Probing the composition of the planet-building reservoir in protoplanetary disks

what we have learned from comets and ALMA?

Catherine Walsh
University Academic Fellow
University of Leeds
c.walsh1@leeds.ac.uk
Our astrochemical origins

Inheritance?
Disk formation?
Disk processing?
Delivery?

What is the provenance of planetary system building material?
Protoplanetary disks have a history

To what degree does chemical processing modify interstellar material?

From clouds to disks to comets

Comets are frozen relics of planet-building material in the Solar System.
Our astrochemical origins

Is chemistry useful?

Can I trust chemistry? It's complicated!

What can chemistry tell us about physics?

Credit: ESO/T. Preibisch
<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 atoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td>HD</td>
<td>C₃</td>
<td>AINC</td>
<td>c-C₃H</td>
<td>C₅</td>
<td>C₆H</td>
<td>C₆H</td>
<td>CH₃C₆N</td>
<td>CH₃C₄H</td>
</tr>
<tr>
<td>AlF</td>
<td>FeO</td>
<td>?</td>
<td>C₂H</td>
<td>SiNC</td>
<td>i-C₃H</td>
<td>C₄H</td>
<td>i-C₄H</td>
<td>CH₂CHCN</td>
<td>HCOOCH₃</td>
</tr>
<tr>
<td>AlCl</td>
<td>O₂</td>
<td>C₂O</td>
<td>HCP</td>
<td>C₂N</td>
<td>C₄Si</td>
<td>C₂H₄</td>
<td>CH₃C₂H</td>
<td>CH₃COOH</td>
<td>(CH₃)₂O</td>
</tr>
<tr>
<td>C₂</td>
<td>CF⁺</td>
<td>C₂S</td>
<td>CCP</td>
<td>C₃O</td>
<td>i-C₃H₂</td>
<td>CH₃CN</td>
<td>HC₅N</td>
<td>C₇H</td>
<td>CH₃CH₂OH</td>
</tr>
<tr>
<td>CH</td>
<td>SiH</td>
<td>CH₂</td>
<td>ALOH</td>
<td>C₂S</td>
<td>c-C₃H₂</td>
<td>CH₃NC</td>
<td>CH₃CHO</td>
<td>C₆H₂</td>
<td>HC₇N</td>
</tr>
<tr>
<td>CH⁺</td>
<td>PO</td>
<td>HCN</td>
<td>H₂O⁺</td>
<td>C₂H₂</td>
<td>H₂CCN</td>
<td>CH₃OH</td>
<td>CH₃NH₂</td>
<td>CH₂OHCHO</td>
<td>C₈H</td>
</tr>
<tr>
<td>CN</td>
<td>AIO</td>
<td>HCO</td>
<td>H₂Cl⁺</td>
<td>NH₃</td>
<td>CH₄</td>
<td>CH₃SH</td>
<td>c-C₂H₄O</td>
<td>i-CH₄</td>
<td>CH₃CONH₂</td>
</tr>
<tr>
<td>CO</td>
<td>OH⁺</td>
<td>HCO⁺</td>
<td>KCN</td>
<td>HCCN</td>
<td>HC₃N</td>
<td>HC₃NH⁺</td>
<td>H₂CCHOH</td>
<td>CH₂CHCHO ?</td>
<td>C₆H⁺</td>
</tr>
<tr>
<td>CO⁺</td>
<td>CN⁺</td>
<td>HCS⁺</td>
<td>FeCN</td>
<td>HCNH⁺</td>
<td>HC₅NC</td>
<td>HC₂CHO</td>
<td>C₆H⁺</td>
<td>CH₂CCCHN</td>
<td>C₃H₆</td>
</tr>
<tr>
<td>CP</td>
<td>SH⁺</td>
<td>HOC⁺</td>
<td>O₂H</td>
<td>HNCO</td>
<td>HCOOH</td>
<td>NH₂CHO</td>
<td>H₂NCH₂CN</td>
<td>CH₃CH₂SH</td>
<td>n-C₃H₇CN</td>
</tr>
<tr>
<td>SiC</td>
<td>SH</td>
<td>H₂O</td>
<td>TiO₂</td>
<td>HNCS</td>
<td>H₂CNH</td>
<td>C₅N</td>
<td>CH₃CHNH</td>
<td>CH₃CHNH</td>
<td>C₇₀</td>
</tr>
<tr>
<td>HCl</td>
<td>HCl⁺</td>
<td>H₂S</td>
<td>HOCO⁺</td>
<td>C₂N</td>
<td>H₂C₂O</td>
<td>i-CH₄H</td>
<td>H₂NCH₂CN</td>
<td>CH₃CH₂SH</td>
<td>i-C₃H₇CN</td>
</tr>
<tr>
<td>KCl</td>
<td>TiO</td>
<td>HNHC</td>
<td>Si₂C</td>
<td>H₂CO</td>
<td>H₂NCN</td>
<td>i-CH₄N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH</td>
<td>ArH⁺</td>
<td>HNO</td>
<td>H₂CN</td>
<td>HNC₃</td>
<td>c-H₂C₃O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>NO⁺</td>
<td>?</td>
<td>MgCN</td>
<td>H₂CS</td>
<td>SiH₄</td>
<td>H₂CCNH ?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>MgNC</td>
<td>H₂O⁺</td>
<td>c-SiC₃</td>
<td>C₄H⁺</td>
<td>HC₅N⁺</td>
<td>C₅N⁻</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td>N₂H⁺</td>
<td>N₂O</td>
<td>CH₃</td>
<td>HOCOCN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH</td>
<td>N₂O</td>
<td>CH₃</td>
<td>HOCOCN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PN</td>
<td>NaCN</td>
<td>C₂N⁻</td>
<td>HNCNH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO</td>
<td>OCS</td>
<td>PH₃</td>
<td>CH₃O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO⁺</td>
<td>SO₂</td>
<td>HCNÖ</td>
<td>NH₄⁺</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiN</td>
<td>c-SiC₂</td>
<td>HSCN</td>
<td>H₂NCO⁺ ?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO</td>
<td>CO₂</td>
<td>H₂O₂</td>
<td>HCCNH⁺</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiS</td>
<td>NH₂</td>
<td>C₃H⁺</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>H₃⁺</td>
<td>HMgNC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>SiCN</td>
<td>CO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Our astrochemical origins

