sample {θn} has been drawn from the PDF P (θ).2 With f ′(θ) = P (D|σ, θ,M) and P (θ) =
P (θ|M), we see that by drawing samples from the prior and then calculating the likelihood at these, the
evidence for model M is just the average of these likelihoods. This is used in ctsmod. Examples of prior
PDFs for the parameters of various models are shown in Table 2. We can assume that these priors are all
independent, in which case the prior PDF over several parameters is just the product of these. Sampling
from these function is easy and quick (e.g. rgamma, rnorm in R), so we do not need to use MCMC.

The first method above (uniform sampling) will be very inefficient for parameter spaces with dimensionality
more than about two, because the vast majority of the samples will have a very small prior and/or likelihood,
and so most will not contribute to the evidence. Thus our estimate of the evidence will be dominated by
relatively few samples and may even miss the most significant parts of the likelihood function, implying an
estimate with large variance. The second method diminishes this problem to some degree by sampling from
the prior. But the more informative the data, the narrower the likelihood function becomes comapred to the
prior, so again most of the samples will be negligible. This problem becomes more accute the higher the
dimensionality of the parameter space.

2This is just equal to the expectation value of f ′(θ) under P (θ). If P (θ) is not normalized, then we instead have∫
θ
f ′(θ)P (θ)dθ∫
θ
P (θ)dθ

≈ 1

N

n=N∑
n=1

f ′(θ) . (25)

Note that the samples we drawn from P (θ) will be the same whether or not it is normalized, so we don’t need a normalized PDF
in order to calculate these expectations. The uniform distribution is a special case, however, because it only becomes a proper, i.e.
normalizable, distribution if we specify a range, ∆θ. In that case P (θ) = 1 and

∫
θ
P (θ)dθ = ∆θ and equation 25 reduces to

equation 23.
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5.2 Metropolis (and parameter transformations)

I use the standard Metropolis algorithm with a Gaussian sampling distribution. As this is a symmetric
sampler, the Hastings factor is not needed. Usually I use a diagonal covariance matrix (although a non-
diagonal matrix can be produced by specifying a common correlation coefficient between all parameters).

Those model parameters which do not naturally have an infinite range may be transformed in order to be
commensurate with Gaussian sampling. (As of v20 this is done for all such parameters except phase.)
When this is done, the Jacobian, J , must be taken into account in the Monte Carlo algorithm. Specifically,
the normal Metropolis ratio P (θp)/P (θc) – where θc is the current value of the parameter and θp is the
proposed value – is replaced with3

P (θp)

P (θc)

J(θp)

J(θc)
. (26)

As all the following transformations are one-dimensional, the total Jacobian for all parameters is just the
product of the individual Jacobians (the determinant of the diagonal Jacobian matrix). Let x be the natural
parameter and y its transformation. Suitable tranformations and their corresponding Jacobians, J = ∂x/∂y
(note the orientation of this derivative), are as follows.

• All parameters with a range (0,∞), such as frequency, are logarithmically transformed, the inverse
transformation of which is the exponential.

y = log10 x ⇔ x = 10y J = ln(10) ey with range (0,∞) (27)

• Parameters with a range (0, 1) could be transformed using the logit function, the inverse of which is
the logistic (sigmoid).

y = ln
x

1− x
⇔ x =

1

1 + e−y
J =

e−y

(1 + e−y)2
with range (0, 1/4) (28)

While this could be used for the phase parameter in sinusoidal functions, I actually use no transfor-
mation at all. The parameter is kept within the range (0, 1) by use of the (uniform) prior: proposals
outside this region give zero prior probability, so will be rejected by the MCMC sampling algorithm.4

• Parameters with a range (−1,+1) can be transformed using 2arctanh.

y = ln
1 + x

1− x
⇔ x =

1− e−y

1 + e−y
J =

2 e−y

(1 + e−y)2
with range (0, 1/2) (29)

This is used for the variable phase parameters in FuncQuasiSinusoid, fx (see section A.2).
3One could still use the original Metropolis algorithm if you instead express the posterior PDF as a function of the transformed

variable. This is of course equivalent to using the Jacobian. This is of course not the same as just replacing the variable with its
transformed version in the posterior!

4In v19 of the code I used a circular transformation for the phase parameter φ in all existing models (in which case there is
no transformation) and did not impose any explicit prior. The inverse transformation of this is y mod 1, which keeps the phase
within the range (0, 1) in the function value. However, both this and the logit transformation still generate problems when used
with emcee. Specifically, they do not prevent the transformed values of phase become very large (positive or negative), which can
result in the proposed parameter in the emcee algorithm giving a numerical error. See section E.2. If we only used the Metropolis
algorithm then the circular transformation is preferable, because all proposed phase steps have uniform non-zero PDF, and the
transformed parameter (assuming a a reasonable standard deviation for the Gaussian sampler) will never reach numerically large
values (more than around 1e+ 310) within any plausible number of iterations.
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• For the straight line fit FuncLinear, I also use a transformation, but there to transform the infinite
range of the gradient, m, into the range (−π/2,+π/2) of the angle, A. I do this so that the Gaussian
sampler can move continuously across what would otherwise be boundaries at m = ±∞. See section
A.1 for an explanation. The transformation (m ≡ x,A ≡ y) is

y = arctan(x) ⇔ x = tan(y) J =
1

cos2 y
with range (0, 1) (30)

The Metropolis algorithm works with the transformed variables.5 The standard deviations of the sam-
pling covariance matrix are set to fixed, relatively small values, typically 0.05–0.1 for the logarithmically
transformed parameters (these are then scale factors). A consequence of this scaling is that the parame-
ter can never exactly reach the extreme values (zero for the log transformation), but this is not necessarily
a disadvantage. Note, however, that we potentially get numerical problems at these extreme values (see
section E.2).

5.3 Parallel tempering and thermodynamic integration

Parallel tempering

One of the problems with standard Metropolis is its fixed step sizes, i.e. the fixed covariance matrix in the
sampling distribution. Steps which are too large will not sample the posterior finely enough; steps which are
too small will take far too long to sample the distribution. This is particularly problematic if the posterior
is more than a few dimensional, highly peaked and/or multimodal, one or more of which is often true. In
practice we often end up with poor chains which poorly represent the true posterior.

Parallel tempering is a method of overcoming this, by effectively adapting the step size while maintaining
the condition of detailed balance (in some limit). The idea is to run multiple chains in parallel, each at a
different “temperature”, and permit them to interact. The “hot” chains can make larger steps and search
the space more widely. Their parameter samples can be passed down to the “cold” chain, which represents
the target distribution, which searches more finely. For an overview see Earl & Deem (2005), and for an
example see Gregory (2005).

We achieve parallel tempering by modifying the parameter posterior PDF (e.g. equation 18) to be

P (θ|D,M, β) = P (D|θ,M)βP (θ,M) (31)

(to within a normalization constant, and dropping σ from the notation), where 0 ≤ β ≤ 1 is the inverse
temperature. β = 1 corresponds to the target distribution, and the lowest temperature (the “cold chain”).
A value of β less than one tends to flatten out (“heat up”) the distribution, thus making it more likely that
transitions proposed by the normal Metropolis algorithm will be accepted. β = 0 modifies the likelihood to
make it constant, in which case P (θ|D,M, β) is just equal to the prior.

In parallel tempering we set up Nchain chains (typically 5–10) with β = (0, . . . , βc, . . . , 1) (these could be
equally spaced, although other choices are possible). We run the Metropolis algorithm on each in parallel,
with the posterior defined as in equation 31. After every Nswap iterations (perhaps 10–50), we choose one

5The forward transformation functions, trans.theta(), are only applied once – to the initial conditions – within
sample.posterior() before starting the MCMC. The inverse transformations, invtrans.theta(), are applied imme-
diately before every function evaluation – in calc.post.mcmc() – as well as to the final sets of samples before they are
returned (also in sample.posterior()). The Jacobian functions, jacobian.theta(), take the transformed parameters (y) as
their inputs, so the function which computes the total Jacobian, calc.jacobian.mcmc(), does not need to apply the inverse
transformation.
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of the chains c = (1, . . . , Nchain − 1), as a candidate for swapping its parameter values, θc, with those of its
cooler neighbour, θc+1. We make this swap with probability

min

{
1,

P (θc|D,M, βc+1)

P (θc|D,M, βc)

P (θc+1|D,M, βc)

P (θc+1|D,M, βc+1)

}
. (32)

The first fraction in the above is the ratio of the PDF in chain c which we would have after making the swap,
to what it was before we made the swap. The second is the same but for chain c + 1. Thus if the swaps
are both favourable, both terms are greater than one, and the swap will be made. If neither is favourable,
the product is less than one, and the less favourable the less likely there will be a swap. If one is favourable
and the other not, we may get a swap (with variable probability). Through these interactions, the broader
searching of the hotter chains will explore parts of parameter space which can be taken up for finer search
by the cooler chains. At the end, we only use the cold chain for calculating the likelihood.

The number of chains needs to be large enough to ensure close enough spacing and thus sufficient inter-
action. Initial tests suggest that in situations where the Metropolis algorithm results in poor samplng (e.g.
chains with low acceptance rates), parallel tempering can improve this.

Note that the Jacobian for any variable transformations enters in the same way as for the basic Metropolis
algorithm: the ratio of the posterior PDFs is replaced by the equation 26. The expression for the chain swap
probability, equation 32, is unchanged because the Jacobians, which are only functions of θ, cancel.

Thermodynamic integration

We can also use the resulting chains to estimate the evidence, using the method of thermodynamic integra-
tion (e.g. Friel & Pettitt 2008, Lartillot & Philippe 2006, or Gregory 2005 section 12.7).

First we define a partition function as the integral of the modified posterior in equation 31 (which is some-
times called the “power posterior”)6

Z(β) =

∫
P (D|θ,M)βP (θ,M)dθ (33)

It can then easily be shown (see references) that

d

dβ
lnZ(β) =

∫
ln[P (D|θ,M)]P (D|θ,M)β P (θ|M) dθ∫

P (D|θ,M)β P (θ|M) dθ

= 〈lnP (D|θ,M)〉β (34)

i.e. the expectation of the natural logarithm of the likelihood with respect to the modified posterior with
value β. This is easily estimated as the average of likelihoods obtained from the samples (chain) for that
value of β (after the burn-in), which we denote with {θn}β , i.e.

