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Abstract. Highly collimated jets are observed in various astro-
nomical objects, as active galactic nuclei, galactic high energy
sources, and also young stellar objects. There is observational
indication that these jets originate in accretion disks, and that
magnetic fields play an important role for the jet collimation and
plasma acceleration. The rapid disk rotation close to the central
object leads to relativistic rotational velocities of the magnetic
field lines.

The structure of these axisymmetric magnetic flux surfaces
follows from the trans-field force-balance described by the
Grad-Schlüter-Shafranov equation. In this paper, we investigate
the asymptotic field structure of differentially rotating magnetic
jets, widening the study by Appl & Camenzind (1993a,b).

In general, our results show that, with the same current dis-
tribution, differentially rotating jets are collimated to smaller
jet radii as compared with jets with rigidly rotating field. Dif-
ferentially rotating jets need a stronger net poloidal current in
order to collimate to the same asymptotic radius. Current-free
solutions are not possible for differentially rotating disk-jet mag-
netospheres with cylindrical asymptotics.

We present a simple analytical relation between the poloidal
current distribution and magnetic field rotation law. A general
relation is derived for the current strength for jets with max-
imum differential rotation and minimum differential rotation.
Analytical solutions are also given in the case of a field rotation
leading to a degeneration of the light cylinder.

By linking the asymptotic solution to a Keplerian accre-
tion disk, ’total expansion rates’ for the jets, and also the flux
distribution at the foot points of the flux surfaces are derived.
Large poloidal currents imply a strong opening of flux surfaces,
a stronger gradient of field rotation leads to smaller expansion
rates. There is indication that AGN jet expansion rates are less
than in the case of protostellar jets. High mass AGN seem to
have larger jet expansion rates than low mass AGN.
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1. Jet formation from disk magnetic fields

Observations of different kinds of jet sources give convincing
evidence that jet formation is always connected to the presence
of an accretion disk. This holds for various scales of energy
output, jet velocity and nature of the jet emitting objects as
there are active galactic nuclei (AGN), galactic superluminal
jet sources, mildly relativistic jets from neutron stars (e.g. SS
433), and the numerous class of protostellar jets (e.g. Zensus et
al. 1995; Mirabel & Rodriguez 1995; Mundt et al. 1990, Ray et
al. 1996).

It is now generally accepted that magnetic fields play an
important role in jet formation and propagation for all different
kinds of jet sources. These jets are believed to originate very
close to the central objects in the interaction region with the
accretion disk or in the disk itself.

If the central object is a black hole as it is likely for AGN
and galactic superluminal jet sources, the disk is the only pos-
sible location for a field generation (by dynamo action or/and
advection of magnetic flux).

In the case of protostars and neutron stars the central object
also carries a relatively strong magnetic field, and it is not yet
clear, whether the jet magnetic field originates in the disk or
in the star. However, there must clearly be a strong interaction
between the stellar field and the accretion flow in a region, where
the stellar field couples to the disk.

Plasma is ejected from the disk into the magnetosphere
and becomes magnetically accelerated (see Ferreira & Pelletier
1995). Electric currents and inertia associated with the plasma
flow collimate the jet. The observed degree of collimation is
very high. The extragalactic jets, the galactic superluminal jets
as well as protostellar jets are collimated almost to a cylindrical
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shape (Camenzind & Krockenberger 1992, Zensus et al. 1995;
Ray et al. 1996).

While for extragalactic and galactic superluminal jets a fully
relativistic description is obviously necessary, the case of pro-
tostellar jets is more complicated. The protostellar jet velocities
of about ' 400 km s−1 (Mundt et al. 1990) are clearly non-
relativistic. However, if the field is anchored in the accretion
disk, the rapid rotation of the inner disk may lead to field rota-
tional velocities of the order of the speed of light (Camenzind
1990; see also Fendt et al 1995). In this case a relativistic treat-
ment of the MHD would be required. We emphasise that there
are no relativistic effects in the dynamics of the jet motion itself
(since the Alfvén surface would be well inside the light surface,
where the field rotational velocity equals the speed of light).

Appl & Camenzind (1993a,b; hereafter ACa, ACb) investi-
gated the asymptotic trans-field equation in the case of constant
field rotation. They were first to find a non-linear analytical solu-
tion for a cylindrically collimated asymptotic field distribution
(ACb). They also derived relations between the interesting jet
parameters jet radius, current strength, and the field and current
distribution.

In previous papers these results where used as a boundary
condition for the calculation of global two-dimensional jet mag-
netospheres (Fendt et al. 1995; Fendt 1996). As it was shown,
the critical solution of the wind equation along the calculated
field structure asymptotically approaches the analytical force-
free result (Fendt & Camenzind 1996).

However, since jet motion is connected to an accretion disk,
and since the accretion disk rotates differentially, the jet mag-
netosphere, if it is anchored in the disk, essentially obeys dif-
ferential rotation. This feature should therefore be a natural in-
gredient for any magnetic jet structure. How differential ro-
tation effects the asymptotic jet equilibrium, is not obvious,
since it involves collimating and de-collimating terms in the
force-balance equation. Ferreira (1997) showed that differen-
tial rotation plays a major role in recollimation of jets and their
asymptotic behaviour.

As a principal problem for differentially rotating relativistic
jet magnetospheres, the position and shape of the singular light
surface is not known a priori, but have to be calculated iteratively
in a non-trivial way together with the flux distribution.

A differentially rotating field distribution is further interest-
ing near the jet boundary. Here, models with a rigid field rotation
imply a sharp cut off of the field rotation in the jet and in the
surrounding interstellar medium, while with a differentially ro-
tating field a smoother transition is possible.

The structure of the paper is as follows. In Sect. 2 we re-
call some basic equations of the theory of relativistic magneto-
spheres and discuss several difficulties with the solution of the
Grad-Schlüter-Shafranov (hereafter GSS) equation. We evalu-
ate the GSS equation for asymptotic cylindrical jets, including
differential rotation. In Sect. 3 we discuss our results. We in-
vestigate, whether current free cylindrical jets are possible. We
solve the asymptotic GSS equation for different assumptions for
the field rotation and finally present a general analytic relation
between the current distribution and the rotation law.

