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Abstract
I investigate the estimation of distance and transverse velocity (as speed and direction)
from Gaia parallax and proper motions, using posterior sampling. The method is
illustrated using TGAS data. My goal is not to suggest producing such estimates for
the data releases, but rather to help educate users in their interpretation of the data.
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1 Introduction

Determining the distance to a star from a noisy parallax is a non-trivial inference problem. This
arises from the highly nonlinear transformation between these two quantities, coupled with
the fact that distances cannot be negative and the existence, in general, of other constraints on
plausible distances. I previously explored this problem and showed how it can be addressed
in the usual Bayesian framework.1 Here I extend the methodology to the three-dimensional
inference of distance and transverse velocity (represented as transverse speed and direction)
from the parallax and two proper motions.

1Bailer-Jones C.A.L., 2015, Estimating distances from parallaxes, PASP 127, 994.

Technical Note 2

http://adsabs.harvard.edu/abs/2015PASP..127..994B


CUx
3D astrometry inference
GAIA-C8-TN-MPIA-CBJ-081

2 Definitions and transformation

The data vector is the parallax, proper motion in right ascension, and proper motion in declina-
tion, written as the column vector

x = ($, µα∗ , µδ)
T (1)

with units mas, mas yr−1, and mas yr−1 respectively. All of these quantities can be positive,
negative, or zero. The corresponding 3 × 3 covariance matrix for these three measurements is
Cx. These are all provided by AGIS. The parameter vector we want to infer is the distance,
tangential speed, and direction of travel (increasing anticlockwise from North), written as

θ = (r, v, φ)T (2)

with units pc, km s−1, and radians respectively. Distance is positive and tangential speed is
non-negative.

Given the true parameters, the noise-free prediction of the data vector x is given by the simple
geometrical transformation

m =

(
103

r
,
103

c2

v sinφ

r
,
103

c2

v cosφ

r

)T

(3)

where c2 = AUkm−1 yr−1 = 4.74047. This is the generative model, which in this case is rather
simple. The inverse transformation, to give the nominal parameters in terms of x, is

θnom =

(
103

$
, c2

√
µ2
α∗ + µ2

δ

$
, arctan

(
µα∗

µδ

))T

(4)

Note, however, that because the data are noisy, this inverse transformation does not generally
give the most suitable estimate for the parameters. We must instead use inference, as explained
in the next section.

Although I will sample the posterior, it can still be informative to compute the first order Taylor
expansion estimate of the variance in the parameters. This is given by

Cθ = J Cx J
T (5)

where

J =

(
∂θ
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)
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(6)

is the Jacobian matrix, with µ2 = µ2
α∗ + µ2

δ . The Jacobian is evaluated at the measured data.
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3 Inference

AGIS reports astrometric measurements and their corresponding covariance matrix. I interpret
this here as a multidimensional Gaussian likelihood in the measurements. For the parallaxes
and proper motions this is

P (x |θ) =
1

(2π)3/2|Cx|1/2
exp

[
−1

2
(x−m(θ))TC−1

x (x−m(θ))

]
. (7)

The 3D posterior over the parameters θ is

P (θ |x) =
1

Z
P (x |θ)P (θ) (8)

where Z is a normalization constant and P (θ) is a prior. I use here a separable prior

P (θ) = P (r)P (v)P (φ) (9)

with

P (r) =


1

2L3
r2e−r/L if r > 0

0 otherwise
(10)

P (v) =


1

B(α, β)

(
v

vmax

)α−1(
1− v

vmax

)β−1

if 0 ≤ v ≤ vmax

0 otherwise

(11)

P (φ) =
1

2π
(12)

for L ≥ 0, vmax > 0, α, β > 0 and B(α, β) is the beta function. The prior over distance is
the exponentially decreasing space density prior introduced in Bailer-Jones (2015), with length
scale L (I use 500 pc in the experiments in the next section, although this could be adapted
according to the line-of-sight: see CBJ-080). The prior over speed is a beta distribution, which
is only non-zero between 0 and vmax. The shape of the distribution is controlled by the two
parameters α and β. An example is shown in Figure 1. In the experiments which follow I adopt
vmax = 750 km s−1, which seems reasonable for Milky Way stars. The prior over the angle φ is
uniform. These priors are just adopted here for the sake of illustration.

