Evolution of protoplanetary disks from their taxonomy in scattered light

Antonio Garufi
OA Arcetri, INAF
with H. Avenhaus, F. Bacciotti, A. Banzatti, M. Benisty, C. Dominik, M. Kama, G. Meeus, L. Podio, P. Pinilla, S. Quanz, SPHERE/GTO
The first 100 protoplanetary disks in PDI

Nearly 100 disks observed in NIR between 2010 and 2019
(HiCiao, NACO, GPI, MagAO, SPHERE papers...)

Most obvious finding.
Disks often (always?) host sub-structures.

Key-questions.
What is their relation with the planet formation?
Do they scale with other properties?
How do they evolve with time?
The first 100 protoplanetary disks in PDI

Key-surveys.

SEEDS
Subaru/HiCiao
Hashimoto et al.
www.nao.ac.jp

DISK GTO
VLT/SPHERE
Garufi et al. 2017b
+references therein

DARTTS-S
VLT/SPHERE
Avenhaus et al. 2018
+follow-up in prep.
Disk cavity

Fact #1:

Very high occurrence: resolved in $\sim\frac{2}{3}$ of the PDI sample.
(To be compared to the 10% from photometric surveys.)
Disk cavity

Facts #1 and #2:

Very high occurrence: resolved in ~\(\frac{2}{3}\) of the sample.
(To be compared to the 10% from photometric surveys.)

Cavities explain the Meeus observational dichotomy

Group I vs **Group II**

![Graph 1](image1)

- **High FIR**
- **Large MIR slope**

![Graph 2](image2)

- **Low FIR**
- **Small MIR slope**
Disk cavity

Cavities explain the Meeus observational dichotomy

Group I vs Group II

Increasing MIR slope

Disk brightness

→ Polarized light contrast ($\cdot 10^{-3}$)

→ $F(30 \mu m) / F(13.5 \mu m)$
Disk cavity

Cavities explain the Meeus observational dichotomy

Group I vs Group II

Garufi et al. 2017a. See also Currie 2010, Maaskant et al. 2013, Menu et al. 2015.
Disk cavity

Fact #3:

Very high occurrence: resolved in $\sim\frac{2}{3}$ of the sample.

(To be compared to the 10% from photometric surveys.)

\[\uparrow\]

Disks with a cavity are brighter in scattered light.

We have an observational bias.
Fact #3:
We have more observational biases. Primarily, massive disks around old stars have been observed.
Disk cavity

Fact #3:

We have more observational biases. Primarily, massive disks around old stars have been observed.

Garufi et al. 2018 (also Villenave et al. in prep.)
Fact #3:

We have more observational biases. Primarily, massive disks around old stars have been observed.

Garufi et al. 2018
Disk cavity

Conclusion #1:

We have mostly observed long-living, massive disks with a cavity (see also Owen 2015, Pinilla et al. 2018).
Within the disk cavity

Fact #4:

Another observational dichotomy is among the transition disks (Group I).

\[
\begin{align*}
F_{\text{NIR}} \% & \quad R_{\text{CO}} \text{ (au)} \\
\uparrow & \quad \uparrow \\
\text{Amount of hot reprocessed light} & \quad \text{Origin of CO emission}
\end{align*}
\]

Banzatti et al. 2018
Another observational dichotomy is among the transition disks (Group I).

Fact #4:

The datasets combined in this work show a linked behavior in the multi-dimensional parameter space, as illustrated in the four panels of Figure 3. Linked behavior between the datasets is observed in the sub-NIR cavities, no/small cavities, high-NIR cavities, and low-NIR cavities. The red curve shows a parametric model of the decrease of F(NIR) vs R$_{\text{CO}}$ (au), which probe the presence or absence of dust cavities detected by mm-wave imaging, sensitivity to the type of CO excitation, and gas kinematics in protoplanetary disks.
Another observational dichotomy is among the transition disks (Group I). Within the disk cavity

Fact #4:

Banzatti et al. 2018 (see also Kama et al. 2015)
Within the disk cavity

Conclusion #2:
There are two families of disk cavities. Transition disks have depleted/increased NIR and low/solar abundance of refractory elements, with CO emission from large/small radii.

Banzatti et al. 2018
Within the disk cavity

Fact #5:

The morphology of optical jets bears record of the stellar physics and geometry of the inner disk.

Jet knots \rightarrow Increased accretion/ejection events.
Jet wiggling \rightarrow Disk warp, misalignment?

Garufi et al. to be submitted
Within the disk cavity

Garufi et al. to be submitted (following Zhu 2019)
Within the disk cavity

Conclusion #3:

The brightness and morphology of jets depend on the inner disk properties.

Garufi et al. to be submitted
Spirals & Shadows

Fact #6:

Spirals are detected in ~10% of Herbig stars. Never detected in TTSs.
Fact #6 and #7:

Spirals are detected in ~10% of Herbig stars. Never detected in TTSs.

Both spirals and shadows are associated with a high NIR.
Fact #6:
Spirals are detected in \(~10\%\) of Herbig stars. Never detected in TTSs. Possibly, spirals are "late" structures. We do not observe late TTSs.

Garufi et al. 2018
Fact #6:

Spirals are detected in ~10% of Herbig stars. Never detected in TTSs.

Possibly, spirals are “late” structures. We do not observe late TTSs.

Garufi et al. 2018 (vs DSHARP)
Spirals & Shadows

Fact #6:

Spirals are detected in ~10% of Herbig stars. Never detected in TTSs.
Possibly, spirals are “late” structures. We do not observe late TTSs.

Garufi et al. 2018
Conclusion #4:

The link between high NIR, shadows, and spirals could be a misaligned companion that stirs up the inner disk, induce a warp, and excite spirals.
Spirals & Shadows

Conclusion #4:
The link between high NIR, shadows, and spirals could be a misaligned companion that stirs up the inner disk, induce a warp, and excite spirals.

But what about the relative azimuthal asymmetries in the mm?

Conclusions

#1: We have mostly observed long-living, **massive disks** with a **cavity**. Cavities explain the Group I/II dichotomy.

#2: There are two families of disk cavities, **high-NIR** and **low-NIR**. The gas/dust interplay from the two is clearly different.

#3: The inner disk morphology leaves an imprint on the optical jet. Wiggling is a possible evidence of the presence of a disk **warp**.

#4: **Spirals** and **shadows** could be associated with misaligned **companions** responsible for a puffed-up and warped inner disk portion.

The system of RY Tau, Garufi et al. to be submitted (+ Long et al. 2018b)