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Abstract. We investigate the axisymmetric structure of collimating, relativistic, strongly magnetized (force-free)
jets. In particular, we include the differential rotation of the foot points of the field lines in our treatment.
The magnetic flux distribution is determined by the solution of the Grad-Shafranov equation and the regularity
condition along the light surface. With differential rotation, i.e. the variation of the iso-rotation parameter ΩF, the
shape of the light surface is not known a priori and must be calculated in an iterative way. For the first time, we have
calculated the force-free magnetic structure of truly two-dimensional, relativistic jets, anchored in a differentially
rotating disk. Such an approach allows for a direct connection between parameters of the central source (mass,
rotation) and the extension of the radio jet. In particular, this can provide a direct scaling of the location of the
asymptotic jet light cylinder in terms of the central mass and the accretion disk magnetic flux distribution. We
demonstrate that differentially rotating jets must be collimated to a smaller radius in terms of the light cylinder if
compared to jets with rigid rotation. Also, the opening angle is smaller. Further we present an analytical estimate
for the jet opening angle along the asymptotic branches of the light surface. In general, differential rotation of
the iso-rotation parameter leads to an increase of the jet opening angle. Our results are applicable for highly
magnetized, highly collimated, relativistic jets from active galactic nuclei and Galactic superluminal jet sources.
Comparison to the M 87 jet shows agreement in the collimation distance. We derive a light cylinder radius of the
M 87 jet of 50 Schwarzschild radii.

Key words. accretion, accretion disks – MHD – methods: numerical – ISM: jets and outflows – galaxies: individual:
M 87 – galaxies: jets

1. Formation of magnetic jets

Observations of astrophysical jet sources have now estab-
lished the idea that jet formation is always connected
to the presence of an accretion disk and strong mag-
netic fields. This holds for various scales of energy out-
put, jet velocity and nature of the jet emitting objects.
Examples are jets from active galactic nuclei (AGN),
Galactic superluminal jet sources, the example of a mildly
relativistic jet from a neutron star (SS 433) and the nu-
merous class of protostellar jets (see Zensus et al. 1995;
Mirabel & Rodriguez 1995; Mundt et al. 1990; Ray et al.
1996). Magnetic jets are believed to originate very close
to the central object in the interaction region with the
accretion disk. Beside observational arguments also the-
oretical considerations have shown that magnetic fields
play an important role in jet formation and propaga-
tion (Blandford & Payne 1982; Pudritz & Norman 1983;
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Shibata & Uchida 1985; Sakurai 1985; Camenzind 1987;
Lovelace et al. 1991).

If the central object is a black hole as it is the case
for AGN and Galactic superluminal jet sources, the sur-
rounding accretion disk is the only possible location for
a field generation (by dynamo action or/and advection
of flux). In the case of stellar objects (protostars, white
dwarfs or neutron stars), the central star also carries a
relatively strong magnetic field and it is not yet clear,
whether the jet magnetosphere originates in the disk or
in the star. However, a strong interaction between stel-
lar field and accretion flow is evident. The jet formation
process itself is not yet fully understood theoretically. In
particular, for the mass transfer from the disk into the jet
and the process of magnetic field generation a complete
physical model is missing.

However, over the last decades the basic ideas of
Blandford & Payne (1982) have been extended by vari-
ous authors. The general picture is the following. Matter
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is lifted from the disk into the magnetosphere and be-
comes magnetically accelerated (Ferreira 1997). Toroidal
magnetic fields, generated by inertial back-reaction of the
plasma on the poloidal field, may collimate the disk mag-
netosphere into a highly collimated jet flow (Camenzind
1987; Chiueh et al. 1991; Lovelace et al. 1991). In general,
due to the complexity of the MHD equations, stationary
relativistic models of magnetic jets has to rely on sim-
plifying assumptions such as self-similarity (Contopoulos
1994, 1995), some other prescription of the field structure
(Li 1993; Beskin 1997) or the restriction to asymptotic
regimes (Chiueh et al. 1991; Appl & Camenzind 1993;
Nitta 1994, 1995). For highly magnetized jets the force-
free limit applies. This allows for a truly two-dimensional
calculation of the magnetic field structure (Fendt et al.
1995; Fendt 1997a). Relativistic magnetohydrodynamics
implies that poloidal electric fields, which are not present
in Newtonian MHD, cannot be neglected anymore.

From the observations we know that extragalactic jets
as well as Galactic superluminal jets and protostellar
jets are collimated almost to a cylindrical shape (Zensus
et al. 1995; Ray et al. 1996; Mirabel & Rodriguez 1995).
Theoretically, it has been shown that current carrying rel-
ativistic jets must collimate to a cylinder (Chiueh et al.
1991). For the asymptotic limit of a cylindrically colli-
mated magnetic relativistic jet, Appl & Camenzind (1993)
found a non-linear analytical solution for the trans-field
force-balance in the case of a constant iso-rotation param-
eter. These results were further generalized for jets with
differential rotation (Fendt 1997b). Such an asymptotic
field distribution is especially interesting for jets emerging
from (differentially rotating) accretion disks.

In previous papers, we applied the asymptotic jet
model of Appl & Camenzind (1993) as a boundary condi-
tion for the calculation of global, two-dimensional, force-
free jet magnetospheres for rapidly rotating stars (Fendt
et al. 1995) or rapidly rotating black holes (Fendt 1997a).
In this paper, we continue our work on 2D force-free jet
magnetospheres applying an asymptotic jet with differen-
tial rotation of the iso-rotation parameter ΩF as boundary
condition for the global jet structure. Such an approach
allows for a connection between the differentially rotat-
ing jet source – the accretion disk – and the asymptotic
collimated jet. Since jet motion seems intrinsically con-
nected to the accretion disk, differential rotation of the
field lines should be a natural ingredient for any magnetic
jet structure. As a principal problem for differentially ro-
tating relativistic jet magnetospheres, position and shape
of the singular light surface are not known a priori, but
have to be calculated in an iterative way together with the
magnetic flux distribution.

In Sect. 2 we recall some basic equations of the theory
of relativistic magnetospheres and discuss several difficul-
ties with the solution of the Grad–Shafranov (hereafter
GS) equation. After some comments on the numerical ap-
proach in Sect. 3, we discuss our results in Sect. 4. A
summary is given in Sect. 5.