2. Structure of magnetic jets

Throughout the paper we apply the following basic assumptions:
axisymmetry, stationarity, and ideal MHD. We use cylindrical
coordinates (R, φ, Z) or, if normalised, (x, φ, z). The notation
is similar to that of Fendt et al (1995) and ACa,b.

We emphasise that the term ’asymptotic’ always denotes the
limit R << Z and that jets with finite radius, Z →∞, R <∞
are considered.

2.1. The force-free cross–field force–balance

With the assumption of axisymmetry, a magnetic flux function
Ψ can be defined,

Ψ =
1

2π

∫
BP · dA, RBP = ∇Ψ ∧ eφ, (1)

measuring the magnetic flux through a surface element with
radius R, threaded by the poloidal component (index ’P’) of
the magnetic field B. With Eq. (1) the toroidal component of
Ampère’s law leads to the GSS equation

R∇ ·
(

1
R2
∇Ψ

)
= −4π

c
jφ , (2)

with the toroidal component (index φ) of the current density
j. The poloidal current, defined similarly to the magnetic flux
function,

I =
∫
jP · dA = − c

2
RBφ, (3)

flows within the flux surfaces, I = I(Ψ). The projection of the
force-free, relativistic equation of motion (where inertial effects
of the plasma are neglected),

0 = ρe E +
1
c
j ∧B , (4)

(with the electric field E and the charge density ρe) perpendic-
ular to the magnetic flux surface provides the toroidal current
density,

1
c
jφ

(
1−

(
RΩF

c

)2
)

=
1

4πR
4
c2

1
2
dI2

dΨ

− ΩF

4πc2R
(∇Ψ · ∇)(R2ΩF) . (5)

ΩF is the angular velocity of the field lines and is conserved along
the flux surfaces, ΩF = ΩF(Ψ). Both the current distribution
I(Ψ) and the rotation law of the field, ΩF(Ψ), determine the
source term for the GSS equation and govern the structure of
the magnetosphere. Combining Eqs. (5) and (2) the cross-field
force-balance can eventually be written as

R∇ ·
(

1− (RΩF(Ψ)/c)2

R2
∇Ψ

)
= − 4

c2

1
R

1
2
d

dΨ
I2(Ψ) (6)

− R |∇Ψ|2 1
2

d

dΨ
Ω2

F(Ψ),
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which is called the modified relativistic GSS equation.
At the light surface with R = RL ≡ (c/ΩF(Ψ)) the rota-

tional velocity of the field lines equals the speed of light. Here,
the GSS equation becomes singular. For differentially rotating
magnetospheres the shape of this surface is not known a priori
and has to be calculated in an iterative way together with the
2D solution of the GSS equation. For constant field rotation the
light surface is of cylindrical shape. We choose the following
normalisation,

R,Z ⇔ xR0, z R0,

ΩF ⇔ ΩF (c/R0) ,

Ψ ⇔ Ψ Ψmax ,

I ⇔ I Imax ,

B2
P ⇔ y (8πΨ2

max/R
4
0) .

For the length scale R0 the radius of the asymptotic light
cylinder (see below) is selected. In order to allow for an imme-
diate comparison to rigidly rotating magnetospheres, the nor-
malisation is chosen such that ΩF = 1 at x = 1.

With the normalisation applied, Eq. (6) can be written di-
mensionless,

x∇ ·
(

1− x2Ω2
F(Ψ)

x2
∇Ψ

)
= − g

1
x

1
2
d

dΨ
I2(Ψ)

− x|∇Ψ|2 1
2
d

dΨ
Ω2

F(Ψ). (7)

g is a coupling constant describing the strength of the current
term in the GSS equation,

g =
4I2

maxR
2
0

c2Ψ2
max

= 4

(
Imax

1018A

)2(
R0

1016cm

)2( Ψmax

1033 Gcm2

)−2

in the case of AGN, and

g = 4

(
Imax

1012A

)2(
R0

1014cm

)2( Ψmax

1025 Gcm2

)−2

for protostellar parameters. Note that g in this paper is in ac-
cordance with the definitions in Fendt et al. (1995) and differs
from the definition in ACa,b by a factor of two, gFendt = 2 gAC.
A coupling constant, defined in a similar way for the differen-
tial rotation term, would be equal to unity, indicating on the
important role of this effect.

2.2. Where is the asymptotic light cylinder located?

We define the asymptotic light cylinder, R0, as the asymptotic
branch of the light surfaceRL(Ψ). Asymptotically, this quantity
plays the same role for the GSS equation as the light cylinder
does in the case of a rigid rotation of the magnetosphere.

All asymptotic flux surfaces within R0 rotate slower than
the speed of light andR(Ψ) < RL(Ψ). Flux surfaces outsideR0

may rotate faster than the speed of light, here R(Ψ) > RL(Ψ).
Despite a possible degeneration of the GSS equation for a spe-
cial rotation law (see below), there is only a single physical

asymptotic light cylinder possible. Therefore, R0 ≡ R(Ψo) ≡
RL(Ψo).

It should be noted that the introduction of a light cylinder
RL(Ψ) = c/ΩF(Ψ) also relies on the Ideal MHD assumption. For
a non-infinite plasma conductivity a conserved angular veloc-
ity of the field lines ΩF(Ψ) cannot be defined. However, even in
this case, the field may move with relativistic speed. The math-
ematical formalism, of course, becomes more complicated and
its solution is beyond the scope of this paper. An estimate of
diffusion and dynamical times scales for protostellar jets, re-
spectively, leads to the conclusion that the Ideal MHD assump-
tion may be appropriate (Fendt 1994). For AGN this assumption
would be even more valid.

2.2.1. Stellar magnetosphere

In the case of a constant field rotation the light cylinder radius
just follows from the rotational velocity of the field (and does not
depend on the flux distribution Ψ(R,Z)). Under the assumption
that the field is anchored in the stellar surface, the field rotation
follows from the stellar rotational period P?. The rotational pe-
riod of many protostellar jet sources is not known, but in the
case of T Tauri stars it is of the order of days. Thus, we estimate
the light cylinder radius

RL = 2 1015cm

(
P?
5d

)
= 1.4 104R?