〈lnP (D|θ,M)〉β ≈
1

N

n=N∑
n=1

lnP (D|θn,β,M) (35)

where N is the number of samples. Now, it is clear from equation 34 that∫ 1

0
d lnZ(β) = lnZ(1)− lnZ(0)

=

∫ 1

0
〈lnP (D|θ,M)〉β dβ (36)

6It would be more accurate to write this as Z(D|β,M)
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From equation 33

Z(1) =

∫
P (D|θ,M)P (θ|M)dθ = P (D|M) and (37)

Z(0) =

∫
P (θ|M)dθ = 1 (38)

so we can finally write equation 36 as

lnP (D|M) =

∫ 1

0
〈lnP (D|θ,M)〉β dβ . (39)

This equation tells us that the natural logarithm of the evidence is the integral over β of the quantities in
equation 35. It is, in some sense, an average of evidences calculated for different temperatures. We can
approximate this integral numerically, either using a simple average (as β varies from 0 to 1), or better,
using the trapezium rule. The more chains we have, the more accurate this approximation will be.

5.4 Affine-invariant ensemble sampler (emcee)

The Metropolis algorithm is non-adaptive, in the sense that the typical step sizes in the parameter space are
constant (dictated by the fixed covariance matrix). An alternative MCMC algorithm has been defined by
Goodman & Weare (2010). (See also Foreman-Mackey et al. 2013, who call their implementation emcee.)
This does not make use of any proposal distribution. Instead, it uses a set of W “walkers”, each of which
is a vector of the model parameters. These explore the parameter space simultaneously, with the position
of each walker being updated at each iteration by the position of the others. Let θw(n) be the position of
walker w in the N dimensional parameter space at iteration n. To update its position, we select one of the
other walkers at random, call this x. The proposed step of walker w for the next iteration is

Y = θx + z(θw − θx) (40)

where z is a (positive) random variable drawn from the distribution g(z). This is known as the stretch move,
because w is stretched along the line joining it to v, either towards it or away from it (unless z = 1, in which
case it does not move).

g(z) =


1√
z

if z ∈ [1/a, a]

0 otherwise

(41)

where a > 1. I follow the advice of Foreman-Mackey et al. (2013) and set a = 2. Drawing from g(z)
is actually trivial because it has an analytic cumultative density function, so we can use inverse transform
sampling. A random sample from z is given by

z =
1

a
(1 + (a− 1)U)2 (42)

where U is the uniform distribution over (0, 1). Having calculated the proposed move, Y , it is accepted with
probability

q = min

(
1, zN−1 P (Y )

P (θw(n))

)
. (43)

where P is the function we are sampling. i.e. the posterior PDF. Note that on account of the zN−1 factor,
proposals with a higher posterior PDF are not always automatically accepted. If we have transformed the
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variables, then we must take into account the Jacobian by multiplying P (Y )/P (θw(n)) by J(Y )/J(θw(n))
(see section 5.2).

If the move is accepted, the walker is updated immediately. Thus when selecting walker x above, we select
from a mixture of walkers at iteration n and walkers already updated to iteration n+ 1. This asynchronous
updating is actually required in order to maintain detailed balance.7 If the move is not accepted the walker
remains at its previous position. At the end of the iteration the position of all walkers (whether updated or
not) are copied to the chain of samples of the PDF.

The positions all the walkers at all iterations is then our sampling of the function. Generally we will want
to exclude the early samples as a burn-in period. In ctsmod we initialize the walkers by drawing from a
(diagonal) multivariate Gaussian with small standard deviations.

The walkers cover an infinite range, so the same parameter transformations for the parameters as described
in section 5.2 are use here. (The parameter transformations are actually defined in ctsmod as methods of the
time series model functions themselves, so can be used by any sampling algorithm.) However, it should be
noted that emcee may not prevent the (transformed) parameters extending to very large (positive or negative)
values, which can cause problems: see section E.2.

6 Application procedure

Given a data set and a time series model we wish to evaluate, the procedure for applying the model is as
follows: (1) define the hyperparameters of the prior parameter PDFs, as well as the standard deviations of
the MCMC sampling PDF and its initial values; (2) select a partitioning of the data (normally we will use
LOO-CV, so the choice is unique); (3) for each partition of the data, use MCMC to sample the posterior
PDF, retaining the value of the likelihood at each parameter sample. Average these likelihoods to get the
partition likelihood (equation 16); (4) sum the logarithms of the partition likelihoods to get the K-fold CV log
likelihood (normally the LOO-CV log likelihood) (equation 17). Note that each partition provides a posterior
PDF, which we could plot and summarize. In order to calculate the evidence for a model (equation 9), then
after step (1) we sample the prior PDF and use equation 24. Section D outlines the structure and use of the
code ctsmod which implements this work.

In section C.3 I define the no-model, the model which assumes that the data are just Gaussian variations –
with standard deviation given by the error bars – about the mean of the data. As this model has no parame-
ters, its likelihood, LNM, is equal to its LOO-CV likelihood and its evidence. This is therefore a convenient
baseline against which to compare all other models, so we may report LOO-CV likelihood/evidence for
models relative to this, i.e. logLLOO−CV − logLNM and E − logLNM.

Once we have calculated the K-fold CV likelihoods (or evidences) for a number of models, we need to
compare them. It is somewhat arbitrary how large the difference in the log likelihoods must be before we
identify it as “significant”. Clearly very small differences are not significant, as small changes in the priors
or the data (within the assumed uncertainties) would produce “acceptable” changes in the likelihoods. We
may choose only to consider the difference between models as noteworthy if their log (base 10) likelihoods
differ by more than 1.

7Note that Algorithm 2 in Foreman-Mackey (2013) is actually wrong in this respect, as it claims that walker x is only selected
from the sample at iteration n (David Hogg, private communcation, 22 March 2013).
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A Deterministic models

A.1 Linear model (TSMod1=FuncLinear)

A linear model is normally represented as z = a0 + mt, in which a0 is the intercept with the t = 0 axis.
However, for an arbitrary time scale this axis may lie far from the data, making it difficult to specify priors
on this parameter. A more convenient parametrization is

z = m(t− t0) + z0 (44)

because (t0, z0) is the “middle” of the data. Priors on this (plus initialization for MCMC) are more obvious,
and the price paid – an additional parameter – is probably worth it. Assuming t can be positive or negative,
a Gaussian prior is appropriate for t0 (and this is adopted in ctsmod). The same applies to z, although if it
must be constrained to be positive, a Gamma prior is appropriate for z0. (Both options are available for this
parameter in ctsmod.)

The gradient, m, of the model can be considered as m = tan(A), where A is the angle of the slope from
the t axis. The gradient – rather than A – is adopted as the model parameter as it seems more useful to get
results (posteriors) over m than over A. Nonetheless, a convenient prior is one which is uniform in A (from
−π/2 to +π/2), not least because this has no free parameters, yet covers all possible gradients.8 This prior
is

P (A) =
1

π
(45)

The corresponding prior in m, P (m) is given by

P (m) = P (A)
dA

dm
= P (A) cos2(A)

=
1

π

1

1 +m2
(46)

which is the Cauchy distribution. We may want to constrain m to be positive (or negative), in which case
we just set P (m) to be zero for negative (positive) values of m, and double the above expression (as the
Cauchy distribution is symmetric). This is provided for in ctsmod by setting the hyperparameter sign of
this prior to “pos” or “neg” (setting it to anything else applies no constraint).

A separate issue is how to represent the slope parameter in the MCMC sampling, which uses a Gaussian
sampler. Sampling linearly in A = arctan(m) is convenient because it automatically imposes periodic
boundary conditions: If the current value of A is 89.5◦, for example, and the step is +2◦ taking us to 91.5◦,
this is equivalent to −88.5◦, as tan(91.5◦) = tan(−88.5◦). If we instead sampled in m, we would never be
able to achieve very steep functions (close toA = ±90◦), because the step sizes inm would have to become
arbitrarily large.

A fixed step size in A is probably appropriate if the |m| is not too large. But as this gets larger – as A tends
towards 90◦ – a fixed step size in A coresponds to increasingly larger changes in m, even infinite ones (as
we can cross A = 90◦). This is inconvenient because we loose sensitivity to relevant gradient changes.
Trying to adapt the step sizes is probably hopeless, so in general we should rescale our data such that the
magnitudes of the expected gradients are not too large, say less than 50 or so. Of course, if we rescaled in
this way we would not require the ability to cross the A = ±90◦ line, in which case sampling in m becomes

8A uniform prior over m would be improper, and so unusable in the evidence calculation.
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feasible again. But sampling in A has the slight advantage of being less sensitive to the exact scale of the
two variables, so this is used in ctsmod.

When applying this model to data with no intrinsic slope, it will tend to return a PDF centered around zero
slope. This follows because the prior – equation 46 – has its maximum at m = 0. As this same prior is
uniform in A, which has no preferred direction, this may seem paradoxical. But it makes sense when we
remember that we are inferring the probability density function over m, and not over A.

A.2 Quasi-sinusoidal model (TSMod1=FuncQuasiSinusoid)

This model is like the sinusoidal model but has an additional time-variable phase term, Ψ(t), shown in
Table 2, e.g. a

2 cos[2π(νt + φ + Ψ[t])] for FuncQuasiSinusoidZero. There are many ways in which
one could parametrize this. Here I define a fixed number (Nf + 1) of “anchor points” at different times,
tx, generally chosen to span the observed time series. Associated with each of the points is a phase value,
fx. The time-variable phase function is then given by fitting a cubic spline to these points. The times of
the anchor points are fixed, so the parameters of this variable-phase term are therefore just {fx}. The first
anchor point, x = 0, f0 is fixed to zero. (That’s because the overall phase shift is provided by φ.) In the
current implementation Nf = 4. This corresponds to five anchor points, the first being f0 = 0, so the model
has four parameters. (Nf = 4 is hard-wired into the code, because for reasons I will not go into here, each
parameter fx is represented explicitly and not in a vector format). The times of the anchor point must be
specified by the user in the setup file when TSMod1 is initialized using the fptimes parameters, e.g.

