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ABSTRACT

We investigate possible formation sites of the cannonballs (in the gamma ray bursts context) by calculating their physical parameters, such
as density, magnetic field, and temperature close to the origin. Our results favor scenarios where the cannonballs form as instabilities (knots)
within magnetized jets from hyperaccreting disks. These instabilities would most likely set in beyond the light cylinder where flow velocity
with Lorentz factors as high as 2000 can be achieved. The cannonball model for gamma ray bursts requires that cannonballs form inside core-
collapse supernovae. Our findings challenge the cannonball model of gamma ray bursts, unless hyperaccreting disks and the corresponding jets
are common occurrences in core-collapse SNe.
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1. Introduction

It has been argued in the literature that, as an alternative to the
fireball scenario (e.g. Piran 1999, and references therein), the
so-called cannonball (CB) model provides a good fit to the ob-
served GRB flux and temporal variations (Dar & De Rújula
2004). For example, to explain GRBs, CBs must be created in
supernova explosions and accelerated to high Lorentz factors,
ΓCB ∼ 1000. However, the origin of these highly relativistic
“balls” of matter has not yet been investigated and is the sub-
ject of much debate. In order to shed some light on the still
open questions of their formation and early evolution, this pa-
per investigates the physical conditions at the origin at which
given their features at the distance of CBs become transpar-
ent to their enclosed radiation as required to explain GRBs.
Our proposal is that the conditions within the CB as we scale
the distance down along its path to the origin should be an in-
dication of their formation site. Despite the simplicity of our
approach, we hope this study will help elucidate some ques-
tions related to the origin/existence of these CBs. We start in
Sect. 2 by a brief introduction to the CB model as described
in Dar & De Rújula (2004). In particular we isolate the condi-
tions of CBs at large distances from the source that best fit GRB
light curves. In Sect. 3 we present the methods we adopted
to extrapolate back to the CB source. In Sect. 4, we study
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possible formation sites and explore formation mechanisms
given the conditions at the origin. Section 5 is devoted to the
study of mechanisms capable of accelerating CBs to Lorentz
factors as high as ∼1000. We summarize our results and con-
clude in Sect. 6.

2. The CB model for GRBs

In the CB model for GRBs, the prompt gamma ray emission
is assumed to be produced when ambient light from the su-
pernova1 is Compton up-scattered by the electrons in the CB.
These CBs move with ΓCB ∼ 1000 with respect to the su-
pernova remnant, and as such, the emitted radiation is highly
beamed in the observer frame (Dar & De Rújula 2004). For
the first 103 s in the CB rest frame, the CB in a fast-cooling
phase emits via thermal bremsstrahlung (Dado et al. 2002), but
eventually, its emissivity is dominated by synchrotron emission
from ISM electrons that penetrate it, it is argued. A CB will be-
come transparent to the bulk of its enclosed radiation in a time
of O(1) s in the observer frame, after it exits the transparent
outskirts of the shell of the associated SN. The internal radia-
tion pressure drops abruptly, and its transverse expansion rate
is quenched by collisionless, magnetic-field mediated interac-
tions with the ISM (Dado et al. 2002).

1 The wind from the SN progenitor star is ionized and is semi-
transparent to photons in the visible and UV frequencies.
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Table 1. Cannonball parameters as given by Dado et al. (2002) and
Dar & De Rújula (2004).

Parameter Value

RCB,max 2.2 × 1014 cm
RCB,trans 1013 cm
Dtrans 1.7 × 1016 cm
ΓCB 1.0 × 103

δ 1.0 × 103

z 1
βi 1/

√
3

NCB 1050

MCB 1026 g

Typical values for CB parameters as derived by Dado et al.
(2002) and Dar & De Rújula (2004) are given in Table 1 where
we denote the radius of the CB by RCB, the distance travelled
by the CB from its origin by D, the time passed in the CB rest
frame by t. The expansion velocity of the CB is denoted by βi =

vi/c, the number of baryons, and the mass of the CB by NCB

and MCB, respectively. The subscript “trans” refers to the point
where the CB becomes transparent (“transparency radius”).

