Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs)

Yoshiki Matsuoka (NAOJ)
on behalf of the SHELLQs collaboration
SHELLQs
Subaru High-z Exploration of Low-Luminosity Quasars

Members

Y. Matsuoka\(^1\) (PI)
M. Akiyama\(^2\), N. Asami\(^3\), S. Foucaud, T. Goto\(^4\), Y. Harikane\(^5\), H. Ikeda\(^1\), M. Imanishi\(^1\), K. Iwasawa\(^6\), T. Izumi\(^3\), N. Kashikawa\(^1\) T. Kawaguchi\(^7\), S. Kikuta\(^1\), K. Kohno\(^5\), C.-H. Lee\(^1\), R. H. Lupton\(^9\), T. Minezaki\(^5\), T. Morokuma\(^5\), T. Nagao\(^8\), M. Niida\(^8\), M. Oguri\(^5\), Y. Ono\(^5\), M. Onoue\(^1\), M. Ouchi\(^5\), P. Price\(^9\), H. Sameshima\(^10\), A. Schulze\(^5\), T. Shibuya\(^5\), H. Shirakata\(^11\), J. D. Silverman\(^5\), M. A. Strauss\(^9\), M. Tanaka\(^1\), J. Tang\(^12\), Y. Toba\(^8\)

\(^1\)NAOJ, \(^2\)Tohoku, \(^3\)JPSE, \(^4\)Tsinghua, \(^5\)Tokyo, \(^6\)Barcelona, \(^7\)Sapporo Medical, \(^8\)Ehime, \(^9\)Princeton, \(^10\)Kyoto Sangyo, \(^11\)Hokkaido, \(^12\)ASIAA
High-z quasars - Unique probe of the early Universe

Fundamental questions we aim to answer:

Why do supermassive black holes (SMBHs) exist?
★ When were they born?
★ What were their seeds?
★ How did they grow in the early and late epochs of the cosmic history?

[Observational signatures]
- What are the luminosity/mass functions of quasars/SMBHs?
- Are $10^9 \, M_\odot$-class SMBHs common or exceptional at $z > 6$?
- How do the luminosity/mass functions evolve towards lower redshift?

How did the host galaxies form and (co-)evolve?
★ When and how did the first stellar-mass assembly happen?
★ Did SMBHs impact the host galaxy evolution? If so, how?
★ Do they mark the highest density peaks of the underlying matter distribution?

[Observational signatures]
- What are the current and past star formation activities, inferred from the amount and kinematics of the gas, current SFR, and chemical enrichment?
- Do we find special (e.g., over-dense) environments around the quasars/host galaxies?

When and how was the Universe re-ionized?
★ When did re-ionization start and complete?
★ How did it proceed, as a function of space and time?
★ What provided the ionizing photons?

[Observational signatures]
- How does the IGM neutral fraction change along redshift and transverse direction?
- Do low-luminosity quasars emit enough UV photons to re-ionize the Universe?

and many more!

"Illuminating the dark ages: Quasars and galaxies in the reionization epoch" (Heidelberg; June 27 - July 1, 2016)
Past/ongoing surveys and their immense legacy value

- SDSS 2.5m
- CFHT 3.6m
- UKIDSS/VIKING 4m
- Pan-STARRS1 1.8m
- DES 4m

~100 quasars known at z > 5.7:
- only a few (one) at z > 6.5 (z > 7)
- or $M_{1450} > -24$ mag

A wide variety of follow-up observations with

- ALMA for FIR-based SFR, gas and dust masses, gas kinematics, dynamical galaxy mass, ...
- Subaru and other large optical/near-IR telescopes (→ELTs) for SMBH mass, metallicity distribution, IGM properties, ...
- HST (→JWST) for the morphology, UV-based SFR, etc. in the host galaxies, surrounding ionized gas, ...
- Chandra and XMM-Newton (→ATHENA) for intrinsic mass accretion rate, Eddington ratio, absorbers, ...

Luminosity function

Comparison with theoretical models
Subaru Hyper Suprime-Cam SSP survey

Hyper Suprime-Cam (HSC)
- 116 2K x 4K Hamamatsu FD CCDs (104 CCDs are used for science exposures)
- Circular FoV of 1°.5 diameter
- Installed on the Subaru 8.2-m telescope
- Miyazaki et al. (2016, in prep.)