TSMod1 <- new("FuncQuasiSinusoid", fptimes=seq(from=0, to=100, length.out=5))

which fixes the anchor points to be (0, 25, 50, 75, 100). Usually we will space the anchor points uniformly.
Note that although f0 = 0, we must still provide its anchor time as the first element of fptimes. An
example of Ψ(t) fit to four specific choices of {fx}, as well as the resulting function for TSMod1 (for some
values of the a, ν, φ) is shown in Fig. 4.

The four parameters {fx} are assigned uniform priors over the range (−1,+1). For the MCMC samping
they are transformed onto the infinite range using the 2arctanh function (see section 5.2; a step sizes (in
sampleSD) of 0.1 is recommended.) Because a continuous function (Ψ(t)) is fit to {fx}, it is important
that we do not use the periodic boundary condition in this transformation. If we did, then if one of the fx
were near to the boundary (say at +1), then a very small change which took it over the boundary to the
other side (to −1) would result in a radical change in the fitted function Ψ(t), and thus destroy the smooth
dependence of the model on its parameters.

Arguably it would be sufficient (preferable?) to constrain the {fx} to the range (−1/2,+1/2) rather than
(−1,+1), as the former covers the full range of the cosine function, and having double the range could
result in degeneracies in the MCMC estimate of the posterior.

Simulated data can be generated from this model using the function sim.asfuncquasisinusoid in
ctsmod genfunctions.R.

B Fully stochastic processes

The signal component of the time series model is the PDF P (zj |tj , θ,M). For a physical process which
has a well-defined time-variable signal on top of which there is some randomness, section 2.3 showed
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Figure 4: The time-variable phase model FuncQuasiSinusoidZero. The top-panel shows (black
curve) the time-variable phase term, Ψ(t), with the anchor points t = (0, 25, 50, 75, 100) with correspond-
ing phase values as f = (0,+0.2,+0.3,−0.2,−0.05) (open circles). The red line is Ψ = 0. The lower
panel shows (black curve) the resulting quasi-sinusoidal variation with a = 2, b = 0, ν = 0.05, φ = 0. The
red curve in the lower panel is the strictly periodic function, i.e. with Ψ = 0.

a convenient way of expressing this as two independent subcomponents: one which describes the time-
dependence of the mean of the PDF and the other which describes the PDF itself and its time-independent
parameters (e.g. its variance).

A fully stochastic process, in contrast, is one in which all of the parameters of the PDF in general have a time
dependence. Given a functional form for the time dependence of these parameters, we can in principle just
introduce this into the parameter θ and calculate the likelihood as before. A simple fully stochastic process
is one with a constant mean and variance, a white noise process. This is achieved by setting TSMod1 to a
uniform model (η = b in equation 4) with TSMod2 a Gaussian.

However, incorporating a stochastic process which has memory, such as a Markov process, is more compli-
cated. Here I show how to introduce a particular but widely used stochastic process, the Ornstein–Uhlenbeck
process.

B.1 The Ornstein–Uhlenbeck process

The Ornstein–Uhlenbeck (OU) process (Uhlenbeck & Ornstein 1930) is a stochastic process which describes
the evolution of a scalar random variable, z with time, t (for t > 0). The equation of motion (Langevin
equation), can be written

dz(t) = −1

τ
z(t)dt+ c1/2N (t; 0, dt) (47)
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where τ and c are positive constants, the relaxation time (units t) and the diffusion constant (units z2t−1)
respectively, dt is an infinitesimally short time interval,N (t; 0, dt) is a Gaussian random variable with zero
mean and variance dt, and dz(t) = z(t+dt)−z(t). The OU process is the continuous-time analogue of the
discrete-time AR(1) (autoregressive) process, and is sometimes referred to as the CAR(1) process. There
are alternative, equivalent forms of this equation of motion.9 For more details see Gillespie (1996) (and
Gillespie 1996b for a nice introduction to continuous Markov processes).

The OU process is stationary, Gaussian and Markov.10 The PDF of z(t) is Gaussian with mean and variance
given by

µz = z0υ (48a)

Vz =
cτ

2
(1− υ2) (48b)

respectively, for any t > t0, where z0 = z(t= t0) and

υ = e−(t−t0)/τ (49)

(see, for example, Gillespie 1996b, section II.D). Given the initial condition z0 at t0, we know the PDF of
the process at any subsequent time. The relaxation time, τ , determines the time scale over which the mean
and variance change. The diffusion constant determines the amplitude of the variance. The OU process z(t)
is a mean-reverting process: for t − t0 � τ the mean tends towards zero and the variance asymptotes to
cτ/2.

The time integral of z(t) is just

w(t+ dt) = w(t) + z(t)dt (50)

and is called the integrated OU process. In the context of Brownian motion, z(t) describes the velocity
of the particle and w(t) its position. The integrated OU process, w(t), is stationary and Gaussian, but not
Markov (because its mean depends also on z0)11. The mean and variance of its PDF is

µw = w0 + z0τ(1− ν) (51a)

Vw = cτ3

[
t− t0
τ
− 2(1− ν) +

1

2
(1− ν2)

]
(51b)

respectively for any t > t0, where w0 = w(t = t0). Given the initial conditions z0, w0 at t0, we can
determine the PDF of the integrated process at any subsequent time. Its mean tends towards w0 for t− t0 �
τ , but the variance diverges as cτ2(t− t0). The initial variance is zero, of course.

An example of how the moments of both the OU process and the integrated OU process vary with time is
shown in Fig. 5.

What kinds of time series are actually produced by these processes? Gillespie (1996) derives exact updating
equations to give the values of z(t) and w(t). These are

z(t) = z0υ + n1

√
Vz (52a)

w(t) = w0 + z0τ(1− ν) + n2

(
Vw −

κ2
zw

Vz

)1/2

+ n1
κzw√
Vz

(52b)

9In particular when we use the familiar property of the Gaussian thatN (t; 0, dt) = N (t; 0, 1)(dt)1/2.
10Put loosely: Stationary means that the joint PDF of a set of events from the process is invariant under translations in time;

Markov means that the present value of the process depends only on the value at one previous time step (equivalently, the future
state variable is independent of the past values conditioned on the present value); Gaussian means that the joint PDF of any set of
points is a multivariate Gaussian, in particular the PDF of a single point is Gaussian.

11But w(t) does form a bivariate Markov process together with z(t).
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Figure 5: The mean (solid line) and standard deviation (=
√
V ) (dashed line) of the Gaussian PDF of the

Ornstein–Uhlenbeck process (left) and the time integrated process (right) for parameters τ = 10, c = 0.02,
t0 = 0, z0 = 4, w0 = 10.

where κzw = (cτ2/2)(1− ν)2 and n1 and n2 are statistically independent unit random Gaussian variables.
(Note that the first term in equation 52a is just µz from equation 48a, and similarly for the other update
equation.) The update equation 52a is intuitive: it is just the sum of the mean and a random number drawn
from a zero-mean Gaussian with the variance at time t. For a given sequence of time steps, (t0, t1, . . .),
we can use these equations to generate an OU process or integrated OU process. Because the time series is
stochastic and must be calculated at discrete steps, then even for a fixed random number seed, the generated
time series depends on the actual sequence of steps.

Several examples of time series for the parameters shown in Fig. 5 are shown in Fig. 6. Fig. 7 shows the
mean and standard deviation of the processes if we now increase the diffusion constant to c = 20 (and set
z0 = w0 = 0). Examples time series for these parameter settings are shown in Fig. 8. Note how the larger c
produces a dramatic change in the (lack of) smoothness of the curves.

In principle we could model the OU process in ctsmod by setting the mean and variance of a Gaussian for
TSMod2 (section 2.3 and Table 2) to the functions shown in equation 48 (or equation 51 for the integrated
OU process).12 While not actually wrong, this is very inefficient for the OU process, because it does not
take advantage of its Markov property, namely that a measurement of z(t) at any time between t0 and the
current time must provide a better constraint on the process than does z0. This is a direct consequence of the
fact that the variance of the estimation of z increases with time. We will see how to calculate the likelihood
for this process properly in section B.2.

B.2 Likelihood of the Ornstein–Uhlenbeck process

A Markov process is one in which we can specify the PDF of the state variable, zj at time tj , using
P (zj |tj , zj−1, tj−1, θ,M), i.e. there is a dependence on the previous state variable, zj−1. For the OU pro-

12Specifically, we would set TSMod2 to be 1√
2πσz

e−(z−η[t;θ2])2/2σ(t;θ2)2 with η[t; θ2] and σ(t; θ2) given by equation 48 for
the OU process (or by equation 51 for the integrated OU process, i.e. setting z = w). TSMod1 would not be used. θ2 =
(τ, c, z0, t0) for the OU process, and additionally w0 for the integrated OU process. Note that the initial conditions of the process
are parameters of the model. These are implemented as ProbOUprocNaive and ProbIntOUprocNaive in Table 2. Their
use is not recommended.
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Figure 6: Example time series resulting from the OU process (black) and the integrated OU process (red)
for the parameter settings shown in Figure 5 and using ∆t = 0.1.
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Figure 7: As Figure 5 but now with c = 20, z0 = 0, w0 = 0.
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Figure 8: Example time series resulting from the OU process (black) and the integrated OU process (red)
for the parameter settings shown in Figure 7 and using ∆t = 0.1.

cess, this PDF is a Gaussian with mean and variance given by equation 48. Clearly, the nearer tj−1 is to tj
the better a measurement of zj−1 will constrain zj .

We could therefore write the signal component of the time series model (cf. equation 3) as

P (zj |tj) =

∫
tj−1,zj−1

P (zj |tj , zj−1, tj−1)P (zj−1, tj−1|tj) dtj−1dzj−1

=

∫
tj−1,zj−1

P (zj |tj , zj−1, tj−1)P (zj−1|tj−1)P (tj−1) dtj−1dzj−1 (53)

where conditional independence has been applied in the second line to remove the tj dependence from the
second two terms. Note that everything is implicitly conditioned on M and its parameters θ, but these have
been omitted for brevity. The first term under the integral is the PDF for the Markov process we aimed to
introduce. The second term is also a PDF for the Markov process but referred to the previous event. We
could place that with another 2D integral over (tj−2, zj−2) of exactly the same form as equation 53. We
could then continue recursively to achieve a chain of nested 2D integrals going back to the beginning of the
time series, and use that in our likelihood calculation. Although this is a plausible and general solution for
a Markov process, it is not very appealing.