By fitting the observed GRB afterglow, the CB Lorentz fac-
tor is estimated to vary between ΓCB = 250 and ΓCB = 1600,
while the number of baryons is on the order of 1050. With
this information at hand, our goal is to derive the conditions
in the CB as we integrate back to a plausible source. As an
indication of the close proximity to a compact source (e.g.
black-holes and neutron stars), when applicable we will make
use of the notion of light cylinder, which we take to be about
RL ∼ 107 cm.

3. Cannonball propagation and evolution

In this section, we explore the evolution of the CB by extrap-
olating backward from the location where the GRB occurs to
where the CB reaches nuclear saturation density (applying CB
parameters as given in Table 1). For simplicity, we assume that
the CB is expanding with a constant velocity and is moving
with a constant Lorentz factor. The natural assumption for the
expansion velocity is the sound speed of the hot blob of matter,
vexp � cs � c/

√
3. Six different cases of CB Lorentz factor and

mass are investigated (see Table 2).
We first apply a simple model of the CB’s internal energy

obeying a simple equation of state. Using this we calculate
the evolution of the density, magnetic field, and temperature
as the CB moves away from the origin. In a second step we
extend our model approach by applying an energy equation
where pressure degeneracy and neutrino effects are included.
As we will see, spatial back integration from the transparency
radius strongly indicates that the CB may be launched close
to a black hole. The spatial integration back to the source is
carried out until the CB temperature reaches extreme values,
Tl ∼ 100 MeV, unless the CB density reaches nuclear satura-
tion density before Tl.

With the CB expanding at a constant expansion velocity
equal to the sound speed of the matter vexp = c/

√
3, we can use

Table 2. The different cases of CBs explored in this work. Note that
cases 6, 8, and 9 (ΓCB = 1000 and NCB = 1051, ΓCB = 2000 and
NCB = 1050, ΓCB = 2000 and NCB = 1051, respectively) are not consis-
tent with our assumptions as they reach nuclear saturation density at a
distance beyond the light cylinder, so these were left out in this paper.

ΓCB NCB

Case 1 1.0 × 102 1049

Case 2 1.0 × 102 1050

Case 3 1.0 × 102 1051

Case 4 1.0 × 103 1049

Case 5 1.0 × 103 1050

Case 7 2.0 × 103 1049

Table 3. The CB radius at the point where it reaches nuclear saturation
density (left), at the light cylinder RLC = 1.5× 107 cm (middle), and at
the distance where the CB becomes transparent to radiation (right).

RCB,nuc[cm] RCB,LC[cm] RCB,trans[cm]

Case 1 2.5 × 103 1.2 × 105 1.0 × 1012

Case 2 5.6 × 103 1.2 × 105 1.0 × 1013

Case 3 12.0 × 103 1.2 × 105 1.0 × 1014

Case 4 2.5 × 103 1.2 × 104 1.0 × 1012

Case 5 5.6 × 103 1.2 × 104 1.0 × 1013

Case 7 2.5 × 103 5.8 × 103 1.0 × 1012

certain estimates about the CB at the distance of transparency
to derive an interrelation between radius and distance the CB
has traveled from its origin. As the radius of the CB at the dis-
tance of transparency, we apply the estimate by Dado et al.
(2002),

Rtrans � 1013
( NCB

6 × 1050

)1/2

cm. (1)

To reach this radius, the CB has traveled a period of time

ttrans,CB =
Rtrans

vexp
� 577

( NCB

1050

)1/2

s (2)

in the CB rest frame. As it travels essentially with the speed
of light, at the time when it becomes transparent, the CB has
traveled a distance

Dtrans = ΓCB c ttrans (3)

from its origin where it was ejected. This gives a linear scaling
factor

l = Rtrans/Dtrans =
1

ΓCB
√

3
· (4)

The radius of a CB is then simply expressed as RCB =

D/ΓCB
√

3. The radius at nuclear saturation density and at the
light cylinder (Dlc ∼ 1.5 × 107 cm) are listed in Table 3, along
with the radius at which the CB becomes transparent to the
enclosed radiation for the different cases of CB masses and
Lorentz factors.
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Fig. 1. Density vs. distance from the origin for the CB. The backward
integration is stopped when the CB density reaches nuclear saturation
density.

Fig. 2. Magnetic field vs. distance from the origin for the CB. The
backward integration is stopped when the CB density reaches nuclear
saturation density.