2. Structure of magnetic jets

Throughout the paper we apply the following basic as-
sumptions: axisymmetry, stationarity and ideal MHD. We
use cylindrical coordinates (R,φ, Z) or (x, φ, z) if normal-
ized. The term “asymptotic” always denotes the limit of
Z � R unless explicitly stated otherwise. We consider jets
with a finite radius, R <∞ for Z →∞.

2.1. The force–free, cross–field force–balance

With the assumption of axisymmetry, a magnetic flux
function can be defined

Ψ =
1

2π

∫
BP · dA, RBP = ∇Ψ ∧ eφ, (1)

measuring the magnetic flux through a surface element
with radius R and, in a similar way, the poloidal current
through the same area

I =
∫
jP · dA = − c

2
RBφ, (2)

which, in the force-free case, flows parallel to the flux sur-
faces, I = I(Ψ).

The structure of the magnetic flux surfaces is de-
termined by the toroidal component of Ampère’s law,
∇ × BP = 4πjφ/c, where the toroidal electric current
density has to be calculated from the equation of motion
projected perpendicular to the flux surfaces (Camenzind
1987; Fendt et al. 1995). For strong magnetic fields, in-
ertial forces of the matter can be neglected. This is the
force-free limit and the equation of motion reduces to
0 = cρcE + j ×B with the charge density ρc.

Combining Ampère’s law and the force-free equation
of motion the cross-field force-balance can be written as
the modified relativistic GS equation,

R∇ ·
(

1− (RΩF(Ψ)/c)2

R2
∇Ψ

)
= − 4

c2
1
R

1
2
(
I2(Ψ)

)′
(3)

− R |∇Ψ |2 1
2
(
Ω2

F(Ψ)
)′
,

where the primes denote the derivative d
dΨ (see

Camenzind 1987; Okamoto 1992).
ΩF is conserved along the flux surfaces, ΩF = ΩF(Ψ).

We will call it the iso-rotation parameter, defined by
Ferraro’s law of iso-rotation. It can be understood as the
angular velocity of the plasma, reduced by the slide along
the field lines. Sometimes, it is called the angular veloc-
ity of the field lines. Both, the current distribution I(Ψ)
and the rotation law ΩF(Ψ) determine the source term for
the GS equation and govern the structure of the magne-
tosphere. We apply the following normalization,

R,Z ⇔ xR0, z R0,

ΩF ⇔ ΩF (c/R0) ,
Ψ ⇔ Ψ Ψmax ,

I ⇔ I Imax .
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As the length scale for the GS Eq. (3) the asymptotic
radius R0 of the light surface is selected (see below). In
order to allow for a direct comparison to rigidly rotating
magnetospheres, the normalization was chosen such that
ΩF = 1 at x = 1. With the chosen normalization, Eq. (3)
can be written dimensionless,

x∇ ·
(

1− x2Ω2
F(Ψ)

x2
∇Ψ

)
= − 1

x

g

2
(
I2(Ψ)

)′
− x|∇Ψ |2 1

2
(
Ω2

F(Ψ)
)′
. (4)

g is a coupling constant describing the strength of the
current term in the GS equation,

g =
4I2

maxR
2
0

c2Ψ2
max

= 4
(
Imax

1018A

)2(
R0

1016cm

)2( Ψmax

1033 Gcm2

)−2

where the parameters are chosen for extragalactic jets.
In this paper, g is in accordance with the definition in
Fendt et al. (1995) and differs from the definition in Appl
& Camenzind (1993) by a factor of two, gFendt = 2 gAC

1.
Interestingly, a coupling constant, defined in a similar way
also for the differential rotation term, would be equal to
unity. The GS equation is numerically solved applying the
method of finite elements (see Appendix).

Along the light surface, where D ≡ 1− x2Ω2
F(Ψ) = 0,

the GS equation reduces to the regularity condition,

∇Ψ · ∇D = −g 1
2
(
I(Ψ)2

)′ − 1
2
|∇Ψ |2

(
ln
(
ΩF(Ψ)2

))′
, (5)

which is equivalent to a Neumann boundary condition.
However, for differentially rotating magnetospheres with
ΩF = ΩF(Ψ) the shape of this surface is not known a pri-
ori and has to be calculated in an iterative way together
with the two-dimensional solution of the GS equation. For
constant ΩF the light surface is of cylindrical shape. As we
have shown in a previous publication (Fendt et al. 1995),
our finite element code satisfies the regularity condition
automatically, since the surface integral along the light
surface vanishes.

2.2. Discussion of the force-free assumption

It is clear that relativistic jets must be highly magne-
tized. Only a high plasma magnetization gives jet ve-
locities close to the speed of light (Fendt & Camenzind
1996). Therefore, for the calculation of field structure the
force-free limit seems to be reasonable. However, one may
question the assumption of a force-free asymptotic jet. In
a fully self-consistent picture of magnetic jet formation,
the asymptotic jet is located beyond the collimating, non
force-free wind region and beyond the fast magnetosonic

1 Due to the fact that the jet radius (where Ψ = 1) is not
known before the asymptotic GS equation has been solved
(Fendt 1997b), the normalization with g leads to a current
distribution I(Ψ) which is not normalized to unity. This dif-
ference in normalization is “hidden” in the coupling constant
g, which could, in principal, be re-scaled appropriately.

surface. The asymptotic jet parameters are determined by
the wind motion. Thus, poloidal current and iso-rotation
parameter of the field are not functions free of choice. The
force-free region of a jet is located close to its origin, where
the speed is low. Beyond the Alfvén surface plasma kinetic
energy dominates the magnetic energy, which is just the
contrary to force-freeness.

For small plasma density, the Alfvén surface of the
wind flow approaches the light surface. In this case the
fast magnetosonic surface moves to infinity for a conical
flow. Okamoto (1999) argues that a force-free field dis-
tribution extending to infinity in both x and z direction
will asymptotically be of conical shape, i.e. un-collimated.
However, his approach differs from ours in the sense that
he assumes that all field lines will cross the light cylinder.
Such an assumption per se prohibits any collimation. On
the other hand, perfect jet collimation is an observational
fact. Astrophysical jets (of very different energy scales)
appear collimated to cylinders of finite radius.