Fortunately a significant simplification is possible. Let us first neglect the time uncertainties. In that case
the event likelihood (equation 7) becomes

P (Dj |σj , θ,M) =

∫
zj

P (yj |zj , σyj )P (zj |tj , θ,M)P (tj |θ,M) dzj (54)

with tj = sj . P (yj |zj , σyj ) is the signal part of the measurement model (the time part has dropped out).
If this is Gaussian in yj − zj (cf. equation 1) and P (zj |tj , θ,M) is Gaussian in zj , then equation 54 is a
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convolution of two Gaussians, which is another Gaussian, multiplied by P (tj |θ,M) (which is independent
of zj). A general result is that if f is a Gaussian with mean µf and variance Vf , and g is a Gaussian with
mean µg and variance Vg then∫ +∞

−∞
f(y − z)g(z)dz = f ⊗ g (55)

is a Gaussian with mean µf +µg and variance Vf +Vg. For the Gaussian measurement model, f is Gaussian
in the argument yj − zj with µf = 0 and Vf = σ2

yj . g is then the time series model.

We now turn specifically to the OU process in order to determine its time series model, P (zj |tj , θ,M). We
can derive this from the update equation (equation 52). With the state variable now written as zj rather than
z(t), the update equation is

zj = zj−1υ + n1

√
Vz (56)

with

υ = e−(tj−tj−1)/τ (57a)

Vz =
cτ

2
(1− υ2) . (57b)

zj has a Gaussian distribution with mean and variance13

µ[zj ] = µ[zj−1]υ (58a)

V [zj ] = V [zj−1]υ2 + Vz (58b)

respectively (see also Berliner 1996). Specifically, P (zj |tj , θ,M) is a Gaussian with this mean and variance,
which are specified by the parameters θ = (µ[zj−1], V [zj−1], υ, τ, c).14 We will look in a moment at how
we estimate µ[zj−1] and V [zj−1].

We can now write the likelihood, the result of the Gaussian convolution, equations 54 and 55, as

P (Dj |σj , θ,M) = P (tj |θ,M)

∫
zj

P (yj |zj , σyj )P (zj |tj , θ,M) dzj

= P (tj |θ,M)
1√

2π V [yj ]
exp

(
−(yj − µ[yj ])

2

2V [yj ]

)
(59)

where the mean and variance of this Gaussian are

µ[yj ] = 0 + µ[zj ] (60a)

V [yj ] = σ2
yj + V [zj ] (60b)

respectively. Recall that P (tj |θ,M) is just the time component of the time series model with tj = sj .
Normally we will use a uniform model (equation 5), so this is just a constant.

To estimate µ[zj−1] and V [zj−1] we make use of the data, yj−1. For an event tj , P (zj |tj , θ,M) – which has
mean and variance given by equation 58 – is our estimate of the PDF of the state variable at tj prior to taking
into account the measurement yj . It is therefore the appropriate thing to use to calculate the likelihood of

13The variance is just the sum of the variances of the two terms in equation 56. Recall that in general V (fg) = f2V (g)+g2V (f),
and that V (υ) = 0.

14If we instead had an actual value of zj−1, then P (zj |tj , θ,M) would be Gaussian with mean zj−1υ, variance Vz , and θ =
(zj−1, υ, τ, c).
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yj , as we have done in equation 59. But in parallel to this we want to use yj to improve our estimate of zj ,
i.e. we want to calculate the posterior PDF of zj . This is given by Bayes’ theorem

P (zj |yj , tj) ∝ P (yj |zj , tj)P (zj |tj) (61)

(ignoring the normalization constant 1/P (yj |tj), and omitting a lot of dependencies). These two terms are
again the measurement model (so the dependence on tj drops out) and the time series model, both of which
are Gaussian in zj . Thus the posterior PDF over zj is also a Gaussian with mean and variance15

µ′[zj ] =
yjV [zj ] + µ[zj ]σ

2
yj

V [zj ] + σ2
yj

(63a)

V ′[zj ] =
V [zj ]σ

2
yj

V [zj ] + σ2
yj

(63b)

respectively, where the prime symbol is used to distinguish these posterior moments from the prior ones
from equation 58. It is these quantities which we then use at the next event as the estimates of the mean
and variance of the state variable. Thus, at iteration (event) j, when we calculate equation 60 and hence the
likelihood, we use µ′[zj−1] and V ′[zj−1] as our estimates of µ[zj−1] and V [zj−1]. This is how we introduce
a dependence on the previous measurement (the Markov property). We then calculate the mean and variance
of the posterior for zj using equation 63 to use in the next iteration. Thus we have a recurrence relation for
the posterior PDF of zj , at each iteration siphoning off the relevant quantities in order to calculate the event
likelihood.

To initialize the process we must specify initial values µ[z1] and V [z1]. We use these in equation 60 to
calculate µ[y1] and V [y1] and hence the likelihood for the first event, y1, from equation 59. We then calculate
the posterior moments using equation 63. For the next event, j = 2, these posterior moments are assigned
to µ[zj−1] and V [zj−1] in equation 58 and the likelihood calculated. The procedure is iterated through all
the events.

The model prediction of the OU process is a Gaussian distribution at each event (at time tj) with mean
and variance given by equation 58. Unlike the memoryless time series models, the OU process requires
the measurement of the one previous event in addition to the model parameters in order to predict the next
event (this is the Markov property). The relevant model prediction of event j is therefore given by the
prior distribution of equation 58 – which has not yet looked at yj – and not by the posterior distribution of
equation 63, which has.

The parameters of the process are θ = (µ[z1], V [z1], τ, c) (and implicitly the initial time, t1). Figure 9 shows
an example of a simulated OU process and the model predictions thereof.

As it stands, the long-term mean of this OU process is zero. We can introduce the long-term mean as an
additional parameter, b, of the model. Equation 58a then becomes

µ[zj ] = µ[zj−1]υ + b(1− υ) . (64)

The variance is unchanged. (See also Brockwell & Davis 2002, section 10.4.) Introducing this corresponds
to solving a different Langevin equation, namely one in which we have the additional term (b/τ)dt on the
right-hand-side of equation 47. Note that b is the long-term mean of the process: it is neither the mean of

15 The product of two Gaussians f and g with means µf and µg and variances Vf and Vg is another Gaussian with

mean
µfVg + µgVf
Vf + Vg

and variance
VfVg
Vf + Vg

. (62)

Note that the mean is just the inverse-variance weighted average of µf and µg .
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Figure 9: The black points (with a uniform random time distribution) have been simulated from an OU
process with parameters τ = 10, c = 20 and initial conditions t1 = 0, z1 = 0, to which Gaussian
measurement noise with mean zero and unit standard deviation has been added (as indicated by the black
error bars). This red points show the predictions of this process using an OU process with parameters
τ = 10, c = 20, µ[z1] = 0, V [z1] = 0. The prediction for each event is a Gaussian in the signal with mean
and variance given equation 58.

the data set nor of the model-predicted process over the time range of the data. Specifically, µ[zj ] → b as
υ → 0, which occurs when ∆t/τ →∞. As the data themselves are used to predict the model process, then
the mean of the model predictions over the time scale of the data depends on the data as well as on b.

We can now use the likelihood to calculate the evidence and/or to sample the posterior via MCMC. By
partitioning the data set we can also use posterior sampling to evaluate the cross-validation likelihood, as
described in section 3.2. Note that whatever partitioning we do, when it comes to calculating the partition
likelihood for data Dk, we must still use all of the data to predict the full sequence of events. That is,
for a given θn, we predict the entire sequence of J events using all the data, but then only make use of
those event likelihoods which are appropriate. Specifically, to calculate the posterior to use in MCMC
sampling (equation 18) we just select the likelihood for the events in D−k, and to calculate the likelihoods
in equation 15 we just use the events in Dk. The OU process depends not only on the model parameters
but also on the state at the previous time step, so we should not be changing these time steps by removing
events when predicting the sequence.

B.3 Literature note

I am not aware of an explicit derivation in the literature either of the above posterior recurrence relation
(although Berliner 1996 outlines the same thing) or of the event likelihood for the OU process. Kelly et al.
(2009) write down similar equations for the latter (their equations 6–12), but in a significantly rearranged
form. Kelly et al. also assume a specific initial value (zero) for the initial state variable, z0 (their equation
8), whereas I give this a distribution. (In my formulation we can achieve a specific initial value by setting
V [z1] = 0.) My expression for the variance (equation 58b) therefore has an additional term compared to
theirs (their equation A5, which is Vz in my notation), because they are conditioning on an fixed value of the
process at the previous step whereas I assume this itself has a variance, V [zj−1]. (See also section 10.4 of
Brockwell & Davis 2002.) Closely related formulations of this process – but not the likelihood calculation
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– are given in Jones (1986; sections 4 and 5) and Kozlowski et al. (2010; appendix).

B.4 Wiener process

A Wiener process, z(t)t ≥ 0, can be defined as the process for which

• z(t) is continuous in t for all t;

• the increments, z(t + ∆t) − z(t), are independent, stationary and have the normal distribution
N (0,∆t);

• z(t) = 0.

The Wiener process can be considered as a special case of the OU process in which τ → ∞ (Gillespie
1996b, p. 230). As υ = e−∆t/τ , υ → 1 and16 τ(1− υ2)→ (∆t)2. The update equation (equation 56) then
becomes

zj = zj−1 + n1

√
Vz (65)

where now Vz = c∆t. The mean and variance of this are

µ[zj ] = µ[zj−1] (66a)

V [zj ] = V [zj−1] + Vz . (66b)

These replace the moments in equation 58 in the calcluation of the likelihood of the stochastic process. The
rest of the calculation in section B.2 is otherwise unchanged.

The difference with respect to the OU process is that there is no damping, as the relaxation timescale is
infinite. The variance of the state variable therefore grows monotonically, and linearly with time. As the
expectation value of the state variable is constant, this Wiener process is referred to as being driftless. The
Wiener process is sometimes taken to describe, in a somewhat idealized form, the position of a particle
undergoing Brownian motion.