Figure 1 shows density as a function of distance travelled
by the CB. Depending on the CB parameters, the densities at
the light cylinder range from 1010−1014 g/cm3. If we estimate
the CB magnetic field strength from the equipartition assump-
tion, vA � vs = c/

√
3, with the Alfvén speed vA and

B = vA
√

4πρ = c

√
MCB

R3
CB

, (5)

we may compute the CB magnetic field versus the distance
from origin (Fig. 2). Close to the hypothetical CB origin where
we reach nuclear saturation density, the magnetic field strength
approaches values up to B ∼ 1018 G (see also Sect. 4.1). At
a distance from the origin on the order of the light cylinder ra-
dius, the field strength is between 4.8×1015 and 1.4×1018 Gauss
depending on the choice of Lorentz factor and mass of the CB.
The density ranges from 109 to 1014 g/cm3.

3.1. Simple energy equation

We continue our simple estimates by assuming energy conser-
vation in the CB

Erad + Eth + Emag = Etot. (6)

The radiation energy is written as

Erad = aT 4 4
3
πR3

CB, (7)

the magnetic energy is

Emag = εmMCBc2, (8)

and the gas thermal energy is

Eth = 3NCBkT, (9)

where a = 7.5657 × 10−15 erg cm−3 K−4 is the radiation con-
stant, k = 1.3807 × 10−16 erg K−1 is Boltzmann’s constant, T
the CB temperature, εm a parameter that allows us to write the
magnetic energy in terms of the CB rest mass energy. This pa-
rameter is fixed by imposing energy equipartition at the spec-
ified CB origin. Note that the magnetic energy is constant, as
we assume that the magnetic field is not dissipated in reconnec-
tion events and is not expelled from the CB. The gravitational
energy is always negligible compared to the other energy chan-
nels. The total energy is then given as:

Etot = 3 × Emag = 3εmMCBc2. (10)

We can now write the energy equation as:

4/3πR3aT 4 + 3NkT = 2εmMc2. (11)

This equation is solved to find T as a function of D.
In what follows, we explore two scenarios: (i) the first one

is indicative of the close proximity of a compact source, and as
such it corresponds to the case where the energy equation is in-
tegrated assuming equipartition at nuclear saturation densities;
(ii) the second reflects scenarios where the CB originates in the
coronal region of compact stars of their associated accretion
disks; see the specifics below.

3.1.1. Equipartition at nuclear densities: source origin

To set equipartition at nuclear saturation density, εm has to
be 0.5 for all cases. By rearranging Eq. (11) it can be seen that
it becomes a function of T and ρ:

aT 4 + 3ρkT/mH = 2ρc2εm. (12)

The temperature therefore depends only on the density and im-
plies a temperature of about 1012 K at nuclear saturation density
for all cases. The temperature as a function of distance travelled
is shown in Fig. 3, while Fig. 4 shows the energy components
for case 4. The radiation energy is dominant everywhere ex-
cept at nuclear saturation density where there is equipartition.
We note that nuclear saturation density is reached at distances
larger than 106 cm for most cases. It is unrealistic to find objects
with such high densities that are much larger than 106 cm. Also,
CBs with such densities need a magnetic field B = 1018 G,
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Fig. 3. Temperature vs. distance traveled by the CB assuming equipar-
tition at nuclear saturation density.

Fig. 4. The different energy components for case 4 using the simple
energy equation and assuming equipartition at nuclear densities.

which is unrealistically high. We can therefore rule out CBs
formed with nuclear saturation density.

It should be noted that the solutions are not very sensitive to
the choice of total internal energy2. As an example, increasing
the total internal energy by an order of magnitude, we find a
temperature at the light cylinder, Dlc, for case 3 to be 9×1011 K,
compared to 5 × 1011 K in our initial calculation.

3.1.2. Equipartition at the light cylinder: coronal origin

Figure 5 shows the evolution of the CB conditions when
equipartition at a distance of about a light cylinder radius is
assumed, and Fig. 6 shows the energy components for case 4.
Table 4 shows the temperature found at the light cylinder and
the value for the energy equipartition parameter εm for differ-
ent kinematic parameters of the CB (see Table1). Note that εm
is now determined by the condition that we have equipartition
at the CB origin (i.e. at a light cylinder distance).