(
R?

2R�

)−1(
P?
5d

)
.

This radius is of the order of the observationally resolved asymp-
totic jet radius of about 1015 cm (Mundt et al. 1990; Ray et al.
1996). HST observations indicate on slightly smaller jet radii
of 20 AU (Kepner et al 1993).

For neutron stars the light cylinder is at

RL = 5 109cm

(
P?
1s

)
= 4630R?

(
R?

106cm

)−1(
P?
1s

)
.

2.2.2. Disk magnetosphere

For disk magnetospheres the rotation law is determined by the
flux distribution along the disk surface together with the disk
rotation. If the foot point of a flux surface on the disk (here the
term foot point denotes the position along the field line, where
ideal MHD sets in) at a radius RD(Ψ) rotates with Keplerian
speed, the flux surfaces intersect the light surface at the radius

RL(Ψ) = 570R?

(
RD(Ψ)
R?

)3
2
(

M

3 M�

)− 1
2
(

R?

2R�

)5
2

(here for protostellar parameters) with the mass of the central
object M . The ratio between the position radius of the light
surface and the light cylinder for rigid rotation is then

RL(Ψ)
RL

= 0.05

(
RD(Ψ)
R?

)3
2
(

R?

2R�

)3
2
(

M

3 M�

)− 1
2
(
P?
5d

)−1
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(again for a protostellar disk magnetosphere). Is the central ob-
ject a neutron star, this ratio decreases by a factor of about 100.
For AGN we can estimate

RL(Ψ) = 4 1015cm

(
RD(Ψ)
RS

)3
2
(

M

1010 M�

)
,

and in general

RL(Ψ)
RS

=
√

2

(
RD(Ψ)
RS

)3
2

, (8)

where RS is the Schwarzschild radius of the black hole.
The question, whether or not a relativistic description is

required for the jet magnetosphere, depends on the asymp-
totic radius of the flux surface, R∞. If for any flux surface
RL(Ψ) <∼ R∞(Ψ), a relativistic description of the magne-
tosphere is required. In the contrary, if for all flux surfaces
RL(Ψ) > R∞(Ψ), the Newtonian description is appropriate.
Note that even then, for two arbitrary flux surfaces Ψ1 and Ψ2

with R∞(Ψ1) < R∞(Ψ2), RL(Ψ1) < R∞(Ψ2) is possible.
In principal, the asymptotic field distribution is a result of the

two-dimensional force-balance of the jet, and therefore should
follow from the solution of the two-dimensional GSS equa-
tion. We hypothesise that the asymptotic force-free solution will
uniquely be determined by the disk flux and current distribution
(and vice versa).

Our results for differentially rotating jets can hardly deliver
a statement about the absolute value of the asymptotic jet radius,
but only in terms of the asymptotic light cylinder jet radius R0.

2.3. The asymptotic force-balance

In the asymptotic regime of a highly collimated jet structure we
reduce Eq. (7) to a one-dimensional equation, equivalent to the
assumption ∂x >> ∂z .

Then, Ψ(x, z) → Ψ(x), and the conserved quantities I(Ψ)
and ΩF(Ψ) can be expressed as functions of x. If we further
assume a monotonous flux distribution Ψ(x), the derivatives
(∂/∂Ψ) → (dΨ/dx)−1(d/dx). Note that this excludes hypo-
thetical solutions with a return current from our treatment (see
also Sect. 3.4.1).

With the assumptions made above, the GSS Eq. (7) reduces
to an ordinary differential equation of first order in the derivative
(dΨ/dx)2,

(
1− x2Ω2

F

) d

dx
(
dΨ
dx

)2 +

(
4
x
− 2xΩ2

F − x2 dΩ
2
F

dx

)
(
dΨ
dx

)2

+ g
dI2

dx
= 0 (9)

Since (x−2dΨ/dx)2 is related to the magnetic pressure of the
poloidal field, Eq. (9) can be rewritten as

(
1− x2Ω2

F

) dy
dx
− 4xy

(
Ω2

F +
x

4
dΩ2

F

dx

)
= − g

8πx2

dI2

dx
. (10)

The magnetic flux function then follows from integration of

dΨ(x)
dx

= x
√

8πy(x) (11)

with Ψ(x = 0) = 0. At the singular point x = 1 the solution y(x)
must satisfy the regularity condition

y(1) =
g

8π
dI2(1)
dx

(
4 +

dΩ2
F(1)
dx

)−1

. (12)

We mention that Eq. (10) can also be derived from the equation
for the asymptotic force-equilibrium perpendicular to the flux
surfaces,(

1− R2

R2
L

)
∇⊥B

2
P

8π
− RB2

P

2πR2
L

∇⊥R − B2
PΩF

4πc2
∇⊥(R2ΩF) (13)

+
1

8πR2
∇⊥(RBφ)2 = 0 ,

where ∇⊥ indicates the gradient perpendicular to the flux sur-
faces, and where poloidal field curvature and the centrifugal
force are neglected (Chiueh, Li & Begelman, 1991; ACa).

2.4. Discussion of the force-free assumption

One may question the assumption of a force-free asymptotic jet.
Indeed, in a self-consistent picture of jet formation, the asymp-
totic jet is located beyond the collimating, non force-free wind
region and beyond the fast magnetosonic surface. The asymp-
totic jet parameters are determined by the critical wind motion
and thus, the poloidal current and the angular velocity of the
field are not functions free of choice.

The essential point here is the assumption of a cylindrical
shape of the asymptotic jet, an assumption, however, which is
clearly indicated by the observations. The general, non force-
free expression for the poloidal current is

RBφ = −4π
η(Ψ)E(Ψ)

ΩF(Ψ)
x2
A − x2

1−M 2 − x2
,

where η(Ψ) is the particle flow rate per flux surface, E(Ψ) is
the conserved total energy, M the Alfvén Mach number, and
xA(Ψ) the Alfvén radius of the flux surface. For cylindrical flux
surfaces, all quantities on the r.h.s. are functions of Ψ, and thus,
also RBφ is a function of Ψ. Although RBφ is not equal to the
force-free current, it enters Eqs. (10) and (13) in a similar way.