In general, the non force-free relativistic GS equation
shows three inertial contributions,

0 = −κ̃
(
1−M2 − x2Ω2

F

)
+
(
1− x2Ω2

F

) ∇⊥B2
P

8π
+
∇⊥B2

φ

8π

+∇⊥P +

(
B2
φ

4π
− ρu2

φ

)
∇⊥x
x
− B2

PΩF

4π
∇⊥(x2ΩF),

where ∇⊥ indicates the gradient perpendicular to Ψ , κ̃ ≡
κB2

P/4π = n ·(BP ·∇)BP/4π the poloidal field curvature,
ρ the mass density, uφ the toroidal velocity, P the gas
pressure and M the Alfvén Mach number (Chiueh et al.
1991). One can show that in the asymptotic, cylindrical
jet the contribution of inertial terms in the force-balance
across the field is weak. The contribution of gas pressure
is usually negligible in astrophysical jets. Also, the cen-
trifugal force does not play a role for radii larger than
the Alfvén radius, since outside the Alfvén surface (where
M2 = 1 − x2Ω2

F) the plasma moves with constant angu-
lar momentum. The curvature term vanishes in cylindrical
geometry. Therefore, since for cylindrical jets the contribu-
tion from inertial terms is weak, the configuration is com-
parable to the force-free case. The source term of the GS
equation may be reduced to a form similar to the common
force-free limit. We suggest the phrase “quasi force-free”
for such a configuration because the GS equation looks
force-free even if the physical system is not magnetically
dominated.

In the force-free limit of a highly magnetized plasma
the previous arguments also apply. However, in difference
to the asymptotic regime considered above, the low plasma
density implies that inertial terms are weak over the whole
two-dimensional jet region. The centrifugal term ρuφ is
weak even if the Alfvén surface now comes close to the
light surface. Numerical calculations of the plasma motion
along the field have shown that, for a high magnetization,
the Alfvén Mach number M grows almost linearly with
radius but remains relatively low (Fendt & Camenzind
1996). Thus, the inertial curvature term should not play a
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dominant role. Contopoulos & Lovelace (1994) find from
self-similar solutions that centrifugal forces are dominated
by magnetic forces leading to a re-collimation of the out-
flow.

In summary, our discussion of the inertial terms in the
force-balance equation has shown that these terms are
generally weak in the case of a high magnetization. We
therefore think that for the calculation of the magnetic
field structure in relativistic jets the force-free assump-
tion is acceptable. The main motivation of the force-free
assumption is clearly the reason of simplification. There is
yet no other way to calculate a truly two-dimensional field
distribution for relativistic jets. Naturally, with a force-
free solution, nothing can be said about the flow acceler-
ation itself.

2.3. Location of the asymptotic light cylinder

The radius of the asymptotic light cylinder R0 is the nat-
ural length-scale for the GS solution. A scaling of the GS
solution in terms of the properties of the central object
(e.g. its mass) relies on the proper connection between
the asymptotic jet and the accretion disk. This is feasi-
ble only if differential rotation ΩF(Ψ) is included in the
treatment (see Sect. 3).

In the following we consider the location of the light
surface and its relation to the relativistic character of the
magnetosphere from a general point of view. The light
cylinder of a flux surface Ψ is defined as a cylinder with
radius R = RL(Ψ) ≡ c/ΩF(Ψ). At this position the GS
equation becomes singular. However, this light cylinder is
only important for the field line if the field line actually
intersects it as for Ψout in Fig. 1. Only then, relativistic ef-
fects become dominant. For example, the poloidal electric
field scales with the radius in units of the light cylinder
radius, EP = (R/RL)BP. On the other hand, in the case
of Ψin in Fig. 1, the asymptotic radius of the flux surface is
smaller than its light cylinder radius RL(Ψin) (located be-
tween Ψin and Ψ0), therefore relativistic effects are small.
For jet solutions with rigid rotation ΩF all flux surfaces
have the same light cylinder radius. Thus, the singular
light surface of the magnetosphere is a cylinder. For jet
solutions with differential rotation ΩF the flux surfaces
have different light cylinder radii. The singular surface of
the magnetosphere is not a cylinder anymore.

It is now interesting to note that the case of differential
rotation ΩF(Ψ) allows for a hypothetical field distribution
where (i) the light radius of most of the flux surfaces is lo-
cated within the jet radius, but where also (ii) the asymp-
totic radius of the flux surfaces is always smaller than
their light radius. Such a field distribution would not have
a singular light surface and could be considered as “non
relativistic”, even if the hypothetical light radii of many
field lines are inside the jet radius. Such a situation is not
possible if the magnetosphere is constrained by a constant
rotation ΩF. This underlines the importance of the treat-
ment of differential rotation for jets from accretion disks.
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Fig. 1. Sketch of the jet model. Axisymmetric jet magnetic
flux surfaces Ψ projected into the meridional plane. The cen-
tral object, located within the inner boundary (solid disk), is
surrounded by an accretion disk. Helical magnetic field lines
(laying on the flux surfaces) are anchored in the differentially
rotating disk at the foot points RD(Ψ). The jet boundary is de-
fined by the flux surface Ψ = 1. The upper boundary condition
is a cylindrically collimated jet solution (Fendt 1997b). The ar-
row indicates the numerical deformation of the initially vertical
boundary of the inner solution (at x = 1) into the curved light
surface. The flux surfaces Ψin (Ψout) have an asymptotic ra-
dius smaller (larger) than the asymptotic light cylinder R0,
which is the asymptotic branch of the light surface RL(Ψ) for
large z. The flux surface Ψ0 coincides with the light surface
asymptotically. The jet half opening angle is α (see Sect. 2.4,
Fig. 2)

A relativistic description for the jet magnetosphere is
always required if the jet contains a flux surface for which
the light radius is smaller than the asymptotic radius.

