When and how did the first stars and galaxies form?

How can we study reionization with galaxies?

This talk: bright targets which we can study spectroscopically in detail now
HST Legacy fields may not be the best place to look

- relatively small volumes
- restricted to a single selection technique (broad-band photo-z/Lyman-break)

CANDELS+ERS+BoRG (~all HST deep fields)

10,000 galaxies z>3 (e.g. Bouwens+2015), but only handful of bright objects at z>6
Our approach: very wide fields from the ground
Our typical coverage

- COSMOS/UltraVISTA
- UDS/XMM-LS
- SA22/CFHTLS
- Boötes/NDWFS

find bright targets

~20 times larger than combined HST fields, ~2 magnitudes shallower
The Narrow-Band Technique directly targets galaxies with redshifted Lyman-alpha (1216 Å) at z=2.2, 3.1, 4.8, 5.7, 6.6

Lyman-alpha typically traces young OB stars, low metallicity (low dust), hot sources

Sources which can be followed up easily
The set of wide-field NB surveys

\[z = 2.2 \quad \text{deg}^2 \quad \text{CALYMHA} — \text{matched to Halpha; Sobral, JM+ in prep} \]

\[z = 3.1/4.8 \quad \text{~25/4 deg}^2 \quad \text{ongoing with INT/Subaru + Keck/WHT follow-up} \]

\[z = 5.7 \quad 7 \text{ deg}^2 \quad \text{Santos, Sobral & Matthee, 2016 arXiv:1606.07435} \]

\[z = 6.6 \quad 5 \text{ deg}^2 \quad \text{Matthee+2015, MNRAS, 451, 4919 (arXiv:1502.07355)} \]
The set of wide-field NB surveys

\[z=2.2: \] 1.2 deg^2 CALYMHA — matched to Halpha; Sobral, JM+ in prep

\[z=3.1/4.8: \] ~25/4 deg^2 ongoing with INT/Subaru + Keck/WHT follow-up

\[z=5.7: \] 7 deg^2 Santos, Sobral & Matthee, 2016 arXiv:1606.07435

Madau & Dickinson, 2014
DIFFERENT SURVEY FIELDS: COSMIC VARIANCE

Selection: $\text{EW}_0(\text{Ly}a) > 25$ Å & Lyman-break, 2" apertures

Allows to study changes in Lya luminosities (due to reionization?)
No selection biases of which UV searches suffer (c.f. Stark+2016, arXiv 1606.01304, talk by Oesch)
COMBINED Z=5.7 LAE LF

Graphical Representation:

- **x-axis:** $\log_{10} L_{\text{Ly}\alpha}$ (erg s$^{-1}$)
- **y-axis:** $\log_{10} \phi (\text{Mpc}^{-3} \text{dlogL}^{-1})$

Key Points:

- Alpha very steep: -2.3 ± 0.4 (consistent with Dressler+2015)
- (c.f. -1.9 UV LF Bouwens+2015; theoretically argued by Gronke+2015)

Citation:

Santos, Sobral & Mathee, 2016, arXiv: 1606.07435
Number density evolves at the faint end, not at the bright end!

- no comparable wide survey $z>7$ yet.

Santos, Sobral & Matthee, 2016, arXiv: 1606.07435
What about extended emission?

At $z=2.2$, we find that Lya continues to increase up to 30kpc radii at least

$f_{\text{esc, Lya}} (15\text{kpc}): \text{HAEs: 1.6\%; LAEs: 42\%}$

SFRs: $\sim 30 \ M_{\odot}/\text{yr}$ vs $7 \ M_{\odot}/\text{yr}$

CALYMHA: Matthee+2016a, MNRAS, 458, 449; Sobral, JM+ in prep

extended Lya for LAEs/LBGs see also e.g. Rauch+2007, Steidel+2011, Momose+2014, Wisotzki+2016
Extended emission at $z=5.7-6.6$

Simple analysis: Mag-auto luminosity vs 2$''$ aperture luminosity
Faint LAEs become more extended at $z=6.6$!