C Simplifying the event likelihood integration

The two-dimensional integral in equation 7 is in principle straight forward, but because it has to be calculated
for every event for every parameter combination in the evidence estimate, it is critical that it is accurate and
rapid. As the functions involved may be strongly peaked compared to the range of integration, it is desirable
to identify numerical simplifications.

16Using a Taylor expansion

τ(1− e−2(∆t)/τ ) = τ

[
1−
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1− 2∆t
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τ
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− . . .
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[
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τ
− 1
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(
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τ
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]
= 2∆t as τ →∞ .
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C.1 Integration limits on t and z

In principle the integration extends over the whole two-dimensional real space (±∞). In practice we will
truncate it according to (a) the measurement model (e.g. negative data may not be permitted) and the range
of measured data (taking into account the measurement uncertainties).

C.2 Dropping the stochastic signal component of the time series model (TSMod2 bypass)

If TSMod2 is a Gaussian (equation 3) in which ω is very small compared to the scale of signal variations,
then the only contribution to the event likelihood is at the prediction of the signal by TSMod1. For given
θ1, the magnitude of the event likelihood is then dictated only by the measurement model, i.e. how close the
measured yj is to the prediction zj . In the limit ω → 0, the signal part of the time series model (equation 2)
becomes P (zj |tj , θ1, θ2,M) = δ(zj−η[tj ; θ1]). This gives us a purely deterministic signal in the time seres
model; we “bypass” TSMod2. The event likelihood integration (equation 7) then becomes a 1D integration17

P (Dj |σj , θ,M) =

∫
tj

P (Dj |tj , zj = η[tj ; θ1], σj)︸ ︷︷ ︸
Measurement model

P (tj |θ3,M)︸ ︷︷ ︸
Time series model

dtj . (67)

C.3 Small uncertainties on the measured times

If the uncertainty on the measured time, σsj , is very small compared to the time scale over which the time
series model varies, then the integral over tj in the event likelihood for that event will have a significant
contribution only for times tj close sj . This must hold for any sensible measurement model or definition
of uncertainties. The time part of the measurement model can then be approximated by the delta function
δ(tj − sj), and the integration over tj is just unity. If the signal part of the measurement model is Gaussian,
the event likelihood equation (equation 7) becomes

P (Dj |σyj , θ,M) =

∫
zj

1√
2πσyj

e
−(yj−zj)2/2σ2

yj︸ ︷︷ ︸
Measurement model

P (tj = sj , zj |θ,M)︸ ︷︷ ︸
Time series model

dzj . (68)

When TSMod2 is the Gaussian model this becomes

P (Dj |σyj , θ,M) =

∫
zj

1√
2πσyj

e
−(yj−zj)2/2σ2

yj︸ ︷︷ ︸
Measurement model

1√
2πω

e−(zj−η[sj ;θ1])2/2ω2
P (sj |θ3,M)︸ ︷︷ ︸

Time series model

dzj . (69)

Note that this can be written as

P (Dj |σyj , θ,M) = P (sj |θ3,M)

∫
zj

f(yj − zj)g(zj)dzj . (70)

This is just a convolution of two Gaussian functions, f and g, which is another Gaussian with mean equal
to the sum of the means of f and g and variance equal to the sum of the variances of f and g. The event

17As we now have no stochastic element in either t or z, you may wonder why this integral is over t rather than z, i.e. why there
is an asymmetry. The point is that we need to integrate along the path of the (deterministic) function zj = η[tj ; θ1]. As this only
requires one parameter, we only have a one-dimensional integral. Whether we parametrize this with tj or zj is unimportant, but
having written the function as zj = η[tj ; θ1] rather than tj = η′[zj ; θ1], tj is the more natural choice.

33



likelihood is therefore

P (Dj |σyj , θ,M) = P (sj |θ3,M)
1√

2π(σ2
yj + ω2)

e
−(yj−η[sj ;θ1])2/2(σ2

yj
+ω2) (71)

i.e. involves no integration. Note that the time part of the time series model, P (tj = sj |θ3,M), is simply
evaluated at the measured time, sj . One particular application of this is to calculate the event likelihood for
the no-model, the model in which there is no stochastic component, so that the expected value at all times
is just the mean of the signal. This is obtained by setting ω = 0 and η = yj in equation 71. The total
likelihood for the no-model, LNM, is the product of these event likelihoods (equation 8). This is a useful
baseline model against which to compare the likelihood of other models. As this model has no adjustable
parameters, this likelihood is equal to both the evidence and the K-fold CV likelihood.

C.4 Both TSMod2 bypass and negligible time uncertainties

If, in addition to a purely deterministic time series model, we also have negligible uncertainties on time,
then the time part of the measurement model in equation 67 is a delta function, δ(tj − sj). The likelihood
then involves no integration. If the signal part of the measurement model is a Gaussian, the likelihood is

P (Dj |σyj , θ,M) = P (sj |θ3,M)
1√

2πσyj
e
−(yj−η[sj ;θ1])2/2σ2

yj . (72)

We also reach this result if we set ω = 0 in equation 71.

C.5 Zero uncertainties on measured time and signal

In the limit of the uncertainties in both si and yj in the measurement model becoming zero, thenP (Dj |tj , zj , σj)
becomes a delta function at the measured values. In that case the 2D event likelihood integration, equation 7,
reduces to a direct evaluation of the time series model at the measured values, i.e. P (tj = sj , zj = yj |θ,M)
(no integration). This only makes sense if there is some stochastic component, so does not make sense with
the TSMod2 bypass.

C.6 Unknown uncertainties.

If the measurement uncertainties are unknown, then we can redefine the evidence as a quantity which is
marginalized over these, i.e.

P (D|M) =

∫
σ
P (D,σ|M) dσ

=

∫
σ
P (D|σ,M)P (σ) dσ . (73)

In other words, we marginalize the previous evidence over the prior for the uncertainties. If we do this
for both time and signal for all events, then this is a 2J-dimensional integration. This is not currently
implemented in the ctsmod code.
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Table 4: Summary of ctsmod files. Only those in the first block are part of the code execution.

calc evidence.R samples from the prior to calculate the evidence
ctsmod genfunctions.R general functions
ctsmod likefunctions.R likelihood calculation functions
ctsmod models.R time series and measurement model definition
kfoldCV.R sets up and calls the multiple partition sampling

(to calculate the K-fold CV likelihood)
mcmc.R The MCMC algorithms
run ctsmod.R root code to source. Does parameter/data consistency checks

and calculates end results
sample posterior.R sets up and calls the posterior sampling
setup ctsmod.R configuration file

analyse.R examples of post-code analyses (uses utilities.R)
install ctsmod packages.R run to install dependent packages
utilities.R set of utility functions for analysing results

D Overview of the code, its outputs, and analysis functions

D.1 Overview

The model is implemented in the R code ctsmod, with the code distributed across several files. The files
are summarized in Table 4. For a given model we can do one or more of the following

1. calculate the evidence – i.e. sample the prior (using the simple Monte Carlo method; section 5.1) and
calculate the corresponding likelihoods. This is selected by setting calcEvidence=TRUE, and is
done by function calc.evidence()

2. calculate the posterior-averaged likelihood (posterior sampling), defined in section 3.2. This is se-
lected by setting samplePosterior=TRUE, and is done by function sample.posterior(),
which uses one of the MCMC methods (see section 5). These MCMC methods are general functions
not specific to ctsmod. The function sampled – the posterior PDF – is calculated by the function
calc.post.mcmc() in sample posterior.R. We use the resulting likelihoods to calculate
the posterior-averaged likelihood.18 The full set of MCMC samples is preserved and can be used in
post-processing to plot the posterior PDFs. If parallel tempering is done, all chains are also returned
(see below), and these are used to calculate the evidence via thermodynamic integration.

3. calculate the K-fold cross validation likelihood (posterior sampling), defined in section 3.2. This is
selected by setting Npart>1, and is done by function kfold.cv(). This partitions the data into
Npart sets, calls sample.posterior() for each partition, and then calculates the likelihood
on the corresponding complementary data sets. For each partition the event numbers, the MCMC
samples, and the partition likelihood is recoded. These can be used in post-processing to plot the
posterior PDFs. If Npart ≥ Nevents, then we force Npart=Nevents, which is leave-one-out
CV.

18Code – currently commented out – is also present in run ctsmod.R to calculate the DIC, but tests so far have not shown this
to be very useful.
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See the notes in the file of the function definition for the format of what is returned.

The 2D integration for a single event likelihood calculation is done using cuhre in the R2Cuba library
(Hahn 2005), and the 1D integration is done with integrate in the stats library. (The full 2D integra-
tion is rather slow, and most use of the code to date has been with the “0D” shortcut achieved by assuming
the time uncertainties to be negligible, as explained in section C.)

The code makes use of the object oriented programming features of R by defining the different time series
and measurement models as S4 classes. Inheritance is used to define more compound models, and function
overloading is used to evaluate the priors and functions and sample the priors via generic calls.

The code contains a number of comments and explanations, in particular in the header of the executed file
run ctsmod.R.

D.2 Running the code

The code can be run from the linux bash shell in batch mode using

R < run_ctsmod.R --no-save --args setup_ctsmod.R &> outfile &

This will redirect all output, including errors, to outfile. The user-defined inputs and configurations
are defined in the setup file setup ctsmod.R (or any other file name), the name of which is assigned to
the variable setup. R can also be run within the R session simply by sourceing the file run ctsmod.R
(which will also default to setup=’’setup ctsmod.R’’ unless this has been defined otherwise by the
user).

On completion the entire R session is saved to an R object. This contains everything needed for subsequent
analysis. Functions for doing so are in the file utilities.R. Examples of their use are provided in
analyse.R, and some are explained below.

The code will either read data files, or will simulate data using one of several functions implemented in
ctsmod genfunctions.R (see section D.6). This is controlled by the variable obssel in the setup
file and must take one of the strings defined by the variable obstypes (listed in the same file). (The
translation between obssel and which function is called is done in run ctsmod.R). For those strings
which refer to simulation functions, the behaviour of these functions is controlled by modifying the function
directly. Otherwise, data is read from a file in standard ASCII format: one event per row, with four columns:
time (s), standard deviation of time (s.sd), signal (y), standard deviation of signal (y.sd). The file must also
have a one line header with named columns (i.e. four strings in that row), although this row is not used.