2.4. The regularity condition and the jet opening angle

The regularity condition (5) is the natural boundary con-
dition along the light surface. Although it is impossible to
solve Eq. (5) explicitly, a general relation concerning the
jet opening angle can be derived. First, we rewrite Eq. (5)
as

Bz =
1
4
g(I2)′ − 1

4
B2

P

(
1

Ω2
F

)′
, (6)

where ΩF(Ψ) = 1/xL(Ψ) ≡ R0/RL(Ψ) has been applied.
From Eq. (6) it follows for the radial field componentB2

x =
−g(I2(Ψ))′/(1/Ω2

F(Ψ))′, if Ψ intersects the light surface
with vanishing Bz . On the other hand, considering a field
line perpendicular to the light surface, ∇Ψ ⊥ ∇D, this
provides a condition for the axial field component,

Bz =
g

2
(I2)′ =

B2
P

2

(
1

Ω2
F

)′
. (7)
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Fig. 2. Jet half opening angle α(Ψ = 1) for the analytical
asymptotic jet solution and along the asymptotic branch of
the light surface in x-direction (see Eq. (8)). Coupling constant
g = 0.1 a) and g = 2 b). Asymptotic magnetic flux distribution
parameter (Eq. (9)) b = 0.5 (solid), b = 1 (dotted), b = 2
(short-dashed), b = 5 (long-dashed)

Interestingly, this is either only a function of the current
distribution I(Ψ) or depends only from the specification of
the rotation law ΩF(Ψ). Further, in this case it is always
Bz > 0, since (1/Ω2

F)′ = (x2
L)′ > 0. In particular, for

the asymptotic (z → ∞) part of the magnetosphere, this
implies that only collimating field lines can cross the light
surface.

Now we consider the asymptotic branches of the light
surface. For the asymptotic branch in z-direction it holds
(∇D)x � (∇D)z ' 0. Further, it is Bx(ln Ω2

F)′ = 0, im-
plying either a collimated field structure, Bx ≡ 0 or rigid
rotation, (ΩF(Ψ))′ ≡ 0. From this we conclude that in the
asymptotic regime of a cylindrical light surface, also the
flux surfaces along this light cylinder must be of cylindri-
cal shape. Collimation must occur in the non-asymptotic
region of the jet.

If we now assume that there exists an asymptotic part
of the light surface in x-direction (where x� z) and that
(∇D)z � (∇D)x ' 0, we derive an equation for the half
jet opening angle,

α(Ψ) = tan−1

(√
1 +

1
4
g

(I2(Ψ))′(Ω2
F(Ψ))′

Ω4
F(Ψ)

)
, (8)

for the flux surfaces in this region. As a general example we
apply the analytical solution obtained for the asymptotic
jet (Fendt 1997b),

Ψ(x) ≡ 1
b

ln
(

1 +
(x
a

)2
)
, b ≡ ln

(
1 +

(xjet

a

)2
)
,

Ω2
F(Ψ) =

g b2

4

(
I2(Ψ)

(1− e−bΨ)2
− 1

(1− e−b)2

)
+ Ω2

F(1) (9)

for Eq. (9). Here, b is a measure for the ratio of jet radius
to jet core radius a. Finally, we obtain the half opening
angle for the outermost flux surface Ψ = 1,

α = tan−1


√√√√1 +RΩ

(
4RΩ

(
eb − 1
beb

)2

+
g/2

eb − 1

),(10)

where RΩ is defined as (ΩF(1))′/ΩF(1). Note, that Eq. (10)
is only valid in the limit of (∇D)x ' 0. Figure 2 shows
the variation of the opening angle α with the parameters a
and b for two choices of the strength of the poloidal electric
current. In general, jets with a strong differential rotation
ΩF(Ψ) (i.e. large RΩ) have a larger opening angle. Also,
jets with a large ratio of jet to core radius have a smaller
opening angle. Therefore, jets originating in a small part
of the accretion disk, equivalent to small value of RΩ, will
be collimated to a smaller opening angle. It is interesting
to note that, in the case of a rigid rotation, the limiting
half opening angle is 45◦, independently of g and b.

3. The jet-disk connection, providing the true
length scale of the GS solution

The natural length scale of the relativistic GS Eq. (3) is
the asymptotic light cylinder R0 (see Sect. 2.3). Its size is
related to the iso-rotation parameter ΩF(Ψ), which itself
is connected to the angular rotation of the foot points of
the field lines. Concerning the GS equation, the size of
R0 follows purely from electro-magnetic quantities, if the
coupling constant g is chosen. The GS solution can be
scaled to any central object from stars to galactic nuclei
as long as the interrelation of the parameters Ψmax, Imax

and R0 provides the same g. So far, no connection has
been made to the type of central object. Here, we treat
the question where the asymptotic light cylinder is located
in physical units.

In the case of rigid rotation, the light cylinder radius
is usually estimated by choosing a distinct radial distance
from the central object and defining ΩF under the assump-
tion that the jet magnetosphere is anchored in that point.
If the central object is a black hole, the marginally stable
orbit implies an upper limit for ΩF. For jets in AGN this
estimate leads to the common conclusion that the light
cylinder radius is at about 10RS and the typical jet ra-
dius at about 100RL. Clearly, such arguments relies on the
assumption that the field line emerging at this very spe-
cial radius defining ΩF also extends to the light cylinder
radius RL (see Sect. 2.3).
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This picture changes, if differential rotation ΩF(Ψ)
is considered. Different flux surfaces anchor at different
foot point radii and have different light radii (Sect. 2.3).
Assuming a Keplerian rotation, the light surface radius
RL(Ψ) is located at

RL(Ψ) = 4 1015 cm
(
RD(Ψ)
RS

)3/2(
M

1010M�

)
, (11)

where RS is the Schwarzschild radius of a point mass and
RD(Ψ) the foot point of the flux surface Ψ on a Keplerian
disk. A more general equation is

RL(Ψ)
RS

=
√

2
(
RD(Ψ)
RS

)3/2

· (12)

RD(Ψ) is determined from the magnetic flux distribution
along the disk and is defined by a certain disk model.
Figure 3 shows the location of the light radius RL for a
field line anchored at a foot point radius RD in a Keplerian
disk around a central object of mass M (see Eq. (11)).
Note that the unit of the field line footpoint radius in
Eq. (12) and Fig. 3 is the Schwarzschild radius. Therefore,
Fig. 3 is appropriate only for relativistic jets. The foot-
point radii for protostellar jets are several stellar radii, cor-
responding to about 106 Schwarzschild radii (which would
be located far above the box in Fig. 3).