Similar to Momose+2014: median LAE in UDS more extended at $z=6.6$ than at $z=5.7$

Santos, Sobral & Matthee, 2016, arXiv: 1606.07435
1. Faint LAEs are less abundant and more extended at $z=6.6$ than at $z=5.7$

2. Bright LAEs equally abundant and equally extended
Matthee+2015 toy-model: more luminous LAEs easier to observe

re-ionisation? clustering needed!

Drop in Lya LF similar to evolution in follow-up of faint UV selected galaxies:
less Lya for L* UV selected galaxies, except when you select on neb. lines in IRAC
(e.g. Ono+2010, Schenker+2014, Pentericci+2014, Schmidt+2016; c.f. Stark+2016)
THE PROPERTIES OF LUMINOUS LAEs AT Z=6.6

![Graph showing the properties of luminous LAEs at z=6.6. The graph plots log_{10}(\phi) (Mpc^{-3}) against log_{10} L_{Ly\alpha} (erg s^{-1}). The data from z=5.7 (This work), z=6.6 Matthee+2015, z=7.0 Ota+2010, z=7.3 Shibuya+2012, and z=7.3 Konno+2014 are shown. The graph includes a Schechter fit for each data set.]
CR7 and the team of luminous z=6.6 LAEs

Himiko: Ouchi+2009, 2013
CR7, MASOSA: Sobral+2015
COLA1: Hu+2016
VR7: Matthee+2015 & in prep
Luminous LAEs show a lot of diversity!

- Lya sizes

COSMOS >L* LAEs

NB816
z=5.7

NB921
z=6.6
Luminous LAEs show a lot of diversity!

- Lya sizes
- UV magnitudes
The Nature of Luminous LAEs

Luminous LAEs show a lot of diversity!

- Lya sizes
 - CR7: 266+-15 km/s
 - Himiko: 251+-21 km/s
- UV magnitudes
 - MASOSA: 386+-30 km/s
 - COLA1: 194 km/s
- Lya FWHM

UV selected:
- z=7.7 Oesch+2015: 360+-80 km/s
- z=8.6 Zitrin+2015: 280+-220 km/s
Detailed properties of CR7

<table>
<thead>
<tr>
<th>BVI</th>
<th>z</th>
<th>NB921</th>
<th>Y</th>
<th>J</th>
<th>YJHK</th>
<th>3.6 μm</th>
<th>4.5 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selected as LAE, but already known in 2011 in Ilbert+ catalog and Bowler+2012 (but as brown dwarf/unreliable LBG z~6)
6 SIGMA HEII 1640 EMISSION LINE

FWHM = 130 +/− 30 km/s
EW₀ = 80 +/− 20 Å
HeII/Lya = 0.23 +/− 0.10

Velocity offset Lya-Hell 120 km/s

> Tₑff ~ 100,000 K

Very hard ionising source: similar to other LBGs with CIII], CIV emission

Cassata+13 VUDS:
Typical HeII emitter z = 3-5:
EW₀ < 7 Å
FWHM ~ 700 km/s

Sobral, Matthee et al. 2015 ApJ, 808, 139
NO METAL EMISSION LINES

No NV, CIV, CIII], other high excitation metal lines

Lya/NV > 70
HeII/OIII] > 3
HeII/CIII] > 2.5

Apart from bright narrow Lyα and HeII1640: no other emission lines detected

HeII/Lyα = 0.3

Looks” like it
“Moves” like it
“Smells” like it

No lines except Lyα and HeII

“Talks” like it

Metallicity must be very low: <1/200 Zsun

Stark+2014, z~2: Helium typically fainter!
HeII/CIII ~ <0.5
HeII/OIII] ~ <1-1.5

Sobral, Matthee et al. 2015 ApJ, 808, 139
(ARCHIVAL) HST VIEW OF CR7

NB921 (Lyα) Subaru

F110W (YJ) HST

F160W (H) HST

Bowler+2016: all luminous z~7 LBGs multiple components

Thanks Forster-Schreiber (PI HST data)!

Sobral, Matthee et al. 2015 ApJ, 808, 139
CURRENT DATA IS FULLY CONSISTENT WITH POPIII-LIKE CLUMP A+"NORMAL" STELLAR POP IN B+C

Not a fit!
PopIII-like formation scenario:

“waves of star-formation”

Himiko: no HeII, nor metal lines: Zabl+2015

Similar to CR7?