2 The expansion energy of the CB is the same order as the magnetic
energy. For simplicity we have included it in the expression for the
total energy.

Fig. 5. Temperature vs. distance traveled by the CB assuming equipar-
tition at the light cylinder.

Fig. 6. The different energy components for case 4 using the simple
energy equation and assuming equipartition at the light cylinder.

Table 4. Coronal CB origin, showing the values for the temperature
and εm found for the simple energy equation assuming equipartition
between the magnetic, gas thermal, and radiation energy at the light
cylinder.

Case T [K] εm

1 5.9 × 1010 0.0165
2 1.3 × 1011 0.035
3 2.7 × 1011 0.075
4 6.1 × 1011 0.175
5 1.2 × 1012 0.325
7 1.2 × 1012 0.325

By assuming an equal number of electrons ne and baryons
in the CB, the Fermi temperature can be computed. If we take
the light cylinder distance as a typical length unit at the CB
origin and compute the Fermi temperature at this location, we
see that the CB temperature is much lower than the electron
Fermi temperature (Table 5). We therefore have to improve
our approach to also consider electron degeneracy and neu-
trino effects. In the next section we explore a more appropriate
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Table 5. The values for the magnetic field, temperature and density
found at the light cylinder for the simple energy equation. The temper-
ature and magnetic field at nuclear saturation density is 1.2 × 1012 K
and 9.3 × 1017 G, respectively, for all cases, as both the magnetic field
strength and temperature are only dependent on the density.

Case B [G] T [K] TF [K] ρ [g cm−3]

1 4.8 × 1015 5.9 × 1010 5.6 × 1014 6.1 × 109

2 1.5 × 1016 1.3 × 1011 2.6 × 1015 6.1 × 1010

3 4.8 × 1016 2.7 × 1011 1.2 × 1016 6.1 × 1011

4 1.5 × 1017 6.0 × 1011 5.6 × 1016 6.1 × 1012

5 4.8 × 1017 1.2 × 1012 2.6 × 1017 6.1 × 1013

7 4.3 × 1017 1.2 × 1011 2.3 × 1017 4.9 × 1013

energy equation where neutrino effects are added. However, we
still apply a kinematic approach assuming a linear expansion of
the CB.

3.2. Coronal CB origin: neutrino effects

In this section we improve our approach by taking degeneracy
pressure and neutrino cooling (e.g. Popham et al. 1999) into
account. The energy equation becomes

Etot + Eν(t) = Eth + Erad + Edeg + Emag (13)

where

Edeg = 3KMCB

(
ρ

µe

)1/3

(14)

is the degeneracy energy,

Erad =
11
4

aT 4

ρ
MCB (15)

is the radiation energy, and

Eth =
3
2

RT MCB
1 + 3Xnuc

4
(16)

the gas thermal energy, where

Xnuc = 30.97

(
ρ

1010 g/cm3

)−3/4( T
1010 K

)9/8

× exp

(
− 6.096 × 1010 K

T

)
(17)

gives Xnuc < 1 and Xnuc = 1 elsewhere. In the equation above,
K = (2πhc/3)(3/8πmn)4/3 = 1.24 × 1015, mn is the nucleon
mass, R the gas constant, a the radiation constant and µe = 2
the mass per electron. Inserting Eqs. (8), (14), (15) and (16)
into (13) gives, in terms of D:

Etot + Eν(t) = 3KMCB

(
MCB35/2

4πµe

)1/3
ΓCB

D

+
3
2

RT MCB
1 + 3Xnuc

4
+

11
4

aT 4 4πD3

Γ3
CB35/2

· (18)

Note that we apply the same total internal energy (Etot) of the
CB as in Sect. 3.3, thus the same energy parameter εm. Close to

the origin, however, we add an energy component due to neu-
trino effects (emissivity and cooling) and is denoted by Eν(t) in
Eq. (13).

Two types of neutrino losses may occur, i.e. neutrino emis-
sion due to pair annihilation and neutrino losses due to the cap-
ture of pairs on nuclei. Their contribution to the energy budget
is computed from Eqs. (3.8) and (3.9) in Popham et al. (1999):

q̇νν = 5.0 × 1033

(
T

1011 K

)9

erg cm−3 s−1. (19)

q̇eN = 9.0 × 1033

(
ρ

1010 g/cm3

)(
T

1011 K

)6

erg cm−3 s−1. (20)

These expressions are integrated over the time it takes the CB to
reach conditions for which neutrino cooling is not significant.
We find the latter cooling method (Eq. (20)) to be dominant, so
we limit ourselves to using that.