So far, nothing can be said about the location of the
asymptotic radius of the field lines in general. The es-
sential question is where the asymptotic radius of a flux
surface is located in respect to its light cylinder. This ques-
tion can only be answered by a detailed model considering
the two-dimensional field distribution including differen-
tial rotation ΩF(Ψ). Only in such a model, the flux dis-
tribution of the asymptotic jet can be connected to the
flux distribution of the “star”-disk system. Certainly, both
boundary conditions – asymptotic jet and accretion disk –
rely on model assumptions. However, in a self-consistent
model these boundary conditions have to follow certain
constraints (see Sects. 4.1, 4.3).

4. The two-dimensional jet solution

4.1. Disk and jet boundary condition

Three important boundary conditions determine the
two-dimensional flux distribution. The first boundary con-
dition is in the asymptotic region. Here we assume a
cylindrically collimated jet. We apply the magnetic flux
distribution derived by Fendt (1997b), where the rigidly
rotating jet model of Appl & Camenzind (1993) is ex-
tended for differential rotation ΩF(Ψ). In particular, our
asymptotic jet shows the typical jet core-envelope struc-
ture of magnetic flux and electric current, i.e. a configu-
ration where most of the magnetic flux and poloidal elec-
tric current is concentrated within a “core” radius. The
asymptotic model provides not only the asymptotic mag-
netic flux boundary condition but also the ΩF(Ψ) and
I(Ψ) distribution for the whole two-dimensional jet mag-
netosphere. In the model of Fendt (1997b) these functions

Fig. 3. Location of the light cylinder radius of a flux surface
RL(Ψ), anchored at a certain foot point radius RD(Ψ) in units
of the Schwarzschild radius RS in a Keplerian disk around a
point mass M . Note that for non collapsed stellar objects the
footpoint radii of the jet field lines are located at about 106RS

follow from the solution of the one-dimensional (asymp-
totic) GS equation across the cylindrical jet and the pre-
scription of I(x) = (x/a)2/(1 + (x/a)2) together with
Ω2

F(x) = eh−hx, where a is the core radius of the elec-
tric current distribution and h governs the steepness of
the ΩF-profile2.

The second boundary condition is the magnetic flux
distribution along the disk. This distribution is in general
not known as a solution of the full MHD disk equations.
Typical models rely on various simplifying assumptions,
as e.g. stationarity, the distribution of magnetic resistiv-
ity or the disk turbulence governing a dynamo process. We
apply an analytic flux distribution similar to the model of
Khanna & Camenzind (1992), who calculated the station-
ary accretion disk magnetic field structure around a super
massive black hole. The typical behavior of the magnetic
flux distribution is (i) a slight increase of magnetic flux
along the innermost disk, (ii) a small or vanishing flux at
the inner disk radius, (iii) a strong increase of magnetic
flux at intermediate radius (the core radius) and (iv) a sat-
urating behavior for large radii. Using the normalization
introduced above, we choose the following disk boundary
magnetic flux distribution,

Ψdisk(x) =
1
b̃

ln

(
1 +

(
x− xin

ã

)2
)

(13)

with b̃ = ln(1+(xdisk−xin)2/ã2)) (see Fig. 4). The param-
eters are: the core radius ã, the disk outer radius, xdisk and
the disk inner radius, xin. For simplicity, we choose xin ' 0
without loss of generality. Such a choice will definitely not
influence the global jet solution which is normalized to the
asymptotic light cylinder radius.

2 For figures of these functions and the related Ψ(x), ΩF(Ψ)
and I(Ψ) distribution, we refer to Fendt (1997).



C. Fendt and E. Memola: Relativistic magnetic jets 637

Fig. 4. Magnetic flux distribution along the disk Ψdisk(x) as
defined in Eq. (13). Parameters: xin = 0, xdisk/ã = 100,
40, 15, 7, 4, 2, 1, 0.01

The third boundary condition is the jet boundary
xjet(z). Along this boundary the flux distribution is Ψ = 1
by definition. However, the shape of this boundary is not
known a priori. It must be determined by the regularity of
the solution across the light surface (see also Fendt et al.
1995). A slightly different shape may give the same solu-
tion. However, the main features of the solution as opening
angle or locus of the collimation are fixed by the internal
equilibrium. Therefore, the regularity condition governs
the shape of the jet boundary. For a given I(Ψ), ΩF(Ψ),
disk and jet boundary condition, the jet radius xjet(z) is
uniquely determined.

The inner spherical grid boundary with radius x? close
to the origin, indicates the regime of the central source,
possibly enclosing a collapsed object. Neutron stars or
magnetic white dwarfs may carry their own magnetic field,
a black hole can only be threaded by the disk magnetic
field. In any case, the magnetic flux distribution is a com-
bination of “central” magnetic flux and disk magnetic flux
Ψ = Ψ? + Ψdisk. For simplicity we assume that the mag-
netic flux increases monotonically from the axis to the disk
edge and Ψ(x?) = Ψ?(x?) and Ψdisk(x?) = 0.

4.2. The two-dimensional collimating magnetic field
structure

Results of numerical solutions of the GS equation are pre-
sented in Fig. 5. Shown is the two-dimensional structure of
the magnetic flux surfaces as projection of the helical field
lines onto the meridional plane. In general, for a choice
of the “free functions” I(Ψ) and ΩF(Ψ), here taken from
the asymptotic cylindrical jet solution, the field structure
is determined by the boundary conditions and the regu-
larity condition along the light surface.

We calculated two solutions with a different choice for
the steepness parameter in the iso-rotation ΩF. The first
solution is for h = 0.2 (Fig. 5, left). This is more close
to the case of rigid rotation. Indeed the solution look
rather similar to the solutions presented in Fendt et al.
(1995). The second solution is for h = 0.5 (Fig. 5, right).
The steeper profile for the rotation law implies a smaller
asymptotic jet radius (Fendt 1997b). This can be seen

in comparison with the rigid rotation solutions (Fendt
et al. 1995). However, a larger poloidal electric current
can balance the effect of differential rotation. Therefore,
the h = 0.2 solution (with g = 2.5) collimates to a smaller
asymptotic jet radius than the h = 0.5 solution (with
g = 2.0). A h = 0.2 solution with g = 2.0 would have
a jet radius of 2.4. The second solution with the steeper
profile of the rotation law ΩF(Ψ) would better fit to a
Keplerian disk rotation. A perfect match would require
an even steeper ΩF(Ψ)-profile (see below).