Himiko: no HeII, nor metal lines: Zabl+2015
However, many theorists ‘prefer’ that CR7 is the first detection of a Direct Collapse Black Hole (DCBH)

The Brightest Ly\(\alpha\) Emitter: Pop III or Black Hole?

Detecting Direct Collapse Black Holes: making the case for CR7

Exploring the nature of the Lyman-\(\alpha\) emitter CR7

Evidence for a direct collapse black hole in the Lyman \(\alpha\) source CR7

LY\(\alpha\) SIGNATURES FROM DIRECT COLLAPSE BLACK HOLES

AB INITIO COSMOLOGICAL SIMULATIONS OF CR7 AS AN ACTIVE BLACK HOLE

Formation of Massive Population III Galaxies through Photoionization Feedback: A Possible Explanation for CR7

Pallotini+2015, Agarwal+2015, Hartwig+2015, Smith+2016, Dijkstra+2016, Smidt+2016 (but Visbal+2016 argue PopIII through similar mechanism) see poster by Agarwal
DCBH formation scenario:

Radiative feedback prevents fragmentation in clump A

HST+Subaru image of CR7

Artist impression (Kornmesser, ESO)

see poster by Agarwal
DCBH formation scenario:

Radiative feedback prevents fragmentation in clump A

HST+Subaru image of CR7

(but Visbal+2016 argue PopIII through similar mechanism)

Artist impression (JM)

see poster by Agarwal
Ongoing ALMA+HST follow-up: metallicity of hot and warm ISM

ALMA data almost available for [CII] & dust…
Ongoing ALMA+HST follow-up: metallicity of hot and warm ISM

CLOUDY modelling
blackbody, T=100,000K
(motivated from Lya-HeII)

Current constraint from X-SHOOTER: \(Z/Z_{\odot} < 10^{-2.5} \)

HST grism early 2017 will give \(Z/Z_{\odot} < 10^{-4} \)

metal poor DLAs: Cooke, Pettini & Jorgensen 2015
LYMAN-WERNER FLUX FROM CR7?

Escaping Lyman-Werner+ hole in the IGM?

Unseen in other z>6 galaxies
spatially coincident with peak Lya & HeII — very compact!

Lya
LYMAN-WERNER FLUX FROM CR7?

Escaping Lyman-Werner + hole in the IGM?

Unseen in other z>6 galaxies
spatially coincident with peak Lya & HeII — very compact!

Matthee+2016 in prep.
LYMAN-WERNER FLUX FROM CR7?

No flux observed below 912 Å

Escaping Lyman-Werner+ hole in the IGM?

Matthee+2016 in prep.
Faint LAEs are less abundant and more extended at z=6.6 than at z=5.7: patchy reionization?

Bright LAEs show a surprisingly variety: compact vs extended Lya, multiple clumps, narrow FWHMs, blue peaks, Lyman-Werner.

COSMOS Redshift 7 hosts an extreme ionising source in low metallicity gas: PopIII stars or DCBH? Follow-up of CR7 and similar sources is ongoing.
CLUMP B & C AT SAME REDSHIFT?

Clump B+C are not yet spectroscopically confirmed, but are z-dropouts, so photo-z>6.5 most likely

Sobral, Matthee et al. 2015 ApJ, 808, 139
Some (preliminary!!) indications that $L_{\text{Ly}a}$ scales with $f_{\text{esc, LyC}} Q_{\text{ion}}$

Indirect signs of LyC escape from Lya line-profile (e.g. Verhamme+2015):
- low velocity offset Lya-HeII (CR7)
- blue peak Lya (COLA1)

From matched Lya-Ha survey $z=2.2$:
- $\xi_{\text{ion}} (= Q_{\text{ion}} / L_{\text{UV}})$ higher for LAEs than HAEs
 - LAE: $10^{25.14}$ Hz erg$^{-1}$; HAE: $10^{24.77}$ Hz erg$^{-1}$
- ξ_{ion} increases with EW(Ha), and thus increases with redshift

(Matthee+2016b, arXiv:1605.08782)