To compute the effects due to neutrinos, we must know the
temperature. However, in turn, we want to use the neutrino ef-
fects to find the temperature. We therefore first solve the energy
Eq. (13) without adding neutrino effects. Then we use the re-
sulting temperature to calculate the neutrino emissivity, which
is then added to the total energy in Eq. (13), and this equa-
tion is solved to find the temperature as a function of distance
travelled. The neutrinos are released in small successive bursts,
mimicking a continuous emission. We again emphasize that,
because of the neutrinos effects and the different energy equa-
tion used in Sect. 3.3, there is no assumption of energy equipar-
tition applied in this section.

The temperature is shown in Fig. 7 as a function of distance
travelled. In general, the release of neutrinos are seen as a small
jump in the temperature curve. We note that cases 1 to 4 reach
the light cylinder with reasonable temperatures (T < 1012 K)
and densities (ρ < 1014 g/cm3). Cases 5 and 7 are ruled out, as
they reach even more extreme conditions before reaching the
light cylinder. For illustrative purposes in Fig. 8 we show the
energy components for case 3. Because of the neutrino effects,
the radiation energy is now the dominant energy, even close to
the light cylinder.

4. Sites and formation mechanisms

In this section we discuss sites that are best suited to account for
the CB conditions at the source derived in our previous section.
We also explore possible formation scenarios.

4.1. “Standard” and hyperaccreting disks

In Appendix A we summarize the properties of “standard” (α-
disks and advection-dominated accretion flow disks) and hy-
peraccretion disks. It is clear that “standard” accretion disks
are ruled out. Hyperaccreting disks, on the other hand, are
candidates for CB sources. They have densities, temperatures,
and magnetic fields that are comparable to what we found in
the previous section. In fact when we consider CBs with hy-
peraccretion disk conditions at the source and perform a for-
ward integration, the conditions at Dtrans (see Figs. B.1–B.3 in
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Fig. 7. The temperature assuming the same total energy as in Sect. 3.3
with neutrino and degeneracy effects. Case 7 goes back to 1012 K (at
D = 2.5×1012 cm), whereas case 1, 3, and 4 goes to the light cylinder.

Fig. 8. The energy components for case 3, including degeneracy and
neutrino effects, and assuming that case 3 originate at the light cylin-
der. The neutrino release is visible in the radiation energy and gas
thermal energy at D = 3 × 107 cm. Another non visible release occurs
at D = 3 × 108 cm.

Appendix B) turn out to be interestingly similar to those given
by Dado et al. (2002). The next step then is to look for forma-
tion mechanisms within the hyperaccreting context.

The stability of hyperaccreting disks around black holes
have been recently investigated by Di Matteo et al. (2002), who
find that the “flows are gravitationally stable under almost all
conditions of interest”. Exceptions exist for strong accretion
rates and in the outer part of the disk (see also Narayan et al.
2001). However as can be seen for Eqs. (A.8)–(A.11) in the
appendix, these extreme cases favor lower densities and tem-
peratures than those expected for CBs.

The magneto-rotational instability (MRI, Balbus & Hawley
1991; and Hawley & Balbus 1991) works only for low mag-
netic field strengths and cannot account for the strong mag-
netic fields required at the origin for CBs. Let us also men-
tion the accretion-ejection instability (Tagger et al. 1999) as
a possible formation mechanism. This instability works for

intermediate magnetic field strengths and will transfer angu-
lar momentum to Alfvén waves toward the corona of the disk.
At extreme magnetization the accretion-ejection instability is
reminiscent of the interchange instability (Spruit et al. 1995),
but it seems unlikely that these can lead to CB formation since
most of the perturbations are carried by Alfvén waves.

It is thus not clear how a CB can form within a hyperac-
cretion disk. There is also the issue of accelerating the CB to
Γ > 100, which is also a major challenge. We will return to this
in Sect. 5 after we discuss other possible formation sites.