The mean half opening angle of the jet magnetospheres
is about 60◦. As discussed above, the shape of the outer-
most flux surface (Ψ = 1) is not prescribed but is a result
of our calculation eventually determined by the regularity
condition. After crossing the light surface the jets colli-
mate to their asymptotic radius within a distance from
the source of about 1–2R0 along the jet axis. The open-
ing angle of the second solution is smaller, however, the jet
collimation is achieved only at a larger distance from the
central source. In our examples, the “jet expansion rate”,
which we define as the ratio of the asymptotic jet radius
to the foot point jet radius (the “disk radius”), is about
10. The true scaling of the jet magnetosphere in terms of
the size of the central object can be determined by con-
necting the jet iso-rotation parameter ΩF(Ψ) to the disk
rotation (see next section).

We note that, although in our computations the jet
boundary xjet(z) is determined by the force-balance within
the jet, and therefore subject to the regularity condition,
with our results we do not prove the magnetohydrody-
namic self-collimation process of the jet flow. Clearly, the
calculated jet magnetosphere is self-collimated in the sense
that its structure has been determined only by the inter-
nal properties. However, the actual collimation process of
the jet flow from an un-collimated conical outflow into
a cylinder could only be investigated by time-dependent
simulations taking into account the interaction with the
ambient medium.

On the other hand, we can assume that our jet solution
is embedded in an ambient medium. If we further assume
an equilibrium between the internal pressure (magneti-
cally dominated) and external (gas) pressure along the jet
boundary, we may derive the gas pressure distribution in
the ambient medium, since we know the magnetic pres-
sure distribution along the collimating jet radius. In this
case, the jet solution may be considered as collimated by
ambient pressure.

To our understanding one may claim a self-collimation
only, if the jet flow collimates independently from exter-
nal forces. Since in our treatment we do not consider the
interrelation with the medium outside the jet, we cannot
decide whether the flow is self-collimated or pressure col-
limated.

The field structure is governed by the choice of the
functions I(Ψ) and ΩF(Ψ), here taken from an asymp-
totic jet solution. In combination with the disk magnetic
flux distribution (13) we can determine two parameters
interesting for the jet-disk interaction. These are (i) the



638 C. Fendt and E. Memola: Relativistic magnetic jets

Fig. 5. Two-dimensional magnetic flux distribution Ψ(x, z) for two different asymptotic rotation laws. Left: h = 0.2, g = 2.5
Right: h = 0.5, g = 2.0. Shown are iso-contours of the magnetic flux (equivalent to poloidal magnetic field lines) with contour

levels Ψn = 10−(0.1 n)2 , n = 0, ..., 25. Note that due to the choice of contour levels the iso-contour density does not mirror the
field strength

magnetic angular momentum loss per unit time and unit
radius from disk into the jet and (ii) the toroidal mag-
netic field distribution along the disk. With I(Ψ) as the
angular momentum flux per unit time per unit flux tube,
the (normalized) angular momentum flux per unit time
per unit radius is dJ̇/dx = −xBzI(x) along the disk.
Figure 6 shows the behavior of both quantities for our
jet model with the steeper profile of the rotation law,
h = 0.5. As we see, most of the magnetic angular momen-
tum is lost in the outer parts of the disk. This may have
interesting applications for accretion disk models taking
into account a magnetized wind as a boundary condition.
The total magnetic angular momentum loss is determined
by the normalization, J̇ = −(ImaxΨmax/c)

∫
I(Ψ)dΨ or

J̇ = −(
√
gΨmax/2R0)

∫
I(Ψ)dΨ . The magnetic toroidal

field distribution along the disk has a maximum at about
half the disk radius.

Clearly, these parameters are biased by the magnetic
flux disk boundary condition (13) of our model. However,
we believe that the main features are rather general and
valid for any poloidal current and magnetic flux distribu-
tion with the typical core-envelope structure.

4.3. Scaling relations of disk and jet

As discussed above, the two-dimensional magnetic field
distribution connecting the asymptotic jet region with the
lower disk boundary allows for a direct scaling of the jet
in terms of the size of the central object. This is simply
based on the assumption that the foot points of the field
lines are rotating with Keplerian speed, ΩF = ΩK and to
the fact that in ideal MHD the iso-rotation parameter ΩF
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Fig. 6. Magnetic angular momentum loss per time unit per
unit radius dJ̇/dx at radius x (above) and disk toroidal field
distribution Bφ(x) (below) for the jet solution with h = 0.5
shown in Fig. 5

is conserved along the field lines. It is therefore possible
to construct a self-consistent model of the whole “star”-
disk-jet system with only a small set of free parameters.
In the following we will motivate such a model.
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The first example demonstrates how the connection
between the asymptotic jet and the disk, applied for our
very special model assumption, provides a specific esti-
mate for the asymptotic light cylinder R0. Normalizing the
Keplerian velocity ΩK in the same way as ΩF (Sect. 2.1),
we obtain the expression

R0 =
GM

c2Ω2
K

1
x3

=
GM/c2

Ω2
F(Ψ = 1)x3

disk

=
0.5RS

Ω2
F(Ψ = 1)x3

disk

·(14)

Iso-rotation parameter ΩF(Ψ) and disk radius xdisk are
fixed by our model. Therefore, the asymptotic light cylin-
der is proportional to the mass of the central object. For
Ω2

F(1) = 0.54 (which refers to the h = 0.5 model) and
xdisk = 0.2 the asymptotic light cylinder is R0 = 116 RS,
which is about 2 times larger compared to the jet solu-
tion with a rigid rotation ΩF ≡ 1 and will increase for
larger values of h. With the choice of g, the value of R0

constraints the maximum poloidal magnetic flux and elec-
tric current. Here, no assumption is made about the flux
distribution along the disk.