4 Examples

The posterior does not have a simple form, so I characterize it via Monte Carlo sampling.

I initially tried the Metropolis algorithm with a multivariate Gaussian proposal distribution. The
covariance of this proposal distribution I set toCθ (equation 5), or a fraction thereof. I initialized
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FIGURE 1: A beta distribution prior for the transverse speed v with α = 2 and β = 3.

at θnom (equation 4), run the chain for 104 samples with a burn-in of 102 and then thinned the
chains by a factor of 10. The results were generally poor, in the sense that the chains looked
very unsettled.

Much better performance was obtained with the emcee algorithm. In what follows I initialize
the walkers over a narrow uniform distribution defined to always respect the parameter boundary
conditions. I use 200 walkers and sample for 1000 iterations (preceded by an additional burn-
in of 500 iterations). I thin the resulting chain by a factor of 20 in the walkers and 10 in the
iterations, leaving a total of 1000 samples. I use a periodic boundary condition on φ to ensure
that the walkers don’t diverge to very large positive or negative values. This is achieved by
wrapping the proposed angle to the range 0 to 2π (by taking the modulus).2 The acceptance rate
was generally between 0.5 and 0.6.

Results from using emcee for 10 different stars (two per page) are shown on pages 7 to 11.
For each star there are nine panels, with the Tycho name indicated in the top right (along with
a running number). The three panels in the left column show the evolution of the chains for
each of the three parameters. The units are pc, km s−1, and radians. The three panels in the
central column show the one-dimensional (marginalized) posteriors as a density estimation or
histogram. In these panels, the solid red vertical line shows the median of the posterior, the two
dashed red lines the 5% and 95% percentiles. The blue vertical line here shows the nominal pa-
rameters (θnom). The panels in the right column show the two-dimensional marginal posteriors
as individual points.

The “native” range (that used inside emcee) of the angle φ is 0 to 2π, and this is shown in the
chains panel (left column). But if folding φ to −π to +π gives a smaller range – difference
between max(φ) and min(φ) – then I use this instead in the one- and two-dimensional posterior

2Although it may at first seem that a more complicated procedures is required, it turns out not to be the case.
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plots (central and right columns), and also use this to compute the summary statistics of the
posterior. Note that computing statistics on a variable with periodic boundary conditions is
ambiguous if it covers more than half the range, which here means more than π. The median,
for example, is generally different depending on whether we represent the angle in the range
(0, 2π) or (−π,+π) (and it doesn’t just differ by 2π). The same goes for the other quantiles,
the mean, and the other moments. Of course if the direction is uncertain by more than π, there
isn’t much point summarizing it anyway.

In many cases we see that the marginal one-dimensional posteriors for the parameters are sim-
ple, unimodal profiles, implying a well-defined estimate. We also see in many cases a strong
correlation between the distance and speed. This is not surprising, as decreasing the parallax to
the stars keeping the proper motions fixed would increase both the distance and the transverse
speed. The correlation coefficient between distance and speed as estimated from element (1, 2)
of the covariance matrix Cθ is sometimes also very large (e.g. 0.98).

Table 2 summarizes the data and posteriors for these examples. I use the median (of each
marginal posterior) as an estimator of the posterior, because it is easier to compute than the mode
and more robust than the mean. I (therefore) use the quantiles at 0.05 and 0.95 to define the
equal-tailed 90% confidence interval to represent the uncertainty. The correlation coefficients
are computed from the posterior samples.

5 Conclusions

I have shown how to infer the probability distribution over three physical parameters from
three astrometric measurements. One could of course extend this to infer all six phase space
parameters by including in the data also the two-dimensional position (RA, Dec) and the radial
velocity. In that case a more useful target coordinate system for the parameters is Galactic
coordinates, which therefore also depends on the assumed phase space coordinates of the Sun
in the Galactic system.

Inferring velocities is much more specialized than distance estimation, so I am not recommend-
ing that anything like the above be done to produce data products for the data releases. But this
exercise does give some idea of how precisely velocities and distances can be estimated from
given astrometric data and their uncertainties. As such as transformation is non-trivial, and the
results not necessarily intuitive, this can be a useful aid, or educational tool.