4.2. Neutron tori

The thick, self-gravitating, neutron tori around 2–3 M� black
holes are known to be affected by a runaway instability on time
scales below the evolutionary time scale of GRBs (Nishida
& Eriguchi 1996), so we exclude them as sources for CBs.
Simulations of neutron star mergers have also shown that about
0.01 M� of the thick disk of 0.2 M� around a 1.5 to 3.1 M� fi-
nal central mass distribution becomes gravitationally unbound
(Rosswog et al. 1999). However, in contrast to the hyperaccret-
ing disk model, this unbound mass stays rather cold (108 K)
and does not constitute a formation site for CBs.

4.3. Accretion disk corona

Another possibility is CB formation in the disk corona, for ex-
ample, as a huge magnetic flare that ejects a large part of the
accretion disk corona into a bullet of high velocity. A CB of
such a size would have a density of about 2.4 × 105 g cm−3,
which, for comparison is in the range of white dwarf densi-
ties. The maximum initial size of the CB we do not expect
to exceed RLC � 107 cm. Comparing the CB asymptotic ki-
netic energy to the magnetic energy contained in a volume
of that size provides an estimate for the mean magnetic field
strength of about 1015 G. This corresponds to a magnetic flux
of ∼1029−1030 G cm2 and is unrealistically high for such coro-
nae.

4.4. Disk-jets and funnel-jets

Figure 9 is an illustration of the type of jets that could em-
anate from the vicinity of a compact star. The disk-jet material
is ejected from the accretion disk, while the funnel-jet is ejected
from the innermost parts of the disk at the interface with the
compact star.

Recent general relativistic magneto-hydrodynamic simula-
tions by De Villiers et al. (2005) of a black hole and an initial
torus seeded with a weak poloidal magnetic field show that a
funnel jet with ΓCB � 50 is formed. Instabilities do occur in
funnel-jets, however the induced instabilities have much lower
densities than the CB values found in the previous section.
Funnel-jets can therefore be ruled out as a possible formation
site for CBs.

A disk-jet becomes cylindrically collimated on a length
scale on the order of 1–2 light cylinder distances (Fendt &
Memola 2001). Knot-generating instabilities reminiscent of
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Fig. 9. Illustration of the funnel-jet and disk-jet. The funnel-jet is
launched from a region close to the compact star. The disk-jet is
launched from the accretion disk.

CBs are known to occur as jets collimate (Ouyed et al. 1997).
This is a possible formation mechanism for CBs. What remains
is to show how they can be accelerated to high Γ.

5. Cannonball acceleration to ultra-relativistic
velocity

Having isolated, or more precisely favored, jets from hyperac-
cretion disks as plausible formation sites for CBs, we now dis-
cuss those acceleration mechanisms with which CBs can reach
Lorentz factors in the thousands.

Assuming that the CB is accelerated by converting the in-
ternal magnetic energy to kinetic energy, we can find an esti-
mate for the magnetic field needed to explain such Lorentz fac-
tors. Using typical CB radii close to the source and parameters
from Table 1, we find that the magnetic field must be on the
order of 1018−1019 G. This is unrealistically high. Either our
approach is too simple or a different acceleration mechanism
must be at work.

5.1. MHD acceleration: CB speed

The ability of the magnetic field to accelerate particles to
high Lorentz factors is given by the magnetization parameter
(Michel 1969)

σ =
Φ2Ω2

F

4Ṁjetc3
, (21)

where Φ = Bpr2 is the magnetic flux, ΩF = c/Dlc the angular
frequency of the magnetic field, and Ṁjet = πρvpr2 the mass
flow rate within the flux surface. For spherical outflow Michel
(1969) found that the Lorentz factor at infinity scales as

Γ∞ = σ1/3. (22)

Fendt & Ouyed (2004) finds a modified Michel scaling in
the case of a non-spherical magnetic field distribution. In this
case they find a linear relation between σ and Γ∞. If the field

distribution isΦ(r;Ψ) ∼ r−0.1, they find that Γ∞ = 10−1/3σ; and
if Φ(r;Ψ) ∼ r−0.2, they find

Γ∞ = 10−1/5σ, (23)

in which case hyperaccreting disks with ejection rates on the
order of 10−5 M�/s and magnetic field on the order of 1014 G
can lead to jets with a Lorentz factor Γ∞ � 1875.