In the second example we determine the disk mag-
netic flux distribution Ψ(x) combining the asymptotic
jet rotation law ΩF(Ψ) with a Keplerian disk rota-
tion ΩK(x). From Eq. (14) follows that ΩF(Ψ)/ΩF(1) =
ΩK(x)/ΩF(Ψ = 1) = (x/xdisk)−3/2. In combination with
the numerically derived ΩF(Ψ) this gives the Ψ(x) along
the disk (Fig. 7). The figure shows that the disk flux distri-
bution derived from the asymptotic jet is distributed only
over the outer part of the disk. This can be interpreted in
two ways. First it may imply a relatively large inner disk
radius and, hence, an asymptotic jet radius small in terms
of radii of the central object. Secondly, it just underlines
the fact that in our model the distribution of the asymp-
totic jet iso-rotation parameter is too flat in order to be
truly connected to a disk magnetic flux with an extended
radial distribution. For a model taking into account the
disk Keplerian rotation in a fully self-consistent way, the
magnetic flux distribution which has to be used as disk
boundary condition for the GS solution is the one derived
in Fig. 7.

On the other hand, the assumption of a Keplerian
disk rotation together with a certain disk mag-
netic flux distribution provides an expression for
the iso-rotation parameter ΩF(Ψ) = ΩK(x(Ψ)) =

(GM/R0c
2)
(
ã2
(

eb̃Ψ − 1
))−3/2

. Here, the disk magnetic
flux distribution (13) has been used. Eventually, one finds

ΩK(Ψ)
ΩF(1)

=
(xdisk

ã

)3/2
((

1 +
(xdisk

ã

)2
)Ψ

− 1

)−3/4

. (15)

This function is definitely steeper compared to the ΩF(Ψ)-
distributions which have been derived in Fendt (1997b)
and are used in the present paper. Here, we see the limi-
tation of our ansatz. A steeper profile for rotation law is
not yet possible to treat with our code due to the lack of
numerical resolution. The non-linear character of the GS
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Fig. 7. Magnetic flux distribution Ψ(x) along the disk sur-
face as determined from the asymptotic jet properties and the
Keplerian rotation of the disk

equation becomes more problematic due to the gradients
in the ΩF-source term.

In summary, only a model including differential rota-
tion ΩF(Ψ) may provide a connection between the asymp-
totic jet, the disk magnetic flux distribution and also the
size of the central object. With our model we have pre-
sented a reasonable first solution for a self-consistent treat-
ment.

4.4. Application to the M 87 jet

The jet of M 87 shows superluminal motion clearly indicat-
ing a highly relativistic jet velocity (Biretta et al. 1999).
Recent radio observations have been able to resolve the
innermost region of the M 87 jet formation region with
0.33× 0.12 mas beam resolution (Junor et al. 1999), cor-
responding to 2.5−7.0 1016 cm. Assuming a central su-
permassive black hole of 3 109 M� (Ford et al. 1994), this
is equivalent to about 30RS! The derived jet full opening
angle is 60◦ up to a distance of 0.04 pc from the source
with a “strong collimation” occurring afterwards (Junor
et al. 1999).

We now apply our two-dimensional jet model to these
observations and compare the geometrical scales. Such
a comparison is not possible for e.g. self-similar models.
From the observed radio profile resolving the inner M 87
jet (see Fig. 1 in Junor et al. 1999), we deduce a jet radius
of about 120 Schwarzschild radii. With this, the first im-
portant conclusion is that the ratio of jet radius to light
cylinder radius must be definitely less than the value of 100
which is usually assumed in the literature. A number value
of 3−10 seems to be much more likely. Numerical mod-
els of two-dimensional general relativistic magnetic jets
fitting in this picture were calculated by Fendt (1997a).
These solutions, however, do not take into account the
differential rotation ΩF(Ψ).

Junor et al. (1999) claim that the M 87 jet radius
in the region “where the jet is first formed cannot be
larger than” their resolution of 30RS. Our conclusion
is that the expansion rate is limited in both directions.
The new radio observations give a minimum value of 3.
Theoretical arguments limit the expansion rate to the
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value of about 20, since the jet mass flow must originate
outside the marginally stable orbit which is located at
3−6 RS. Clearly, if the jet radius is really as small as ob-
served in M 87, general relativistic effects may vary the
field structure in the jet formation region.

From our model solutions, we derive a light cylinder
radius of the M 87 jet of about 50RS. The value derived
from Eq. (14) differs from that by a factor of two, but is
biased by the unknown size of the disk radius xdisk. This
parameter, however, does not affect the global solution.
Considering the standard relativistic MHD theory, noth-
ing special is happening at the light cylinder. For a highly
magnetized plasma wind the light surface corresponds to
the usual Alfvén surface which itself does not affect the
flow of matter. Hence, the light cylinder is un-observable.

Also the opening angle in our numerical solution is
larger than the observed value by a factor of two. This
cannot be due to projection effects since any inclination
between jet axis and the line of sight will increase the ob-
served opening angle. We hypothesize that a numerical
model with a steeper profile for the iso-rotation parame-
ter will give a smaller jet opening angle comparable to the
observed data. This is not surprising, since the jet foot-
point anchored in a Keplerian disk rotates faster than in
our model. Nevertheless, comparing the collimation dis-
tance observed in the M 87 jet and assuming a similar
ratio of jet radius to light cylinder radius as in our model
with h = 0.5, we find good agreement. The collimation
distance is 2 R0.

In summary, we conclude that the example of the M 87
jet gives clear indication that the light cylinder of AGN
jets might not be as large as previously thought. Although
our model does not fit the observed geometrical properties
of the inner M 87 jet perfectly, we find in general a close
compatibility.

5. Conclusions

We have investigated the two-dimensional magnetic field
distribution in collimating, relativistic jets. The structure
of the axisymmetric magnetic flux surfaces is calculated by
solving the relativistic force-free Grad-Shafranov equation
numerically. In relativistic MHD, electric fields become
important in difference to Newtonian MHD. The simpli-
fying assumption of the force-free limit has been applied
as relativistic jets must be highly magnetized.