To run on the grid engine on our multi-node and core machine karun, we create the following script file,
called qsubscript.sh.

!/bin/bash
#$ -V
#$ -o /home/calj/ctsmod/
#$ -e /home/calj/ctsmod/
#$ -cwd
#$ -pe make 5
R < run_ctsmod.R --no-save --args setup_ctsmod.R

This is submitted to the grid engine from the master karun node (only) in the bash shell using
qsub qsubscript.sh
and is allocated a number, let’s call it NNNNN. The -V passes all enviroment variables and -cwd makes
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the directory from which the script was submitted the current working directory (which in the case above
needs to the directory where run ctsmod.R and setup ctsmod.R situated, although we could add
directory paths to these names). The option -pe make 5 reserves 5 cores for the job. This needs to be at
least as large as the number of cores requested by the program. Running the script produces two output files,
qsubscript.sh.o<NNNNN> and qsubscript.sh.e<NNNNN> in the directories specified following
the -o and -e entries in the script file, respectively. The first is the standard output, the second the standard
error, from the job execution.

D.3 Using the various models

This is a brief guide to using the various models and methods of calculating the likelihood within the
ctsmod code. The generic syntax is
TSModX <- new("name of model")
Note that when calculating the K-fold CV likelihood, the likelihood will never even be calculated if the prior
PDF is zero. (This is determined in calc.post.mcmc() in tt sample posterior.R.)

1: Two measurement models are currently implemented. TwoGaussian is Gaussian in both time and
signal. TimeUniformSignalGaussian is uniform in time and Gaussian in signal.

2: The “standard” use of ctsmod is to use TSMod2 =ProbGaussian with one of the TSMod1 models
shown in Table 2 to describe its mean, and TSMod3 =ProbUniform. Which parameters to adjust are set
with thetaXFlag (X=1,2,3) and the fixed values of any parameters are set with thetaXFixed. The
likelihood is the product of event likelihoods, each being calculated by the function calc.event.like,
which is called (the event likelihoods combined) by the function calc.like.isolated. This normally
results in a 2D integration, the integrand of this is provided by the function calc.event.like.integrand.
The following points note the exceptions (explained in section C).

3: FuncUniform has two alternative priors for its parameter b, either a Gaussian or a Gamma, for vari-
ables which can be positive/negative or non-negative respectively. They are selected by setting priorform="Gaussian"
or priorform="Gamma" in the TSMod1 definition, e.g.
TSMod1 <- new("FuncUniform", priorform="Gamma")
Gaussian is the default.

4: FuncLinear has the same two alternative priors for its parameter z0 as does FuncUniform for
b. Indeed, FuncLinear is implemented using the FuncUniform class. The slope (gradient) can be
constrained by setting the hyperparameter sign to be “pos” or “neg”. If this is done, then the MCMC
sampler could some up with a sample which has zero prior PDF, meaning this sample will be rejected. For
more details on FuncLinear, see section A.1.

5: To bypass TSMod2 we set TSMod2 =BypassTSMod2. This results in a 1D integration (over t) for the
event likelihood (equation 67), the integrand for which is provided by the function calc.event.like.integrand.2.
(If the time uncertainties are also negligible, then the next point applies and a “0D” integration is done in-
stead.)

6: If the uncertainties in the measured times are small compared to the time scale variations in TSMod1,
the event likelihood can be calculated analytically without integration (section C). This will be used if
σsj = 0 or it can be forced by setting negtsd=TRUE. This currently also requires that have TSMod2 set
to ProbGaussian or BypassTSMod2 and that a measurement model is used in which the signal compo-
nent is Gaussian (equation 71). The integrand for this is provided by the function calc.event.like.negtsd.

7: If the uncertainties in both the measured time and the measured signal are zero (indicated in the code by
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having σsj = σyj = 0 explicitly for that event), then the likelihood calculation again reduces to an analytical
calculation without integration (section C). (As this only makes sense when we have a stochastic component,
this will not be triggered if TSMod2 =BypassTSMod2.) Note that this option works also with the fully
stochastic models. The integrand for this is provided by the function calc.event.like.zerobothsd.

8: A simple stochastic model is to model the data as showing random Gaussian variations of constant known
mean and constant unknown variance. This is achieved by setting
TSMod1 =FuncUniform
with its only parameter fixed to the mean of the data
theta1Flag = c(offset=FALSE)
theta1Fixed = list(offset=0)

(here the mean is assumed to be zero). With
TSMod2 = ProbGaussian
theta2Flag = c(sd=TRUE)

the evidence is calculated by marginalizing over the variance, the only free parameter.

9: To use fully stochastic time series models (section B), we choose the appropriate model for TSMod2.
This automatically forces TSMod1 =BypassTSMod1, which is used internally.

10: To model the OU process as described in section B.2, we set TSMod2 =ProbOUprocess. This
assumes that the time uncertainties are negligible (if given they are ignored) and that the measurement
noise model is Gaussian (this overrides any other settings). As the likelihood is calculated without (ex-
plicit) integration, the integration limits are ignored. The same is done when modelling the Wiener pro-
cess using TSMod2 =WienerOUprocess. In both cases the likelihood is calculated via the function
calc.like.FullyStochasticprocess.

Some other possible scenarios are not yet implemented, such as negligible uncertainties only in the signal.

D.4 Priors, fixed parameters and initial values

Every parameter, θ, of every time series model (TSModX), has an associated prior PDF. The parameters
of this prior PDF are its hyperparameters, {α}. These are specified in Table 2. For some parameters the
hyperparameters are fixed and not settable by the user, e.g. for the phase parameter, φ, in FuncSinusoid.
Otherwise, values for the hyperparameters should be set according to the domain knowledge of the problem.

We can also fix some of the parameters. The values are specified using the thetaXFixed variables
(X=1, 2, 3) in the setup file. These must be set to respect the prior PDF for that parameter. That is, if you fix
the parameter to a value which has zero prior, the posterior PDF will of course always be zero (in fact, the
likelihood is never even calculated for zero prior parameters).

The initial values of the parameters used in the MCMC samplers, thetaXInit, should be set as close to
the expected values as possible. But read the advice and warnings in section E.2.

D.5 Choice of sampling and explanation of the main output from ctsmod

ctsmod will sample either form the prior or from the posterior (or both).

To sample the prior, set calcEvidence==TRUE and select the number of samples using Nevsamp.
The result of this is a 2D matrix, evCalc, with Nevsamp rows and 2 + Nθ columns containing the log
likelihood, log prior, and the parameter samples. The rest of this subsection is concerned with posterior
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sampling.

The code gives three options for sampling the posterior by MCMC:

• Metropolis. Selected by setting Nchain=1 and Nwalker=0.

• Parallel tempering. Selected by setting Nchain>1 (the number of chains) and Nwalker=0.

• emcee. Selecting by setting Nchain=0 and Nwalker>1 (the number of walkers).

All three can be used with a single partition (direct use of the function sample.posterior()) or mul-
tiple partitions (use of the function kfold.cv()). In all cases the variables are transformed as necessary
from their natural range to an infinite range, as described in section 5.2. After the MCMC is complete, the
variables are transformed back, so the user will only ever see parameters in their natural range.

For all MCMC methods, the function sample.posterior() returns a list with two elements, the
postSamp and postSampAll, which contain in some form the result of the MCMC. These are ex-
tracted and made available as the arrays postSamp and postSampAll at the top level of ctsmod for
further analysis. postSamp is a 2D array, with one row per sample, and with 2 + Nθ columns containing
the log likelihood, log prior, and the parameter samples. Exactly what is in the rows of this array and what
is in postSampAll depends on the MCMC method and is described in the subsections below.

The function kfold.cv() returns a list with four elements, which is called kfoldCV and made available
at the top level of ctsmod for further analysis:

• multiPostSamp, which is a 3D array, of which multiplotSamp[,,k] is postSamp for each
partition k

• logLikePart, a vector containing the log likelihood for each partition

• partInd, which is a list, each element of which is a vector of the events in that partition

• postSampNames, a character list of the names of the names of the parameters (actually the columns
in postSamp.

Note that postSampAll for each partition is not retained.

Metropolis

A Gaussian covariance matrix is used for the proposal distribution (the “sampling matrix”). The standard
deviations – the leading diagonal of this matrix – are specified in the setup file with sampleSD. Note that
this is in the units of the transformed variables, which is actually convenient as for the log transformation
this makes them correspond to multiplicative scales. If sampleCor is set to be 0 then the sampling matrix
is diagonal, otherwise a common covariance between all parameters of that value is assumed. Sampling is
initialized using thetaInit.

postSamp is a 2D matrix containing, for each sample (row), the log prior, log likelihood, and parameter
values.
postSampAll is NULL.
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Parallel tempering

The sampling matrix and initialization is set up as just described for the Metropolis algorithm (it is the same
for all chains). An equal spacing of the β parameters from 0 to 1 is used.
postSampAll is a 3D array, containing the posterior samples (and log prior and log likelihood), for all
chains in the order (sample, chain, parameter). The burn-in samples are included.
postSamp contains just the cold chain (β = 1), i.e. samples from the posterior PDF, and excludes the
burn-in.

emcee

The walkers are initialized by drawing from a multivariate Gaussian with mean thetaInit and covariance
matrix constructed in the same way as the covariance matrix for the Metropolis sampling is defined (i.e.
using sampleSD and sampleCor).19

postSampAll is a 3D array, containing the posterior samples (and log prior and log likelihood), for all
walkers in the order (iteration, walker, parameter). The burn-in samples are included.
postSamp is just a convenient reformation of this 3D array into a 2D array by combining iteration and
walker into a single dimension, and also removes the burn-in. It is projected such that the rows list all
walkers for the first iteration, then all for the second iteration, etc.

D.6 Simulated data

The file ctsmod genfunctions.R contains various functions for simulating data from different func-
tions. These are called directly by ctsmod (see section D.2). These functions, named sim.* should be self
explanatory, and should be edited directly to achieve the desired simulated data.