5.2. MHD instability: CB mass

To a first order, instabilities related to Alfvén crossing time can
develop on timescales

tins = tA =
2Rjet

vA
, (24)

where Rjet is the radius of the disk-jet. For 1Rlc < Rjet < 10Rlc,
we arrive at tins ∼ 1−10 ms, which would imply the plausible
formation of a blob of matter as massive as Mins = tinsṀjet ∼
10−8−10−7 M�. This can be compared to the typical CB mass
on the order MCB = 10−7 M�.

As shown above, first forming the CB in the disk and then
accelerating it will require unrealistic magnetic fields on the
order 1019 G. However, first accelerating the wind to the light
cylinder and then forming the CB through an instability be-
yond the light cylinder requires much smaller magnetic field
strength (<1014 G). This is a possible mechanism for forming
and accelerating CBs.

6. Conclusion

Assuming that CBs move and expand with constant velocity,
we have estimated the CB conditions as close as possible to
their origin. Cannonballs require extremely high internal mag-
netic fields when they are formed with a field strength exceed-
ing ∼1015 G. The temperature was found to be on the order of
1011−1012 K. The physical parameters of the CBs at the ori-
gin are indicative of hyperaccreting disks, within an order of
magnitude estimates. However, if they are formed in the ac-
cretion disk we find it challenging to accelerate the CBs to the
high Lorentz factors. The coronal origin is ruled out because
of the unrealistically high coronal magnetic flux necessary to
form the CBs. Our results instead hint at a jet origin for CBs.
The radius (<Dlc) and mass flow (10−5 M�/s) in a jet from
a hyperaccreting disk can account for the CB mass and den-
sity. Furthermore, this outflow can be accelerated to Γ ∼ 2000
by MHD processes (Fendt & Ouyed 2004). Any instability in
this outflow beyond the light cylinder could lead to CB forma-
tion. We thus suggest that CBs form as instabilities in ultra-
relativistic jets emanating from the surface of hyperaccretion
disks. The tight link between SNe and the CB model for GRB
requires that all (or almost all) core-collapse SNe will produce
CBs. Our work, within its limitations, implies that hyperaccre-
tion disks must be a common occurrence in core collapse SNe
to accommodate the CB model – a notion which remains to be
confirmed.
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Appendix A: Accretion disks

A.1. “Standard” accretion disks

A standard Shakura-Sunyaev disk (Shakura & Sunyaev 1973)
will have a density

ρ
[
g cm−3

]
= 7.2 × 10−4

(
αv

0.001

)−1( Ṁ
MEdd

)−2

×
(

r
3rS

)3/2

×
(

M
M�

)−1(
1 −

(
r

3rS

)−1/2)−2

, (A.1)

where αv is a viscosity parameter, rS is the Schwarzschild
radius, and MEdd is the Eddington mass. With this density,
the radius of a CB with mass M = 1050 baryons becomes
3.8×109 cm, assuming the default parameters. For the equipar-
tition magnetic field, one gets

B[G] = 108

(
M
M�

)−1/2( r
3rS

)−3/4

· (A.2)

The temperature is

T [K] = 1.3 × 108

(
αv

0.001

)−1/4( M
M�

)−1/4( r
rS

)−3/4

· (A.3)

Advection Dominated Accretion Flow (ADAF) disks have den-
sity (Narayan & Yi 1995):

ρ[g cm−3] = 6.5 × 10−3

(
αv

0.001

)−1

c−1
1 c−1/2

3

×
(

Ṁ
MEdd

)+1

×
(

M
M�

)−1( r
3rS

)−3/2

, (A.4)

where c1 and c3 are defined in Eq. (2.1) in Narayan & Yi
(1995).