The centrifugal term, which was neglected in Eq. (13), is
−γ2ρRΩ2eR, with the plasma density ρ and plasma angular
velocity Ω (see ACa). This term may be important for small
plasma densities ρ, where RΩ might be large, as well as for
high densities, where the toroidal plasma velocity is supposed
to be small. We can estimate the importance of this term by
normalising and introducing a coupling constant

gM =
ṀjetcR

2
0

πΨ2
max

,
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Fig. 1. a,c Magnetic pressure dis-
tribution y(x) and b,d flux dis-
tribution Ψ(x) for a field rota-
tion law ΩF(x) = (1/x) (solid,
long-dashed) and ΩF(x) ≡ 1
(dotted, short-dashed). a,b Cur-
rent distribution I(x) = xn,
n = 0.5, 2, c,d current distribu-
tion (22), a = 1, 10, n = 2.

which is of the order of one tenth for a jet mass loss rate Ṁjet '
10−2M�yr−1 and other parameters typical for AGN.

For protostellar jet parameters and a mass loss rate Ṁjet '
10−10M�yr−1, gM increases by a factor of 1000. However, in
this case we may expect that the Alfvén surface of the plasma
motion is located well inside the light cylinder. Thus, the plasma,
rotating with constant angular momentum beyond the Alfvén
surface, has a decreasing and low angular velocity Ω (which is
normalised to the ΩF). The centrifugal term∼ Ω2 may become
comparatively small. We emphasise that the latter arguments are
rather (simplifying) assumptions than keen conclusions, as long
as the true non force-free jet equilibrium is not investigated.

Contopoulos & Lovelace (1994) and Ferreira (1997) con-
structed self-similar solutions including centrifugal forces
showing that the magnetic terms indeed may dominate the cen-
trifugal term for large radii leading to a recollimation of the
outflow.

2.5. Solution of the asymptotic GSS equation

Eq. (10) can be solved by the method of the variation of con-
stants. The integrating factor of the differential equation is

M (x) = exp

(∫
−4x

Ω2
F(x)− x

4
d
dxΩ2

F(x)

1− x2Ω2
F(x)

dx

)
, (14)

with the formal solution

y(x) =
1

M (x)

(
C −

∫
M (x)

1− x2Ω2
F(x)

g d
dxI

2(x)

8πx2
dx

)
(15)

Using Eq. (12), the general solution can be evaluated,

y(x) =
1

M (x)
g

8π

∫ 1

x

1
x̃2

M (x̃)
1− x̃2Ω2

F(x̃)
d

dx̃
I2(x̃)dx̃ . (16)

As already mentioned by ACa, the solution y(x) is determined
by the regularity condition (12). The magnetic flux function is

Ψ(x) =
∫ x

0
x̃
√

8πy(x̃)dx̃ . (17)

In the case of a constant field rotation, ACb found an ana-
lytical, non-linear solution to the asymptotic GSS equation, the
flux distribution

Ψ(x) =
1
b

ln

(
1 +
(x
a

)2
)
, (18)

together with the current distribution

I(Ψ) =
1− e−bΨ

1− e−b
, (19)
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leading to a certain relationship between the current distribution
parameter b, the core radius a, the coupling constant g, and the
asymptotic jet radius xjet ≡ x(Ψ = 1).

3. Results and discussion

We now discuss different solutions of the asymptotic GSS equa-
tion including differential rotation. We first consider the case of
vanishing poloidal current. We give an analytical solution for a
special rotation law leading to a ’degeneration’ of the asymptotic
light cylinder. Then, Eq. (10) is solved numerically for differ-
ent assumptions for the asymptotic field rotation ΩF(x). Finally,
using a general ansatz for the asymptotic field distribution we
derive a relation between I(Ψ) and ΩF(Ψ).

In general, the differential equation for the field pressure
(10) can be rewritten as a differential equation for the angular
velocity of the field lines,

dΩ2
F

dx
+

(
4
x

+
d(ln y)
dx

)
Ω2

F =
g

8π
1
x4y

dI2

dx
+

1
x2

d(ln y)
dx

, (20)

with the formal solution

Ω2
F(x) =

1
x4y

(
C +

g

8π
I2(x) +

∫
x2 dy

dx

)
. (21)

For physical reasons, Ω2
F(x) should be monotonous (since cou-

pled to the disk rotation), and positive for all x. In order to
be consistent with the chosen normalisation, we further require
Ω2

F(1) = 1, and x2Ω2
F < 1 for x < 1. From the latter condition,

it follows that the integration constant must vanish,C = 0. Oth-
erwise the rotational velocity xΩF of the field would diverge for
x → 0. Note that, although the angular velocity may diverge
with ΩF ∼ 1/xm, 0 < m ≤ 1, the rotational velocity remains
finite for x→ 0.

We can further see that for particular choice, a bounded
current distribution with the core radius a,

I(x) =
(x/a)n

1 + (x/a)n
, (22)

and for n ≥ 2 the current term in Eq. (21) does not diverge in
the limit x → 0, leading to finite angular field rotation (since
y(0) must be finite), while for n >∼ 1/2 the angular velocity
diverges but not the rotational velocity, xΩF → finite value.

3.1. The case of constant or vanishing current

Now we take a look at the case of a vanishing poloidal current.
A constant current, I(x) = const, would imply a divergence in
the field rotation.

If I(x) = 0, from the regularity condition (12) it follows that
y(1) = 0. From Eq. (21) we conclude that a physical rotation law
(which does not diverge at x = 1) requires that the numerator∫
x2(dy/dx)dx vanishes together with the denominator x4y.