One of the functions, sim.quasisinusoid, generates data from a sinusoidal function with an extra
phase component which varies smoothly in time. This is achieved by generating a time series of Gaussian
random deviates (zero mean, unit variance) then smoothing this using a locally fitted polynomial, achieved
with the locpoly function in package KernSmooth. This gives the variable phase, Ψ(t) The quasi
sinusoidal model is

z = b+
a

2

(
cos[2π(νt+ Ψ(t) + φ)] + I

)
(74)

where I = 0 if the function is to be centered around zero signal, or I = 1 if the minimum value if to be
zero. An example of the variable phase and the resulting model is shown in Fig. 10.

Note that this is not the same model as FuncQuasiSinusoid, a TSMod1model described in section A.2,
for which data can be simulated using the function sim.asfuncquasisinusoid.

D.7 Analysis and plotting utilities

The file utilities.R contains various functions for analysing the results of ctsmod, in particular plotting
the results and calculating statistics. This mostly use the outputs evCalc, postSamp, postSampAll

19Note that this can produced values for the phase parameter in FuncSinusoid outside of the range 0–1, which would give
logPosterior of -Inf and thus trigger the initialization check error in emcee(). Thus values of thetaInit and sampleSD
must be chosen carefully to avoid this, e.g. 0.5 and 0.01 respectively.
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Figure 10: Example of a (noise-free) simulated data set generated with quasi-sinusoidal model (equation 74)
with a = 2, b = 0, ν = 1/200, φ = 0 and I = 0. The red curve in the lower panel is the strictly periodic
function, i.e. the same model but with Ψ = 0.

and/or kfoldCV. The functions are documented and should be fairly self-explanatory. Where appropriate,
the functions permit specification of a number of parameters:

• removal of samples, Nrej. If this is a scalar, then remove this from the beginning of the set of traces.
This is generally used to apply a post-doc burn-in. If it is a vector (typically specied using a range,
e.g. 8e3:1e4, then remove these samples. This we might use to remove final samples, to check
convergence.20

• a thinning factor thin21 and Nthinblock.22

• the factor h (hfac) described in section E.1.

• plotting control, with for example yzero, xlim, p, pbound, prange, Ntrace, Ndense, plotsize,
mfrow.

• file name, fname.

The main functions in utilities.R are as follows. The functions are documented in the code. The file
analyse.R shows examples of how the various functions can be used.

20Recall the way in which the walkers are stored in postSamp if emcee has been used: all walkers for the first iteration, then
all for the second iteration, etc. Thus in order to remove N samples from each walker post-hoc, set Nrej = N * Nwalker.

21A potential problem with MCMC is that successive samples are correlated. This can result in incorrect inference from the
resulting chain, e.g. the PDF being narrower than it really is. This problem is mitigated by using thinning, which means preserving
only every N th step in the chain.

22Thinning is applied to postSamp in blocks of this value. This is specifically for emcee: setting Nthinblock = Nwalker
applies the thinning to each walker separately.
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• plot.data. Plot the data obsdata

• calc.post.stats. Calculate statistics (mean, sd, mode) from the function samples†

• calc.post.stats.kfoldcv. Applies calc.post.stats to each partition

• recalc.like. Caculate the likelihood, possibly with thinning and hfac

• recalc.kfoldcv.like. Applies recalc.like to each partition

• find.peak.sol. Find the parameters at the mode (perhaps over a restricted parameter range)†

• find.peak.sol.kfoldcv. Applies find.peak.sol to each partition

• calc.xic. Calculate the AIC and BIC by finding the maximum likelihood

• plot.postSamp1d. For posterior sampling, plot the samples vs. iteration as well as the posterior
PDF (and optionally the prior PDF) for each parameter, and also calculate the mode of each 1D density
estimation†

• plot.chain.acf. Plot the ACF for each partition for each parameter (for Metropolis, or the chold
chain in parallel tempering)

• plot.pt.chains. For parallel tempering, plot the evolution of each chain for each parameter

• plot.emcee.walkers. For emcee, plot the evolution of each walker for each parameter

• plot.walker.acf. For emcee, plot the ACF for each walker for each parameter

• plot.1dpost. For prior sampling (evidence calculation), plot the prior and posterior PDFs for
each parameter

• plot.2dpost. For prior sampling, plot the prior and posterior PDF for two specified parameters as
a 2D distribution

• oplot.model.data. Plot the data together with the TSMod1 model at specified parameters

• oplot.OUprocess.data. Plot the data together with the predicted values from an OU or Wiener
process at specified parameters

†calc.post.stats and find.peak.sol find the global mode of the posterior, the MAP estimate.
In contrast, plot.postSamp1d calculates 1D density estimates for each parameter, which involves a
smoothing and sampling of the density, and then calculates the mode of each of these. This may well give
different results. If so, then the latter is probably more reliable.

D.8 Parallel processing

The code makes use of parallel processing in two different ways to parallelize the calculation of the evidence
and the K-fold CV likelihood.

For the evidence calculation, it makes use of the foreach and doMC packages to parallelize the Monte
Carlo sampling of the prior. Nevsamp is the total number of draws from the prior at which we calculate the
likelihood. These are grouped into blocks of size Nparallel draws/calculations which are processed in
parallel (i.e. the number of blocks is Nevsamp %/% Nparallel, where %/% indicates integer division).
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Ncores specifies the number of CPU cores to use. If this is set to 0, then the program attempts to allocate
all available cores (but sometimes may not).

The code makes use of the mcparallel function in the parallel package in order to calculate in
parallel the sampling of the K partitions in the K-fold CV likelihood calculation. It seems not possible to
specify the number of cores with mcparallel, so the K-fold CV likelihood calculation will make use of
all available cores, up to K. mcparallel is based on the forking processes, which is not supported by
Windows. If an unexpected error occurs in one of the partitions, this should be printed and all the partition
processing stopped, after which the program should exit cleanly with an error message. This was introduced
to deal with potential problems of extreme values (see section E.2)23, but does not solve the bug of NULL
returns described in section D.10.

If the setup file specifies to do calculate both the K-fold CV sampling and the posterior-averaged likelihood,
then they are run in parallel using mcparallel. The “early exit on error” mechanism just described is
not implemented for this fork, so an (unexpected) error in the full posterior sampling will not cause an early
stop (see also section D.10).

It appears that the parallelization is only available on a single node. In particular, the methods are not
exploitable by MPI, so some parallel processing controllers (such as mpiexec) cannot be used to make
ctsmod run across a cluster of nodes.

Warning! These parallel processing packages are not compatible with GUI output, so ctsmod should be
run in a terminal, and not in a GUI such the Mac R.app.

D.9 Errors and warnings

There is a reasonable but incomplete level of error trapping within the code. This is mostly concerned with
detecting illogical combinations of parameter settings or settings which are inconsistent with the data. In
such cases error messages are returned, but sometimes it can be difficult to identify exactly where in the code
the (same) error message was triggered. The code is not robust to all possible errors in the setup file or data,
so the user should always think carefully about that they are doing and not use silly values. In particular,
avoid initializing the parameters to their extreme values (see section E.2).

Most of the error trapping is done with the function stop. For some reason, this does not always report the
expected error message when using running things in parallel. In Messages can be supressed. If you have
Npart> 1 and samplePosterior=TRUE and get an unexplainable crash, then setting Npart=0 or
samplePosterior=FALSE and running again should reveal the error message. (See also section D.10).
If you get a crash before the code even starts sampling, it is probably due to inconsistent settings in the setup
file (which should be revealed in the way suggested).

Evaluations of the functions (TSMod, MeasMod) at inappropriate values are not explictly trapped and
could cause an error. It is assumed that the priors of the parameters in the TSMod functions have been set to
values which effectively (due to finite numerical precision) prevent the parameters straying into inappropri-
ate ranges (see section E.2).

There are some specific things in the code which are known would produce errors, although the behaviour
23The K-fold CV could be done using foreach, and indeed was so up until v21 of the code. However, if an error occurs in

one of the workers, the error message is not displayed in the ususal way (side effects are not preserved). Even if we did return an
error from a worker, it is not straight forward to use this to terminate all the workers instantly. These errors can remain unnoticed
and mess up subsequent processing. The use of foreach in the evidence calculation remains vulnerable to this. mcparallel,
in contrast, has the facility to check the results immediately upon return of any worker, and this is used to stop the other processes.
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is unexpected. These are marked with “WARNING” in the code. This includes 0 divided by 0, resulting in
a NaN which is later required to be numeric. (Note that 1/0 resulting in Inf is allowed to occur in places
in the code and there can be handled routinely.)

D.10 Bugs

emcee with FuncQuasiSinusoid

The use of emcee with the FuncQuasiSinusoid model can cause an error after a large number of
iterations, I think only when running in parallel. Specifically, sample.posterior() sometimes return
a NULL, either on the full data set or when called by kfoldcv() on one or more data partitions. But
closer inspection shows that the final value within sample.posterior() which is set to be returned
is not NULL. So it appears that the code is somehow “loosing” the results upon return from this function,
replacing them with a NULL.24

This error was not immediately apparent, because if one of the partitions was returned as NULL, the re-
combination of them into kfoldCV$multiPostSamp ignored it, simply recylcing the results from the
first partitions to build the matrix up to the specified size. Thus consequence was that two or more partition
results were identical, which produced no error as such, but was noticed via inconsistent results (e.g. a small
change in the number of iterations made a large change in the K-fold CV likelihood). A NULL return is
now trapped and causes a stop with a message.

This NULL return can also occur when calling sample.posterior() for calculating the posterior-
averaged likelihood. In that case I use this NULL to trigger a warning, but not a stop. postSamp and
postSampAll will be NULL.

This problem became apparent in v20 and persists in v21 and v22. It is reproducible with exactly the same
setup. However, small changes, such as adding or removing a small fraction of iterations or changing the
number of walkers, can make the error vanish. I have not seen the error with other time series models or
using the other MCMC algorithms with this time series model (although it’s also possible the error was not
noticed.) I have not seen the error in runs with small numbers of iterations, so perhaps it is related to the
large values of the transformed variables which can occur with emcee. During the development process I
discovered various problems due to extreme values, but all of these are now trapped (see section E.2). As
sample.posterior() is generally called in parallel – and given the behaviour reported in the foot-
note earlier – the error must surely be related to the parallelization. Note that we get this error both with
foreach (in v21) and with mcparallel (in v22).

A work-around this bug is to change the number of iterations, walkers or partitions. The error may then not
occur.