The HSC SSP (Subaru Strategic Program) survey
- 300 Subaru nights over 5 years, started in early 2014.
 - Wide: $r_{AB} < 26.1$ mag over 1400 deg2
 - Deep: $r_{AB} < 27.1$ mag over 27 deg2
 - UDeep: $r_{AB} < 27.7$ mag over 3.5 deg2
- Filters: (g, r, i, z, y) in Wide, + NBs in Deep & UDeep
- The Wide has just reached the full-depth, full-color area of 200 deg2.

Table 7: Quasar Samples

<table>
<thead>
<tr>
<th>redshift</th>
<th>Wide (1400 deg2)</th>
<th>Deep (27 deg2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mag. range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r < 23.0$</td>
<td>$i < 24.0$</td>
<td>$z < 24.0$</td>
</tr>
<tr>
<td>number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>3500</td>
<td>280</td>
</tr>
</tbody>
</table>
Candidate selection and confirmation

HSC database search for red point sources

Near-IR catalogs (UKIDSS, VIKING)

Simple color cuts

SED fitting

Bayesian probabilistic

\[P_{\text{Q}}(d) = \frac{W_{Q}(d)}{W_{Q}(d) + W_{0}(d)} \]

\[W_{Q/D}(d) = \int S(\phi) \Pr(\det|\phi) \Pr(\bar{d}|\phi) \, d\bar{d} \]

Eye inspection

Additional quality checks (detection, photometry, shape, ...)
with SExtractor, using both stacked and per-visit images.

"Illuminating the dark ages: Quasars and galaxies in the reionization epoch" (Heidelberg; June 27 - July 1, 2016)
Progress to date

- Candidate selection has been completed for the first ~100 deg2 of the Wide fields (i.e., all the area included in the latest internal data release).

- Spectroscopic observations are underway.

 - Subaru/FOCAS
 - GTC/OSIRIS
 - Gemini/GMOS

- Results so far (preliminary!)

<table>
<thead>
<tr>
<th>Candidates ($z_{AB} < 24.5$, $y_{AB} < 24.0$)</th>
<th>86</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectroscopy done</td>
<td>48</td>
</tr>
<tr>
<td>Quasars at $z \geq 6$</td>
<td>22</td>
</tr>
<tr>
<td>Galaxies at $z \sim 6$</td>
<td>14</td>
</tr>
<tr>
<td>[O III] emitters at $z \sim 0.8$</td>
<td>2</td>
</tr>
<tr>
<td>Brown dwarfs</td>
<td>4</td>
</tr>
<tr>
<td>Moving/transient</td>
<td>6</td>
</tr>
</tbody>
</table>

Our uniqueness and challenges

* We are going down to $z_{\text{AB}} \sim 24.5$ mag, deeper than any previous wide-field (1,000-deg2 scale) survey has reached.

* Spectroscopic identification needs a-few-hour integration per object, even with 8-10 m telescopes.

* We are starting to find many $z \sim 6$ galaxies contaminating to the quasar candidates.

$Illuminating the dark ages: Quasars and galaxies in the reionization epoch$ (Heidelberg; June 27 - July 1, 2016)
Future Prospects

- The HSC-SSP survey will continue to observe the planned 1,400 deg2 in the Wide component, until 2019-2020. The observed area, in the full color and full depth, has just reached 200 deg2.
- We will continue high-z quasar candidate selection in lock-step with the HSC survey.
- We will also soon start to look at the Deep (27 deg2) and the Ultra-Deep (3.5 deg2) fields.

- Spectroscopic observations will continue.
 - “Subaru Intensive program” has been approved for our project; 20 nights awarded in the 16B - 18A semesters.
- Various follow-up studies are underway.
 - luminosity function
 - IGM neutral fraction through GP and damping-wing measurements (deep optical spectroscopy proposed)
 - SMBH mass and Eddington ratio distributions (near-IR spectroscopy proposed)
 - metallicity and chemical evolution (near-IR spectroscopy proposed)
 - star formation, dust, and gas in the host galaxies (ALMA observations proposed)
 - Lyα halos (HST narrow-band imaging proposed)
- Subaru Prime Focus Spectrograph (PFS) will come on stage at ~2019, and will start a massive spectroscopic survey over the HSC survey area.