This, however, is in contradiction with the requirement of a
decreasing, monotonous rotation law, as it can be derived from
the following. A vanishing integral

∫
x2(dy/dx)dx requires that

the integrand changes sign at a certain position. Thus, y(x) has
to have a maximum (a minimum is ruled out, since y(1) = 0),
and also the term x4y. On the other hand, the integral has a
maximum too, but not necessarily at the same position. This
implies that the ratio of numerator and denominator passes a
point of inflection, where both terms equal, and therefore Ω2

F =
1. Since also ΩF(x = 1) = 1 by definition, this is in contradiction
with a monotonous rotation law.

We conclude only from asymptotic considerations that
cylindrically collimated differentially rotating jets always carry
a non-constant, net poloidal current. This is in agreement with
previous results (Heyvaerts & Norman 1989, Chiueh et al.
1991).

3.2. A solution with degenerate light cylinder

The next case we will investigate is for a rotation law

ΩF(x) =
1
x
. (23)

Now all asymptotic field lines rotate with the speed of light, and
the light cylinder degenerates. Note that this does not contradict
with our choice of normalisation. The length scale is measured
in units of R0, which is the light cylinder of a rigidly rotating
magnetosphere. Here, ΩF(1) ≡ (ΩF)rigid = 1.

The rotation law (23) and the corresponding field distribu-
tion may be considered as a somehow ’limiting case’ for a phys-
ical field rotation. For a rotation law with a steeper slope (e.g. for
Ω2

F ∼ x−3) the rotational velocity will diverge if x → 0. Also,
the surface x = 1 then plays the role of a somehow ’inverted’
light cylinder since all field lines within (outside) the light cylin-
der rotate faster (slower) than the speed of light. Whether this
behaviour could be considered as appropriate for astrophysical
application also depends on the 2D field distribution.

Since for assumption (23) the derivative term of y disappears
in Eq. (10), we can immediately write down the solution

y(x) =
g

16πx
d

dx
I2(x) , Ψ(x) =

∫ x

0

(
gx̃

2
d

dx̃
I2(x̃)

)1
2

dx̃. (24)

With a current distribution I(x) = xn the field distribution is

y(x) =
g

16π
2nx2n−2 , Ψ(x) =

√
ng

n + 1
xn+1 . (25)

This gives a rotation law for the flux surfaces

ΩF(Ψ) =

(√
ng

n + 1
1
Ψ

)1/(n+1)

(26)

We show the solution with bounded current distribution (22)
and n = 2 in the Appendix. Fig. 1 displays both results in com-
parison with a field distribution resulting from a rigid rotation
law, ΩF ≡ 1.

We note that Contopoulos (1994) applied a similar rota-
tion law for self-similar solutions of the 2D GSS equation,
which take self-consistently into account also plasma inertia ef-
fects. With a current distribution I(x) ∼ xn−1, Eq. (24) reveals
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Fig. 2a–d. The rotation laws applied
for the asymptotic jet magnetosphere
(29) (a), (c), and (30) (b), (d). Square
of the a, b angular velocity Ω2

F, and
c, d the rotational velocity x2Ω2

F. Pa-
rameters: h = 0 (solid), h = 0.1
(dotted), h = 0.2 (short-dashed),
h = 0.5 (long-dashed), h = 1.0 (dot-
ted-dashed).

Ψ(x) ∼ xn, which is identical to the results of Contopoulos
(1994). In the force free limit, his function H(Ψ) is identical to
our poloidal current (2/c)I(Ψ).

As a simple application of this differentially rotating field
distribution, the asymptotic solutions (25) and (26) are con-
nected to an accretion disk with Keplerian rotation, ΩK(x) =√
GM/c2R0 x

−3/2 (we assume here that the flux surfaces orig-
inating in the disk rotate with this velocity).

Since the field rotation near the disk ΩF((Ψ(x))disk) ≡
ΩK(x) must be the same as in the asymptotic regime, ΩF(Ψ),
the flux distribution near the disk can be calculated,

(Ψ(x))disk =
√
ng

n + 1

(√
c2R0

GM

)n+1

x3(n+1)/2 . (27)

From the comparison of the disk flux distribution with the
asymptotic flux distribution, it follows that for a certain flux
surface the ratio between it’s asymptotic radius, x∞,Ψ and the
radius near the disk xD,Ψ is

x∞,Ψ

xD,Ψ
=

√
c2R0

GM
xD,Ψ . (28)

We can further calculate the foot point of the outermost flux
surface, Ψ = 1, from Eq. (27), and with that and Eq. (28) the
’total expansion rate’ of the jet

xjet

xD,Ψ=1
=

(
(n + 1)√

ng

)1/3(n+1)(
c2R0

GM

)1/3

.

The first term in this equation varies rather weakly with g, and
is of the order of unity (unless g is not much larger or much
less than unity). For the second term we calculate for AGN
(M = 1010 M�, R0 = 1016 cm) a number value of about 2,
which is surprisingly small, and for protostars (M = 3 M�,
R0 = 1015 cm) a value of ∼ 1200, respectively. This result
may indicate on an intrinsic difference between the two jet
sources. However, we should keep in mind that inertial forces
may change the protostellar jet expansion rate and that the as-
sumed current distribution might not be appropriate.

Comparing the field distribution near the disk (27) and in
the asymptotic region (25) at small radii x < 1,

Ψ(x)disk

Ψ(x)∞
=

(
c2R0

GM
x

)(n+1)

,

we may principally expect a recollimation of certain flux sur-
faces, depending on the source parameters M,R0 and the ra-
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Fig. 3a–e. a Magnetic pressure dis-
tribution y(x) and b flux distribution
Ψ(x). c Coupling constant as a func-
tion of the jet radius. The field rotation
law is (29) with different steepness
parameters, h = 0 (solid), h = 0.1
(dotted), h = 0.2 (short-dashed),
h = 0.5 (long-dashed), h = 1.0 (dot-
ted-dashed). The solid curves coin-
cide with the analytical result from
ACb. Note that the solid curves corre-
spond to the dotted curves in Fig. 1c
and 1d.

dius x. However, we believe that such kind of conclusions (e.g.
’recollimation predominantly for low mass AGN’) might be ex-
aggerated, since not very much is known about the disk field
distribution and rotation, especially for small radii near the star,
black hole, or disk boundary layer.