The central point of our paper is the consideration of
differential rotation of the foot points of the field lines,
i.e. a variation of the iso-rotation parameter ΩF(Ψ). The
underlying model is that of a magnetic jet anchored in an
accretion disk. Two main problems had to be solved in or-
der to calculate a two-dimensional field distribution: a) to
determine the a priori unknown location of the light sur-
face, b) the proper treatment of the regularity condition
along that light surface. The light surface is the force-free
equivalent of the Alfvén surface and provides a singular-
ity in the Grad-Shafranov equation. We summarize our
results as follows.

(1) We find numerical solutions for the two-
dimensional magnetic flux distribution connecting the
asymptotic cylindrical jet with a differentially rotating
disk. In our example solutions the asymptotic jet radius is
about 2.5 times the asymptotic light cylinder radii. This
is the first truly two-dimensional relativistic solution for
a jet magnetosphere including differential rotation of the
iso-rotation parameter ΩF(Ψ). The physical solution, be-
ing characterized by a smooth transition across the light
surface, is unique for a certain parameter choice for the
rotation law ΩF.

(2) The half opening angle of the numerical jet solution
is about 60 degrees. Cylindrical collimation is achieved
already after a distance of 1–2 asymptotic light cylinder
radii along the jet axis. Differential rotation decreases the
jet opening angle, but increases the distance from the jet
origin where collimation is achieved. The “jet expansion
rate”, defined as the ratio of the asymptotic jet radius to
the jet radius at the jet origin, is about 10.

(3) From the analytical treatment of the regularity
condition along the asymptotic branches of the light sur-
face we derive a general estimate for the jet opening angle.
We find that the jet half opening angle is larger than 45◦

and increases for a steeper profile of the differential rota-
tion ΩF.

(4) Our two-dimensional ansatz, in combination with
the treatment of differential rotation, allows for a connec-
tion of the asymptotic jet solution with the accretion disk.
Certain disk properties can be deduced from the asymp-
totic jet parameters. Examples are the disk toroidal mag-
netic field distribution, with a maximum at half of the disk
radius and the angular momentum flux per unit time and
unit radius. This is interesting as a boundary condition for
accretion disk models. We find that most of the angular
momentum is lost in the outer part of the disk.

(5) Application of our model to the M 87 jet gives good
agreement qualitatively. From our numerical solution we
derive an asymptotic light cylinder of the M 87 jet of about
50 Schwarzschild radii. Collimation of the jet would be
achieved after a distance of two asymptotic light cylinder
radii from the source. This value is comparable with the
observations, however, the opening angle in our model is
larger by a factor of two.

In summary, we have presented the first global two-
dimensional solutions for a relativistic jet magnetosphere
taking into account differential rotation of the jet foot-
points. From our jet model we may determine certain
physical quantities in the disk that are not possible to ob-
serve, as e.g. the angular momentum flux distribution at
the disk-jet interface. Comparison with the M 87 jet shows
that our model seems to be consistent with the observa-
tions, therefore allowing for a derivation of the collimation
distance, the light cylinder radius and the jet expansion
rate for that example. Clearly, such features as the time-
dependent ejection of knots and the interaction process
between disk, jet and central source cannot be answered
by our approach. Time-dependent relativistic MHD
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simulations of the whole “star”-disk-jet system would be
necessary, however, such codes are not yet fully developed.
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Appendix A: Numerical methods

For the solution of the two-dimensional GS equation we
apply the method of finite elements as developed by
Camenzind (1987) and Fendt et al. (1995). Differential
rotation ΩF(Ψ) implies two major complications for the
numerical computation. The first one is the fact that po-
sition and shape of the light surface D = 0 is not known
a priori. Along the light surface the boundary condition is
the regularity condition, which, however, itself depends on
the two-dimensional solution Ψ(x, z). The second problem
is the GS source term for the differential rotation, contain-
ing the gradient of the magnetic flux, |∇Ψ |2. Compared
to the case of rigid rotation, this introduces another (and
stronger) non-linearity in the GS equation. Therefore, a
fragile numerical convergence process can be expected.

An additional complication is that our grid of finite
elements of second order may be inadequate for a calcu-
lation of monotonous gradients between the elements if
the numerical resolution is too low. However, for appro-
priate numerical parameters as grid size, element size and
iteration step size, we were finally able to overcome these
difficulties.

A.1. Determination of the light surface

Here we discuss the iteration procedure we use to deter-
mine the location of the light surface. Because the rotation
law ΩF(Ψ) is prescribed, the radius where the light sur-
face, D = 0, intersects the jet boundary, Ψ = 1, is known,

xL(Ψ = 1) = 1/ΩF(Ψ = 1). (A.1)

However, the corresponding position in z-direction is not
known. Some estimates can be made about shape and in-
clination of the light surface in the limit of large radii (see
Sect. 2.4), but a general solution is not yet known.

We start the iteration procedure calculating the inner
solution (defined as the field distribution inside the light
surface) with an outer grid boundary at x = 1 (for compar-
ison see Fig. 1). This choice is equivalent to the light cylin-
der in the case of rigid rotation. For differential rotation
the radius x = 1 is defined as asymptotic light cylinder (for
large z). For low z-values the boundary x = 1 is located in-
side the light surface xL(Ψ) = 1/ΩF(Ψ). Along this outer
boundary (of the inner solution), we apply a homogeneous
Neumann boundary condition. Usually, this implies that
the field lines will cross that boundary perpendicularly.
However, in our case the homogeneous Neumann bound-
ary condition transforms into the regularity condition if

the boundary becomes equivalent to the singular light sur-
face. As shown in Fendt et al. (1995), this transformation
applies “automatically” in our finite element code. This is
due to the facts that (i) finite element code solves the inte-
grated GS equation and (ii) the boundary integral, which
is proportional to D = 1− x2Ω2

F, vanishes along the light
surface.

With the GS solution of the first iteration step we es-
timate the deviation of the chosen outer boundary from
the true light surface by calculating D = 1 − x2Ω2

F(Ψ).
For the lowest z-value prescribed, we know that D =
1 − x2Ω2

F(Ψ = 1). Then, the outer grid boundary (x, z)
is slowly moved to a larger radius with ∆x ∼ D(x, z)2.
As a consequence of the different numerical grid, the field
distribution will change. The value of D will, however,
decrease. This procedure is repeated until D is below a
certain limit, D ' 0. Having obtained the solution inside
the light surface, that field distribution is taken as inner
boundary condition for the outer solution.
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