The first black holes and AGN

Marta Volonteri
Institut d’Astrophysique de Paris

M. Habouzit, Y. Dubois, M. Latif (IAP)
A. Reines (NOAO)
M. Tremmel (University of Washington)
F. Pacucci (SNS)
High-redshift quasars and local MBHs

As massive as the largest MBHs today, but when the Universe was ~ Gyr old

POX 52, NGC 4395: stellar mass $4 \times 10^8 \, M_\odot$, $M_{\text{BH}} \sim 3 \times 10^5 \, M_\odot$

Galaxies without MBHs too

RGG18: $M_{\text{BH}} \sim 5 \times 10^4 \, M_\odot$
High-redshift quasars

Very bright quasars in SDSS, CFHQ, UKIDDS with $z>6$ (Willott et al., 2003; Fan et al., 2006; Jiang et al., 2009)

Detection of a $2 \times 10^9 M_{\text{sun}}$ BH at $z=7$ and a $10^{10} M_{\text{sun}}$ BH at $z=6.3$ (Mortlock et al., 2011, Wu et al. 2015)

Requirement:
- Need to grow at the Eddington limit for the whole time ($M_0 \sim 300 M_{\text{sun}}$) or 60% of the time ($M_0 \sim 10^5 M_{\text{sun}}$)
Eddington limit?

Gas infalls from the galaxy: how does the galaxy know that it has to feed the MBH exactly at the Eddington limit?

Super-Eddington accretion does not imply highly super-Eddington luminosity

Trapping of radiation: photons are advected inward with the gas, rather than diffuse out

Luminosity highly suppressed \[L \propto \ln(M) \]

Only short periods needed to ease constraints (e.g. MV & Rees 2005; MV, Silk & Dubus 2015; Pacucci, MV et al. 2015a,b; Lupi et al. 2016)
High-redshift AGN

No detection in X-ray stacking of LBGs at $z>6$: $L_X < 10^{42}$ erg/s (Willott 2011; Fiore et al. 2012; Cowie et al. 2012; Treister et al. 2013)

Searches for point sources in deep X-ray fields has also led to inconclusive/conflicting results (Giallongo et al. 2015; Weigel et al. 2015; Cappelluti et al. 2015)
High-redshift MBHs

The billion solar masses MBHs powering the observed $z>6$ quasars are the tip of the iceberg.

Very biased, dense halos

What do we expect for *normal* MBHs in *normal* galaxies?
How do MBHs form?

- Metal Free
- Pop III remnants
- Stellar mergers in nuclear clusters
- BH mergers in nuclear clusters
- Dynamics-driven gas collapse
- Thermodynamics-driven gas collapse
- Inflationary black holes
- Cosmic string loops

$\log\left(\frac{Z}{Z_{\odot}}\right)$

$M_{\text{BH}}\left(M_{\odot}\right)$
A physical approach to seed cosmological simulations with MBHs

Ramses: Grid-based hydro solver with mesh refinement (Teyssier 2002)
- Cooling/Star formation (Rasera & Teyssier 2006)
- Supernova feedback (Dubois & Teyssier 2008, Teyssier et al. 2013, Dubois et al. 2015)
- BH accretion + AGN feedback (Dubois et al. 2012)

MBH seeds (sink particles) formed in:
- overdense bound collapsing regions
- metal-poor ($Z<10^{-3.5} Z_{\odot}$)
- initial mass of BH:
 - one by one
 - based on stellar IMF + stellar mergers
Density map
BHs form only in high gas-density regions

Metallicity map
BHs form in low-metallicity regions

(10 Mpc)3 cosmo hydro simulation:
Spatial resolution 80 pc
DM resolution 2×10^6 M_{sun}

Habouzit, MV, Dubois 2016
How do galaxies feed *normal* MBHs?

Low-mass BHs in low-mass galaxies: fragile environment

Interplay between SN feedback and MBH accretion: SN feedback is sufficient to energize the gas and suppress accretion (Dubois+14)
SETH, Ramses Cosmological Zoom, ~5pc resolution, Dubois, MV+14
How do galaxies feed normal MBHs?

$z=0$ BHs and AGN (Reines & Volonteri 2015)

10 Mpc cosmological volume, ~80pc resolution

Habouzit, MV, Dubois 2016
How do galaxies feed normal MBHs?
Growing black holes in growing galaxies
Searches for AGN in galaxies with stellar masses $\sim 10^9 \, M_{\text{sun}}$ at $z > 6$ have found very few, if any, black holes.

(Willott 2011; Fiore et al. 2012; Cowie et al. 2012; Treister 2013; Giallongo et al. 2015; Weigel et al. 2015; Cappelluti et al. 2016)

Expect $M_{\text{BH}} \sim 10^6 \, M_{\text{sun}}$.
M_{BH} vs galaxy at high redshift

BH mass vs. total galaxy stellar mass

(341 nearby galaxies)

Reines & MV 2015
M_{BH} vs galaxy at high redshift

$M_{BH} \sim 10^{-3} M_{gal}$

$M_{BH} \sim 10^{-4} M_{gal}$

Reines & MV 2015
M_{BH} vs galaxy at high redshift

stellar mass $\sim 10^9$ M_{sun}

- $M_{BH} \sim 10^{-3}$ M_{gal}
- $M_{BH} \sim 10^6$ M_{sun}

- $M_{BH} \sim 10^{-4}$ M_{gal}
- $M_{BH} \sim 10^5$ M_{sun}

AGN expected to be less luminous

Expect 0-3 AGN with $L_X > 10^{42}$ erg/s in the 4Ms CDFS

Consistent with current limits/candidates

MV & Reines 2016
High-redshift MBHs

Current limits/candidates high-z AGN compatible with a population of MBHs similar to low-z counterpart in galaxies of similar mass

How about the high-z quasars?
Current large-shallow surveys select only the most luminous quasars, $L_{\text{bol}} > 10^{46}$ erg/s \Rightarrow the most massive holes at a given stellar mass.

$L_{\text{bol}} > 46$

L_{bol} is the bolometric luminosity, which includes all wavelengths of electromagnetic radiation.
Growing black holes in growing galaxies
Growing black holes in growing galaxies: contribution to reionization

Galaxies form stars and emit ionizing photons

MBHs accrete and emit ionizing photons

Relative Role of Stars and Quasars in Cosmic Reionization

MBHs predicted to contribute 20-50% of ionizing photons (MV & Gnedin 2009)
Growing black holes in growing galaxies: contribution to reionization

MV & Gnedin 2009
High-redshift MBHs

“Ab-normal” MBHs in “normal” galaxies are those that grow fast and can be detected as luminous quasars.

“Normal” MBHs in “normal” galaxies may grow slowly.

Current limits/candidates high-z AGN compatible with a population of MBHs similar to low-z counterpart in galaxies of similar mass.

Relative role of stars and MBHs in cosmic reionization.