3.3. Numerical solutions of the asymptotic GSS including dif-
ferential rotation

In this section numerical solutions to the asymptotic GSS equa-
tion with differential rotation are presented. Here, the current
distribution is prescribed, and Eq. (10) is solved for different
assumptions for the rotation law, ΩF(x) = ΩF(Ψ(x)).

In order to allow a comparison with rigid rotation solutions
we chose a bounded current distribution (22) (with n = 2) in
parallel to the work of ACa,b. For the rotation law we require that
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(i) it is finite at x = 0, (ii) ΩF(x = 1) = 1, in accordance with the
normalisation, and (iii) Ω2

F > 0 ∀ Ψ < 1. These requirements
are satisfied by e.g. the following functions,

Ω2
F(x) = eh−hx (29)

Ω2
F(x) =

exp
(

1
x+f

)
hx + 1

, f ≡ 1
ln(h + 1)

− 1 , (30)

where h plays the role of a steepness parameters (see Fig. 2).
There is a further condition (iv) for a rotation law. Rota-

tion laws remaining valid for x → ∞, have to be flatter than
ΩF ∼ 1/x. Otherwise the rotational velocity of the field lines
will pass a maximum and finally decreases to values x2Ω2

F ≤ 1
(Fig. 2c). Note that ansatz (29) cannot be applied for arbitrarily
large radii in the case of a high steepness parameter h. Since ro-
tation law (29) is applied for a finite flux distribution, there is no
serious problem as long as the turn-over of the rotational veloc-
ity is located beyond the jet radius. Ansatz (30) is more general,
however, the analytical expressions look more complicated.

In Fig. 3 we display the numerical solutions of the asymp-
totic force balance for ansatz (29). A solution with ansatz (30)
looks very similar, we therefore omitted the plot. The solid
curves show the field distribution with constant field rotation
coinciding with the result of ACb, the other curves the result
with increasing steepness of the rotation law, respectively.

The small peak in the field pressure (Fig. 3a) along the so-
lution with the very steep rotation law results from numerical
difficulties with the above mentioned decrease of rotational ve-
locity for large radii and does not appear for the other ansatz.

From the solutions Ψ(x) and I(x) or ΩF(x), we can derive
the distribution of the conserved quantities I(Ψ) and ΩF(Ψ)
(Fig. 3d, 3e), which could be applied for force-free 2D calcula-
tions.

Fig. 3c shows the relation between the coupling constant
(measuring the strength of the poloidal current) and the jet ra-
dius. In order to obtain jets with the same radius, the current
strength has to be increased with increasing steepness of ΩF.
The same behaviour is mirrored in Fig. 3e, if we compare the
poloidal current at the jet boundary, I(Ψ = 1), for different h.

The force-equilibrium is affected by differential rotation
predominantly in the outer part of the jet. The field distribu-
tion within the core radius a of the asymptotic jet is not con-
cerned very much by differential rotation, although a slight de-
collimating effect can be observed. The behaviour changes be-
yond of x = a, where the collimating effect is stronger than the
de-collimation effect in the inner part.

Our results clearly show that differential rotation has a col-
limating influence. Depending on the steepness parameter, the
asymptotic jet radius (defined by Ψ = 1) varies by a factor up to
2, which could be even larger for a lower coupling g. Note that
the spatial scaling is in terms of the asymptotic jet radius R0.
This parameter, however, and thus the absolute scaling can only
be inferred from a 2D solution. In Sect. 2.2 we gave arguments
that, due to the rapid rotation of the accretion disk, R0 could
be closer to the jet axis compared to solutions with constant
rotation ΩF = Ω?.

3.4. A non-linear analytical solution

In this section we derive a general analytical solution for the
rotation law ΩF(Ψ). We assume a form of flux distribution pa-
rameterised as in Eq. (18). However, in contrary to the case of
rigid rotation, the parameter b = ln(1 + (xjet/a)2) is not a pri-
ori coupled to the current distribution (e.g. Eq. 19). Then, the
asymptotic GSS can be transformed into an ordinary differential
equation for Ω2

F,

d

dΨ
Ω2

F(Ψ) +
2b

ebΨ − 1
Ω2

F(Ψ) =
g b2

4
(ebΨ)2

(ebΨ − 1)2

d

dΨ
I2(Ψ)

− 1
a2

2 b
ebΨ − 1

(31)

Now we investigate, whether a combination of current distribu-
tion and rotation law can be found, which is consistent with the
chosen flux distribution. The general solution of Eq. (31) is

Ω2
F(Ψ) =

C + 1
4g b

2I2(Ψ)− a−2e−bΨ(e−bΨ − 2)

(1− e−bΨ)2
, (32)

with the integration constantC. This solution diverges for Ψ →
0 unless C = −1/a2. Thus, we obtain

Ω2
F(Ψ) =

1
4
g b2 I2(Ψ)

(1− e−bΨ)2
− 1
a2

, (33)

and vice versa a relation for the current distribution in terms of
ΩF(Ψ). In the limit Ψ → 0 the solution approaches

lim
Ψ→0

Ω2
F(Ψ) =

1
a2

+
g

8
lim
Ψ→0

d2

dΨ2
I2(Ψ) . (34)

For a current distribution (19) we end up with the result of ACb
with constant angular velocity of the field, ΩF = 1.

Since by definition I(Ψ = 1) = 1, xjet = a
√
eb − 1, we can

derive an expression for the coupling constant

g =
4
b2

(1− e−b)2

(
Ω2

F(1) +
eb − 1
x2

jet

)
. (35)

Eq. (35) is visualised in Fig. 4. We see that differential rotation
plays a dominant role only for low-g / low-b jets, i.e. jets with
low poloidal current and a broad field distribution (i.e. large
core radius). Note that although a is shifted to lower values for
steeper differential rotation, the magnetic flux Ψ(x = a) remains
unchanged. In the limiting case of rigid rotation the parameter
b describes steepness of the poloidal current distribution. We
can rewrite Eq.(35) in terms of the core radius a of the field
distribution

g = 4
Ω2

F(1) +
(
1/a

)2

ln(1 + (xjet/a)2)

( (
xjet/a

)2

1 +
(
xjet/a

)2

)2

(36)

This shows that in order to obtain the same asymptotic mag-
netic jet structure (with the same parameters a, b, or xjet in
Eq. (18)), the current has to be larger (parameterised by the cou-
pling constant g) in the case of larger gradients of the rotation
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law. Similarly, for a fixed ratio (xjet/a) and g, but decreasing
ΩF(1), also the core radius a (and thus xjet) is decreasing.