Technical Note 6



CUx
3D astrometry inference
GAIA-C8-TN-MPIA-CBJ-081

0 200 400 600 800

0
20

00
40

00
60

00

iteration

di
st

an
ce

0 2000 4000 60000.
00

00
0.

00
10

0.
00

20

distance
de

ns
ity

0 1000 3000 5000

0
50

15
0

25
0

distance

sp
ee

d

0 200 400 600 800

0
50

15
0

25
0

iteration

sp
ee

d

0 50 100 200

0.
00

0.
02

0.
04

0.
06

speed

de
ns

ity

0 1000 3000 5000

1
2

3
4

5
6

distance

an
gl

e

0 200 400 600 800

1
2

3
4

5
6

iteration

an
gl

e

0 1 2 3 4 5 6

0.
0

1.
0

2.
0

3.
0

angle

de
ns

ity

0 50 100 150 200 250

1
2

3
4

5
6

speed

an
gl

e

5508−848−1     2

0 200 400 600 800

16
0

18
0

iteration

di
st

an
ce

150 170 190

0.
00

0.
02

0.
04

distance

de
ns

ity

160 170 180 190

0.
0

1.
0

2.
0

3.
0

distance

sp
ee

d

0 200 400 600 800

0.
0

1.
0

2.
0

3.
0

iteration

sp
ee

d

0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

speed

de
ns

ity

160 170 180 190

0
1

2
3

4
5

6

distance

an
gl

e

0 200 400 600 800

0
1

2
3

4
5

6

iteration

an
gl

e

0 1 2 3 4 5 6

0.
0

0.
4

0.
8

1.
2

angle

de
ns

ity

0.0 1.0 2.0 3.0

0
1

2
3

4
5

6

speed

an
gl

e

5584−552−1    52

Technical Note 7



CUx
3D astrometry inference
GAIA-C8-TN-MPIA-CBJ-081

0 200 400 600 800

40
.5

42
.0

43
.5

iteration

di
st

an
ce

40 41 42 43 44

0.
0

0.
2

0.
4

0.
6

distance
de

ns
ity

40.5 41.5 42.5 43.5

1.
7

1.
9

2.
1

distance

sp
ee

d

0 200 400 600 800

1.
7

1.
9

2.
1

iteration

sp
ee

d

1.6 1.7 1.8 1.9 2.0 2.1

0
1

2
3

4
5

speed

de
ns

ity

40.5 41.5 42.5 43.5

−
2.

25
−

2.
15

−
2.

05

distance

an
gl

e

0 200 400 600 800

4.
05

4.
15

4.
25

iteration

an
gl

e

−2.25 −2.15 −2.05

0
2

4
6

8
12

angle

de
ns

ity

1.7 1.8 1.9 2.0 2.1

−
2.

25
−

2.
15

−
2.

05

speed

an
gl

e

3610−1733−1   102

0 200 400 600 800

66
70

74

iteration

di
st

an
ce

64 68 72 76

0.
00

0.
10

0.
20

distance

de
ns

ity

66 68 70 72 74 76

0.
0

1.
0

2.
0

3.
0

distance

sp
ee

d

0 200 400 600 800

0.
0

1.
0

2.
0

3.
0

iteration

sp
ee

d

0 1 2 3

0.
0

0.
4

0.
8

1.
2

speed

de
ns

ity

66 68 70 72 74 76

−
1.

0
0.

0
1.

0
2.

0

distance

an
gl

e

0 200 400 600 800

1
2

3
4

5
6

iteration

an
gl

e

−1.0 0.0 1.0 2.0

0.
0

1.
0

2.
0

3.
0

angle

de
ns

ity

0.0 1.0 2.0 3.0

−
1.

0
0.

0
1.

0
2.