24In one particular case it is the first partition of ten which gives the NULL return. The MCMC algorithm, called in the middle of
sample.posterior(), returns without problem: the results were printed to a file. But an attempt to write again to a file at the
very end of sample.posterior() produced no file. However, if the remaining calculations were performed manually (using
the first output file), then no error was encountered. Thus the failure to write the second file might simply be because the buffer was
not actually written before the program crashed. Even more curiously, if exactly the same program is run but with an extra line of
code in kfoldcv() causing just the first or the first two partitions to run, then we get no error!
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D.11 A very quick tutorial

Run ctsmod using the default setup file. This will apply the linear model, FuncLinear, to 20 data points
drawn from a straight line with true parameters m = 1, t0 = 50, z0 = 0 (see section A.1) to which Gaussian
noise with σ = 10 has been added to the y values (and nothing to the x values). This uses the MCMC
algorithm emcee with 100 walkers and 200 iterations (which is too small; this is just for illustration) to
sample the posterior and calculate the posterior-averaged likelihood. It should run in 1–2 minutes.

To plot the resulting 1D PDFs use

plot.postSamp1d(postSamp, priorSamp=NULL, Nrej=0, thin=1, Nthinblock=1, Ntrace=200,
Ndense=2ˆ12, mfrow=c(4,2), plotsize=c(5,7), xlim=list(NULL, NULL, NULL, c(0,50)) )

which also prints the mode of the 1D density estimates of the posterior PDF for each parameter. Using these
(or any other) parameters you can then plot the data, overplotted with this model

oplot.model.data(TSMod1class="FuncLinear", obsdata, paramlist=list(slope=0.9,
tmid=42, offset=-10, sd=5, priorform="Gaussian"))

If you want to see the traces of the individual walkers, use

plot.emcee.walkers(postSampAll, thetaFlag=thetaFlag, Ntrace=NA, mfcol=c(4,2),
fname="emcee_walkers.pdf")

There are several other analysis functions in the file utilities.R, summarized in section D.7. They, and
the above functions, have various parameters which permit control of the plotting range, thinning etc. (see
the documentation in the code).

E Finite numerical precision

E.1 Very small probabilities

The likelihood is typically a very small number, and once small enough (below about 10−320 in R) is trun-
cated to zero due to finite numerical precision. ctsmod avoids this problem to some degree by calculating
the logarithm of the likelihood (equal to the sum of the logarithms of the event likelihoods: see equation 8).
But to calculate the evidence (via equation 24) we must exponentiate these values, and this again will fre-
quently run into the numerical precision limitation, giving zero evidence. We can avoid this using a help
factor, h. Writing the numerically approximated evidence as E [≡ P (D|σ,M)], and the likelihood at
parameter sample θn as Ln [≡ P (D|σ, θn,M)], then we can we can write

E =
1

N

n=N∑
n=1

10logLn . (75)

If we now add a constant h to every logLn term, then provided the dynamic range of all Ln is less than
about 2× 320 orders of magnitude, we can choose h to ensure that 10(h+ logLn) is not truncated. This will
then give us the modified evidence

E′ =
1

N

n=N∑
n=1

10(h+ logLn)

= 10hE (76)

from which we can trivially calculate E. Equivalently logE′ = h+ logE. We use the same principle in the
calculation of the K-fold CV likelihood.
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A reasonably good choice of h is h = −median[logLn], although this does not guarantee avoidance of
numerical problems. The term h is called hfac in the ctsmod code. It is used in the main code (with
this suggested value) to calculate the evidence and K-fold CV likelihood, and can also be specified in some
functions in utilities.R to recalculate these.

E.2 Extreme parameters

Extreme values of the transformed parameters

The MCMC algorithms sample the parameter space by retaining or rejecting a proposed sample based on the
value of the log posterior probability of the proposed sample compared to the present one. This sampling is
done over an infinite space, so parameters which actually have a finite range (such as frequency) are normally
inverse transformed after the sampling (see section 5.2). Due to the finite precision of the computer, some
of these transformations can cause numerical errors at the extreme range of the parameters. To avoid this,
some parameters are truncated and/or warnings are given (see section D.9. But more generally, it is possible
that the MCMC gives rise to a parameter value which is so extreme that the function evaluation gives NaN.
This arises in the cosine function in FuncSinusoid (and its derivatives) when the frequency is very large,
for example. Rather than trying to trap such all such extreme values explicitly (and at some pre-defined
threshold), I assume that the prior PDF has been designed to give a value numerically identical (in terms of
machine precision) to zero in such cases. If logPrior = -Inf, then I avoid evaluating the function at
all, and set logLike = -Inf. This is acceptable, because (a) the likelihood is only calculated25 when the
prior is, and (b) logPrior = -Inf will anyway result in the MCMC proposal being rejected, so there is
no point in calculating the likelihood anyway.

Problem with emcee

The emcee algorithm (section 5.4) is not entirely robust to use of transformed parameters. Inspection of the
parameter proposal equation (equation 40) shows that the (transformed) parameters can become very large
(postive or negative). Sometimes such extreme parameters will be rejected by the prior. For example, if a
very large positive frequency in FuncSinusoid is proposed, its (gamma) prior will be negligibly small,
eventually numerically identical to zero, in which case the proposal will be rejected by any of the MCMC
algorithms. However, a very large negative value of the (transformed) frequency may have a non-zero prior
probability density (e.g. with shape=1 in the gamma prior), as this just corresponds to a very small value of
the frequency. But if this is selected to update another walker, then equation 40 shows that this other walker
will be assigned a very large positive proposed frequency. That would be rejected by the prior, but is still
not desirable (as it will lower the acceptance rate). More critical, though, is that equation 40 can produce a
numerical error, because if θw has a reasonable value, but θx = −10+320 for example, then

Y = −10+320 + z(θw + 10+320) ' −10+320 + 10+320 = NaN (77)

as |zθw| � 10+320. This value causes a crash when we try to evaluate the prior or the function (this has been
observed in practice). This is an unavoidable result of using emcee with transformed parameters which are
permitted to have very large (positive or negative) values. (The problem is that transformed values are not
explicitly suppressed by the prior.) In practice it should not occur often26, but to be safe the implementation
of emcee checks for non-finite proposed parameters, and rejects them (with a warning) if they occur.

25Calculation of the DIC does not involve the prior, but this is not part of the MCMC, and it (calc.dic()) has anyway been
removed from run ctsmod from v19.

26Yet it did in v19 when the circular transformation was being used with phase, which resulted in sinamp and freq as well as
phase growing to very large negative values of the transformed parameters for some walkers
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Parameter initialization and priors

Generally speaking, one should not initialize the parameters of the models to their extreme values. This will
generally result in the log prior PDF being minus infinity and the sampling would never get going. For the
same reason, one should not initialize the parameters outside of their defined range (see Table 2). While this
is obvious for most parameters (such as frequency), it may be less so for some others. In particular, do not
initialize the parameters phase or fpX (X= 1, 2, 3, 4) of FuncSinusoid and FuncQuasiSinusoid
to their extreme values, which are 0, 1 for phase and −1,+1 for fpX.

Likewise, fixed parameters must not be fixed to values which give zero prior PDF.

The user is advised to adopt values of the hyperparameters of the priors to values which supress anything
unrealistic. The gamma prior on frequency, for example, naturally supresses any very large frequencies, but
with shape=1, arbitrarily small frequencies are possible. While this should not cause any code crash, it may
produce arbitrarily small and therefore useless frequencies (as such a model is just a constant), possibly
resulting in pointless sampling (or a low acceptance rate). A larger value of the shape parameter is therefore
recommended.

F Other methods for calculating the evidence

Section 5.1 outlined the methods used in ctsmod to calculate the evidence. Some other methods are
outlined here.

Sample the posterior (harmonic mean of likelihoods). Taking the idea of importance sampling, it can
be shown (e.g. Kass & Raftery 1995, section 4.3) that given a set of samples {θn} drawn from the posterior,
the evidence can be approximated as

P (D|σ,M) ≈

(
1

N

n=N∑
n=1

P (D|σ, θn,M)−1

)−1

(78)

the harmonic mean of the likelihood at these samples. However, this method is widely criticized in the liter-
ature because it is very unstable, and only converges to the true evidence in most cases with an impractically
large number of samples. It has been shown to give highly inaccurate results, and is not recommended.

Note that while sampling from prior is generally easy, sampling from the posterior is generally hard, and
MCMC methods are usually employed for this.

Laplace’s method. If we believe the posterior to be dominated by a single peak (the posterior mode), then
a Taylor expansion of the (log) unnormalized posterior up to the quadratic term gives an approximation for
this which is just a Gaussian with a mean equal to the posterior mode, and covariance equal to the inverse
of the Hessian matrix of the second derivatives (e.g. Kass & Raftery 1995, section 4.1). The integral is
analytic and requires evaluation of the likelihood only at the posterior mode (although of course this mode
must be located by an optimization algorithm, which will involve many evaluations of the likelihood). This
approximation may be valid in the case of informative data (large samples).

Chib’s method. In principle the evidence may be evaluated from a few evaluations of the posterior, prior
and likelihood at well-chosen values of the parameters. The posterior is estimated via Gibbs sampling. See
Chib (1995) or Friel & Pettitt (2008) for an overview and other references.
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Savage-Dickey density ratio. If we have nested models (i.e. where one model is just a special case of the
other model), and the priors are separable, then the Bayes factor for this pair of models can be calculated
much more simply. The simpler model is just the more complex model with one or more parameters fixed
to certain values. The SDDR involves calculating the marginal (normalized) posterior of the more complex
model at these fixed values. Trotta (2007) summarizes the method and gives a cosmological application.

Annealed importance sampling. This method is based on importance sampling and the use of Markov
chains. The importance weights found in the process can be used to estimate the evidence. See Neal (2001).

Reversible Jump MCMC. The goal of this method is to estimate not only the evidence for a single model,
but also the posterior probabilities of the models. The method was introduced by Green (1995).

Nested sampling. This method, introduced by Skilling (2004), attempts to overcome some issues with
thermodynamic integration. It calculates not only the evidence but also posterior samples. There are several
articles in the astronomical literature which describe and use this, or variations thereof, one of which is
Feroz & Hobson (2008).
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