The thick line in Fig. 4 is the limiting value for the coupling
constant g for rigid rotation, where the core radius a diverges
(ACb). It corresponds to a minimum current required for rigid
rotating magnetic jets, g∞ = 4 (1 − e−b)2/b2. In the case of
differential rotation, this value is decreased by a factor ΩF(1)2.

Eqs. (35) and (36) are a general result resting only on the
assumption of the field distribution (18). No assumption was yet
made about the function ΩF(Ψ). Any solution I(Ψ), ΩF(Ψ) has
to lie within the limiting curves of ΩF(1) = 1 and ΩF(1) = 0 in
Fig. 4. The ratio of the coupling constants for constant rotation
(ΩF(1) = 1) and for maximum differential rotation (ΩF(1) = 0)
is

gmax

gmin
= 1 +

x2
jet

eb − 1
. (37)

Again we derive the ’total expansion rate’ similar to Sect. 3.2
by comparison of the asymptotic solution with Keplerian disk
rotation,

x3
jet

x3
D,Ψ=1

(
GM

c2R0

)
=

1
4
gb2

x3
jet(

1− e−b
)2 − (eb − 1)xjet, (38)

where no assumption was made about a specific field rotation.
Strong currents and large asymptotic jet radii imply a strong
opening of the flux surfaces. If we rewrite Eq. (38) in terms of
the field rotation,

xjet

xD,Ψ=1
=

(
c2R0

GM

)1
3

xjet Ω
2
3
F (1) =

(
2
R0

RS

)1
3

xjet Ω
2
3
F (1) , (39)

we see that a stronger gradient in the field rotation (a lower value
of ΩF(Ψ = 1)) leads to a lower expansion rate. A vanishing
field rotation of the outermost flux surface leads to a vanishing,
unphysical, expansion rate.

With reasonable numerical parameters the different central
objects (see Sect. 2.2), the numerical values for the expansion
rate are

xjet

xD,Ψ=1
= 2xjet Ω

2
3
F (1)

(
M

1010 M�

)(
R0

1016cm

)−1

in the case of AGN, and

xjet

xD,Ψ=1
= 600 xjet Ω

2
3
F (1)

(
M

3 M�

)(
R0

1015cm

)−1

for protostellar objects.
We may assume that AGN jets are highly relativistic with

1 << xjet ∼ 100, and therefore are strong differential rotators,
1 >> ΩF(1) ∼ 0.1. Their expansion rate would then be of
the order of 50. In the case of protostars xjet ∼ 1, and thus
ΩF(1) ∼ 1. The expansion rate would then be of the order of
600. The applied number values for xjet and ΩF(1) are only raw
estimates, indicating ’steep’ or ’flat’ rotation laws and ’highly’
or ’weakly’ relativistic field rotation, respectively.

Fig. 4. Interrelation between the jet parameters g, b = ln(1 + (xjet/a)2),
xjet and the angular field velocity at the jet boundary, Ω2

F(Ψ = 1).
Ω2

F(1) = 1 (solid), Ω2
F(1) = 0.5 (dotted), Ω2

F(1) = 0.1 (short-dashed),
Ω2

F(1) = 0 (long-dashed). The thick solid curve is the boundary of the
forbidden regime, where no rigid rotating jet solutions are possible.
The solid curves coincide with the result from ACb.

Keeping all the uncertainties in mind, we may generally
expect lower expansion rates for the AGN. Especially the ex-
pansion rates for protostars have to be taken with care (see also
discussion end of Sect.3.2). However, a rather general conclu-
sion might be that high mass, fast rotating AGN have higher
jet expansion rates than their low mass slower rotating counter-
parts.

If we rewrite Eq. (35) we find an expression for the ratio of
the jet radii in terms of the field rotation of the outermost flux
surface.

3.4.1. The question of non-monotonous flux distribution

We note a general difficulty with non-monotonous flux distri-
butions. In this case the jet magnetosphere would consist of
flux surfaces with different foot points, but with the same ab-
solute flux, e.g. Ψ1 = Ψ2. These flux surfaces are not directly
connected within the integration domain.

There is no physical reason, why they should not carry a
different poloidal current, as long it is conserved along Ψ1 and
Ψ2, respectively. However, in this case the description of the
poloidal current as a function I(Ψ), seems to fail. Instead it is
supposed, that always I(Ψ1) = I(Ψ2), and one has to assume
such kind of current distribution.

The problem is more serious for the other ’free’ function,
the field rotation ΩF(Ψ). Here, if we suppose an accretion disk
as source for the magnetic flux, all foot points of the flux sur-
faces must rotate with monotonously decreasing angular ve-
locity. Again, the description does not support a different field
rotation for Ψ1 and Ψ2. This statement is also valid for a non
force-free description.
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We conclude that the monotonous disk rotation could only
support monotonous flux distributions. Therefore, assumption
(18) for the analytical solution seems to be rather general.

3.4.2. A special analytical rotation law

As an example for a current distribution appropriate for differ-
ential rotation we may chose

I(Ψ) = B
(
1− e−bΨ

)
e−dΨ; B ≡ (1− e−b

)−1
ed. (40)

The steepness parameter d describes the variation from constant
rotation. This leads to a field rotation

Ω2
F(Ψ) =

1
4
g b2B2e−2dΨ − 1

a2
, (41)

The jet radius is by definition at Ψ = 1, and from Eq. (18) it
follows xjet = a

√
eb − 1. Since ΩF(Ψ(x = 1)) = 1, we calculate

for the flux distribution parameter

a2 =

((
1
4
gb2B2

)1/(1+2d/b)

− 1

)−1

. (42)

Again, d = 0 gives the result derived by ACb. Otherwise, a and
also xjet is decreased for fixed g and b.