0

speed

an
gl

e

8567−2015−1   152

Technical Note 8



CUx
3D astrometry inference
GAIA-C8-TN-MPIA-CBJ-081

0 200 400 600 800

30
.2

30
.6

31
.0

31
.4

iteration

di
st

an
ce

30.0 30.5 31.0 31.5

0.
0

0.
5

1.
0

1.
5

distance
de

ns
ity

30.2 30.6 31.0 31.4

4.
65

4.
75

4.
85

distance

sp
ee

d

0 200 400 600 800

4.
65

4.
75

4.
85

iteration

sp
ee

d

4.60 4.70 4.80

0
2

4
6

8
10

speed

de
ns

ity

30.2 30.6 31.0 31.4

2.
50

5
2.

51
5

2.
52

5

distance

an
gl

e

0 200 400 600 800

2.
50

5
2.

51
5

2.
52

5

iteration

an
gl

e

2.500 2.510 2.520

0
40

80
12

0

angle

de
ns

ity

4.65 4.70 4.75 4.80 4.85

2.
50

5
2.

51
5

2.
52

5

speed

an
gl

e

7890−1378−1   202

0 200 400 600 800

14
0

18
0

22
0

26
0

iteration

di
st

an
ce

150 200 250 3000.
00

0
0.

01
0

0.
02

0

distance

de
ns

ity

140 180 220 260

0
2

4
6

8
10

distance

sp
ee

d

0 200 400 600 800

0
2

4
6

8
10

iteration

sp
ee

d

0 2 4 6 8 10 12

0.
00

0.
10

0.
20

0.
30

speed

de
ns

ity

140 180 220 260

0
1

2
3

4
5

6

distance

an
gl

e

0 200 400 600 800

0
1

2
3

4
5

6

iteration

an
gl

e

0 1 2 3 4 5 6

0.
0

0.
4

0.
8

1.
2

angle

de
ns

ity

0 2 4 6 8 10

0
1

2
3

4
5

6

speed

an
gl

e

9380−606−1   252

Technical Note 9



CUx
3D astrometry inference
GAIA-C8-TN-MPIA-CBJ-081

0 200 400 600 800

27
.2

27
.6

28
.0

iteration

di
st

an
ce

27.0 27.4 27.8 28.2

0.
0

1.
0

2.
0

distance
de

ns
ity

27.2 27.6 28.0

8.
0

8.
5

9.
0

distance

sp
ee

d

0 200 400 600 800

8.
0

8.
5

9.
0

iteration

sp
ee

d

7.5 8.0 8.5 9.0

0
1

2
3

4

speed

de
ns

ity

27.2 27.6 28.0

−
1.

95
−

1.
93

−
1.

91

distance

an
gl

e

0 200 400 600 800

4.
34

4.
36

4.
38

iteration

an
gl

e

−1.95 −1.93 −1.91

0
20

40
60

angle

de
ns

ity

8.0 8.5 9.0

−
1.

95
−

1.
93

−
1.

91

speed

an
gl

e

5619−1261−1   302

0 200 400 600 800

95
10

5

iteration

di
st

an
ce

90 95 100 105 110 115

0.
00

0.
04

0.
08

0.
12

distance

de
ns

ity

95 100 105 110

2.
4

2.
6

2.
8

distance

sp
ee

d

0 200 400 600 800

2.
4

2.
6

2.
8

iteration

sp
ee

d

2.3 2.5 2.7 2.9

0
1

2
3

4

speed

de
ns

ity

95 100 105 110

0.
17

5
0.

19
0

0.
20

5

distance

an
gl

e

0 200 400 600 800

0.
17

5
0.

19
0

0.
20

5

iteration

an
gl

e

0.18 0.19 0.20 0.21

0
20

40
60

80

angle

de
ns

ity

2.4 2.5 2.6 2.7 2.8 2.9

0.
17

5
0.

19
0

0.
20

5

speed

an
gl

e

1004−1486−1   352

Technical Note 10



CUx
3D astrometry inference
GAIA-C8-TN-MPIA-CBJ-081

0 200 400 600 800

54
58

62

iteration

di
st

an
ce

52 54 56 58 60 62 64

0.
00

0.
10

0.
20

distance
de

ns
ity

54 56 58 60 62

3.
1

3.
3

3.
5

3.
7

distance

sp
ee

d

0 200 400 600 800

3.
1

3.
3

3.
5

3.
7

iteration

sp
ee

d

3.2 3.4 3.6

0
1

2
3

4

speed

de
ns

ity

54 56 58 60 62−
0.