The corresponding magnetic field is

B[G] = 5.5 × 109

(
αv

0.001

)−1/2

c−1/2
1 c1/4

3 (1 − β)1/2

×
(

Ṁ
MEdd

)1/2( M
M�

)−1/2( r
3rS

)−5/4

, (A.5)

while the ion temperature of such disks are (Narayan et al.
1998)

Ti[K] = 2 × 1012β

(
r

2rs

)−1

, (A.6)

where β is given by

pm =
B2

24π
= (1 − β)ρc2

s . (A.7)

A.2. Hyperaccreting disks

Hyperaccreting disk (Popham et al. 1999) density is

ρ[g cm−3] = 1.3 × 1012

(
αv

1.0

)−1.3( Ṁ
M�s−1

)+1

×
(

M
M�

)−1.7( r
3rS

)−2.55

; (A.8)

their disk scale height is

H[cm] = 1.9 × 105

(
αv

1.0

)0.1( M
M�

)0.9( r
3rS

)1.35

, (A.9)

while the temperature is

T [K] = 7.6 × 1010

(
αv

1.0

)0.2( M
M�

)−0.2( r
3rS

)−0.3

· (A.10)

The corresponding equipartition magnetic field is on the order
of

B[G] ∼ 1014−1015. (A.11)

Appendix B: Forward integration

For completeness and as a self-consistency check, here we con-
sider CBs with hyperaccreting disk conditions at the origin and
perform a forward integration until the CBs reach the distances
where they become transparent.

Assuming that the CB radius evolves as before, R =

c/(ΓCB

√
3), then the density at a distance corresponding to the

surface of the hyperaccreting disk (D = 105 cm) will be too
high. We will thus make a slight adjustment by rewriting the
radius as R = D/(ΓCB

√
3)+ x, where x is a number that ensures

that the density at the origin does not exceed ρ = 1012 g/cm3.
Therefore, x is found by solving the following equation:

1012 g/cm3 =
MCB

4
3π

(
105cm
ΓCB
√

3
+ x

)3
, (B.1)

which implies:

x[cm] =
3M1/3

CB (6/π)1/3ΓCB −
√

12 × 109

60000ΓCB
· (B.2)

This also ensures the correct expansion velocity vexp = c/
√

3.
Table B.1 shows the corresponding parameter values for x and
εm. We should also note that in this case εm will be chosen so
as to insure energy equipartition at the disk surface. The tem-
perature thus found is used to calculate the neutrino emissivity,
which is then added to the total energy in Eq. (13) to find the
new temperature. As before, the neutrinos are released in small
successive bursts that mimic a continuous release of neutrinos.

Figures B.1–B.3 show the temperature, magnetic field and
density as a function of distance. All cases starts with T ∼ 2 ×
1011 K, ρ = 1012 g/cm3, and B = 6×1016 G at D = 105 cm. The
neutrino effects can be seen as small jumps in the temperature
curves, but in general the neutrinos do not change the overall
picture a lot. The neutrino contribution were on the same order
as or smaller than the total energy, and as discussed before, the
temperature is not very sensitive to changes in the total energy.

The temperature at Dtrans is the same order as for the back-
ward integration (T = 104 K to T = 105 K) and also close to
the value given by Dado et al. (2002) of Ttrans � 4 eV. The dif-
ference between the backward and forward integration at large
distances is due to the different εm parameters. For large dis-
tances, the x-parameter does not play any role.

To summarize, the results of the forward integration indi-
cate that CBs formed within hyperaccretion disks could theo-
retically provide the necessary conditions at Dtrans to account
for GRB features as claimed in Dado et al. (2002).



J. E. Staff et al.: Cannonball formation sites, Online Material p 3

Fig. B.1. Temperature vs. distance from the origin for the CB, start-
ing with hyperaccreting disk conditions. The forward integration is
stopped when the CB becomes transparent to its enclosed radiation.
The initial temperature for all cases is about 2.7 × 1011 K.

Fig. B.2. Magnetic field vs distance from the origin for the CB, start-
ing with hyperaccreting disk conditions. The forward integration is
stopped when the CB becomes transparent to its enclosed radiation.
The initial magnetic field for all cases is about 5 × 1016 G.

Fig. B.3. Density vs distance from the origin for the CB, starting with
hyperaccreting disk conditions. The forward integration is stopped
when the CB becomes transparent to its enclosed radiation. The initial
density for all cases is about 1 × 1012 g/cm3.

Table B.1. The parameter x used in the relation between RCB and D,
and εm for the different CB cases when starting with disk conditions
and integrating forward.

Case x [cm] εm

1 15279.2 0.045
2 33584.5 0.045
3 73022.3 0.045
4 15798.9 0.045
5 34104.2 0.045
7 15827.7 0.045