The expression for the coupling constant is

g =
4
b2

(1− e−b)2e−2d

(
1 +

eb − 1
x2

jet

)1+(2d/b)

. (43)

The angular velocity of the outermost flux surface is

Ω2
F(Ψ = 1) = 1 +

1
4
gb2B2e−2d −

(
1
4
gb2B2

)1/(1+2d/b)

. (44)

The interrelation of the parameters g, b, d and xjet is similar
to Fig. 4. However, the parameter d has to be chosen such that
Ω2

F(xjet) >∼ 0, and g(b; d, xjet) lies within the limiting curves of
ΩF(1) = 1 and ΩF(1) = 0 in Fig. 4.

4. Conclusions

In this paper the asymptotic force-balance across collimated
magnetic flux surfaces was investigated. Relativistic effects due
to rapid rotation of the field as well as differential rotation was
included in the treatment.

The related astrophysical scenario is that of a highly colli-
mated magnetic jet originating in an accretion disk, as observed
in active galactic nuclei, galactic high energy sources with su-
perluminal jets, and also protostellar jets with non-relativistic
jet motion.

We presented numerical solutions of the asymptotic jet equi-
librium for different assumptions of the field rotation. For a
general assumption for the asymptotic field distribution we also
derived an analytical solution.

The main results are the following

– Differential rotation always leads to a decrease of the jet
radius in terms of the asymptotic light cylinder radius.

– This effect can be balanced by an increase of the poloidal
current.

– The inner structure of the jets remains more or less un-
changed, the outer part becomes ’compressed’ by differen-
tial rotation.

– Jet expansion rates could be estimated under the assumption
of a certain rotation law for the foot points of the field (e.g.
Keplerian).

– A general analytical solution was derived for the asymptotic
flux distribution together with the rotation law of the field
lines and the current distribution.

Depending on the steepness of the rotation law, the ratio in
the jet radius between jets with and without differential rotation
can be of the order of two. We also showed that differential
rotation plays a role only for jets with low poloidal current and
a broad field distribution.

In order to maintain jets with the same jet radius, but with a
different gradient of field rotation, the strength of the poloidal
current must be increased. In this sense, differential rotation may
be considered as collimating effect and poloidal currents as de-
collimating effect. However, compared to the rigid rotating field
distribution, the minimum poloidal current required is decreased
by a factor, which depends on the rotation rate of the outermost
flux surface.

While within the asymptotic one-dimensional limit jets with
arbitrary radius could be obtained, there are indications that 2D
solutions of the relativistic GSS equation (but without differ-
ential rotation) only exist for asymptotic jet radii of the order
of several light cylinder radii (Fendt et al 1995, Fendt 1996).
It was impossible to obtain numerical solutions with jet radii
larger than ∼ 5 light cylinder radii. This result was not caused
by numerical effects. The results of the present paper indicate
that the jet radii are even smaller.

A central question is therefore the scaling of light cylinder
radius in terms of stellar (or black hole) radii. This, however,
could only be inferred from a two-dimensional solution of the
trans-field equation. We believe that inclusion of inertial effects
would possibly widen the jet. However, one should keep in mind
that in the case of self-similar jets Contopoulos & Lovelace
(1994) and Ferreira (1997) have shown that centrifugal forces
could be balanced by magnetic tension leading to a recollimation
of the jet.

A critical point of the present investigation is that the in-
teraction between the jet boundary and the ambient medium is
not included in the force-balance. Hence, the question whether
the jet is self-collimated or pressure collimated by the ambient
medium cannot be answered. However, if we take a certain jet
radius as given (by e.g. observational arguments), the results of
this paper give examples of the local force-free force-balance of
a jet with such a radius. In this picture the field pressure at the
jet boundary must be balanced by the external pressure. Smaller
or larger jet radii would change the jet parameters accordingly.

By comparing the field rotation near the foot points of the
field lines (near a ’disk’) and in the asymptotic regime, we were



1010 C. Fendt: Differentially rotating relativistic magnetic jets

able to give some estimates on the expansion rate of the jets.
Protostellar jets seem to have high expansion rates of the order
of 1000, but these values are biased by the force-free assumption
for the force-balance. Expansion rates of AGN jets are lower,
a typical value might be 10. It can be said that high-mass fast-
rotating AGN jet expansion rates are expected to be higher than
those from low-mass slow rotating ones.
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Appendix A: another analytical solution with degenerate
light cylinder

Here we give the analytical expression for the field pressure
and flux distribution for a solution with ΩF(x) = (1/x) and a
bounded current distribution (22) with n = 2,

y(x) =
g

16π
4
a2

(x/a)2(
1 + (x/a)2

)3 ,

Ψ(x) =
√

2ga2

(
ln
(x
a

+
√

1 + (x/a)2
)
−
√

(x/a)2

1 + (x/a)2

)
.

The field rotation law can be expressed by an implicit equation

Ψ(ΩF)√
2ga2

=

(
ln

(
1 +
√

1 + (aΩF)2

aΩF

)
−
√

1
1 + (aΩF)2

)

Suppose that we have Keplerian rotation of the foot points along
the disk, ΩF = ΩK =

√
GM/c2R0x

−3/2, it follows for the disk
flux distribution

(Ψ(x))disk =
√

2ga2

(
ln

(
x3/2

a
√
ã

(
1 +

√
1 +

a2ã

x3

))

−
√

x3

x3 + a2ã

)
, (A1)

where ã ≡ (RS/2R0). For the ’total expansion rate’
(x∞,Ψ=1/xD,Ψ=1) of the jet we derive an implicit equation

ln

√ãx∞,Ψ=1

x
3/2
D,Ψ=1

1 +
√

1 + a2/x2
∞,Ψ=1

1 +
√

1 + a2ã/x3
D,Ψ=1

 =

=

(
1 +

a2

x2
∞,Ψ=1

)− 1
2

−
(

1 +
a2ã

x2
D,Ψ=1

)− 1
2
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