95
−

0.
85

distance

an
gl

e

0 200 400 600 800

5.
35

5.
45

iteration

an
gl

e

−0.95 −0.90 −0.85 −0.80

0
40

80
12

0

angle

de
ns

ity

3.1 3.2 3.3 3.4 3.5 3.6 3.7−
0.

95
−

0.
85

speed

an
gl

e

4542−2657−1   402

0 200 400 600 800

15
.4

15
.6

15
.8

iteration

di
st

an
ce

15.4 15.6 15.8 16.0

0
1

2
3

4

distance

de
ns

ity

15.4 15.6 15.8

13
.2

13
.4

13
.6

distance

sp
ee

d

0 200 400 600 800

13
.2

13
.4

13
.6

iteration

sp
ee

d

13.2 13.4 13.6

0
1

2
3

4
5

speed

de
ns

ity

15.4 15.6 15.8

0.
47

16
0.

47
20

0.
47

24

distance

an
gl

e

0 200 400 600 800

0.
47

16
0.

47
20

0.
47

24

iteration

an
gl

e

0.4716 0.4720 0.4724

0
10

00
25

00

angle

de
ns

ity

13.2 13.4 13.6

0.
47

16
0.

47
20

0.
47

24

speed

an
gl

e

2658−2556−1   452

Technical Note 11



TABLE 2: Summary of data and resulting posteriors. Columns 2–4 are the measured data, columns 5–7 are their corresponding
standard uncertainties, columns 8–10 are the median of the resulting posteriors, columns 11–12, 13–14, and 15–16 are the 5% and
95% percentiles for the three parameters (respectively), and columns 17–19 are the three correlation coefficients (also computed
from the posterior samples).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Tycho ID $ µα∗ µδ σ$ σµα∗ σµδ r v φ r05 r95 v05 v95 φ05 φ95 ρ(r, v) ρ(r, φ) ρ(v, φ)

mas mas/yr mas/yr mas mas/yr mas/yr pc km/s rad pc pc km/s km/s rad rad

5508-848-1 3.237 0.312 -0.244 0.739 2.297 0.800 469.7 6.71 4.96 250.0 1899.8 0.81 76.28 1.88 5.12 0.99 0.39 0.33
5584-552-1 5.801 -0.631 -0.341 0.248 0.687 0.362 175.1 0.82 4.25 163.0 187.1 0.20 1.80 2.17 4.87 0.55 0.36 0.29

3610-1733-1 23.759 -7.918 -5.003 0.332 0.347 0.349 42.1 1.87 -2.13 41.2 43.1 1.76 1.99 -2.19 -2.07 0.27 -0.41 -0.16
8567-2015-1 14.060 -4.110 6.315 0.283 1.015 0.757 71.2 2.56 -0.58 68.7 73.7 2.00 3.11 -0.79 -0.35 0.73 -0.49 -0.75
7890-1378-1 32.521 19.057 -26.278 0.237 0.140 0.101 30.8 4.73 2.51 30.4 31.1 4.67 4.80 2.51 2.52 0.90 -0.02 -0.15
9380-606-1 5.474 -2.679 0.272 0.446 1.357 1.132 190.5 3.10 4.81 167.0 219.5 1.13 5.86 4.10 5.37 0.89 0.40 0.26

5619-1261-1 36.112 -55.970 -21.080 0.231 0.483 0.291 27.7 7.85 -1.93 27.4 28.0 7.71 8.00 -1.94 -1.92 0.68 0.58 0.65
1004-1486-1 9.983 1.027 5.278 0.326 0.032 0.028 101.1 2.58 0.19 96.1 106.8 2.44 2.73 0.18 0.20 0.99 -0.01 0.02
4542-2657-1 17.539 -8.606 8.832 0.472 0.042 0.041 57.2 3.34 -0.77 54.8 60.2 3.20 3.52 -0.78 -0.77 0.99 0.03 0.09
2658-2556-1 63.863 82.280 161.185 0.384 0.022 0.023 15.7 13.44 0.47 15.5 15.8 13.32 13.57 0.47 0.47 1.00 0.05 0.05
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