Protoplanetary disk molecules/volatiles?

25* and counting …

* not including isotopologues

Adapted from the Cologne Database for Molecular Spectroscopy: http://www.astro.uni-koeln.de/cdms
Our astrochemical origins

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Example Tracers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>$^\text{x}C\text{yO}$, HD</td>
</tr>
<tr>
<td>Temperature</td>
<td>$^\text{x}C\text{yO}$, CH$_3$CN</td>
</tr>
<tr>
<td>Density</td>
<td>CS, H$_2$CO, HC$_3$N</td>
</tr>
<tr>
<td>Kinematics</td>
<td>$^\text{x}C\text{yO}$, HCO$^+$</td>
</tr>
<tr>
<td>Photodissociation</td>
<td>CN, HCN, C$_2$H</td>
</tr>
<tr>
<td>Ionisation</td>
<td>HCO$^+$, N$_2$H$^+$, CH$^+$</td>
</tr>
<tr>
<td>Deuteration</td>
<td>DCO$^+$, N$_2$D$^+$, DCN</td>
</tr>
<tr>
<td>Turbulence</td>
<td>$^\text{x}C\text{yO}$, CS, HC$_3$N</td>
</tr>
<tr>
<td>C/N/O fractionation</td>
<td>$^\text{x}C\text{yO}$, $^\text{x}$CzN, $^\text{H}$x$^\text{C}$,$^\text{z}$N</td>
</tr>
<tr>
<td>Snow lines</td>
<td>$^\text{x}C\text{yO}$, N$_2$H$^+$, DCO$^+$, HCO$^+$</td>
</tr>
<tr>
<td>Grain-surface processes</td>
<td>Complex molecules</td>
</tr>
</tbody>
</table>

$x = 12, 13; y = 16, 17, 18; z = 14, 15$

Adapted from Henning & Semenov 2013, Chem. Rev., 113, 9016
What has ALMA revealed about disk composition and chemistry?
Chemical tracers of snowlines

TW Hya
N_2H^+

$N_2 + H_3^+ \rightarrow N_2H^+ + H_2$
$CO + N_2H^+ \rightarrow HCO^+ + N_2$

im Lup
DCO^+

$HD + H_3^+ \rightarrow H_2D^+ + H_2$
$CO + H_2D^+ \rightarrow DCO^+ + H_2$

Chemical tracers of snowlines

$R_{\text{snow}} = 20.5 \pm 1.3 \, \text{au}; \ T_{\text{snow}} = 27 \pm 3 \, \text{K}; \ CO/H_2 \sim 10^{-6}$

Chemical tracers of snowlines

Chemical models of disk midplanes with gas and ice chemistry predict a chemical conversion of CO into a less volatile form: CO$_2$, C$_x$H$_y$, COMs

Results in a “fake” CO snowline which evolves in time
The gas-phase CO in the outer disk is also depleted over time
What is happening to the CO?

What does a systematic exploration using single-point chemical models tell us?

If the gas and dust are moderately warm, CO is chemically converted to other species on ~ 1 Myr timescales.
What is happening to the CO?

What does a systematic exploration using single-point chemical models tell us?

If the gas and dust are moderately warm, CO is chemically converted to other species on ~1 Myr timescales.

$T = 25 \text{ K}; \ n \sim 10^{11} \text{ cm}^{-3}$

Bosman et al. 2018; Schwarz et al. 2018
CO as a tracer of gas mass?

ALMA survey of Lupus star-forming region
Low gas-to-dust mass ratios? Or low CO/H$_2$ abundance ratios?

Ordered by increasing dust mass

No clear trend

Low disk gas masses also inferred for Chameleon I and Upper Sco

How does this compare with comets?

% abundance relative to H$_2$O

Based on radio observations

Bockele-Morvan & Biver 2017
First detection of $^{13}\text{C}^{17}\text{O}$
First detection of $^{13}\text{C}^{17}\text{O}$

We can do these weak lines with ALMA
Suggests 3-4 times more gas mass than previous analyses

HCO$^+$ tracing real-time ionisation

Multi-epoch observations of H13CO$^+$ in IM Lup

Confirmation of real-time stellar variability in ionisation in the disk atmosphere

What is ALMA revealing about the chemical complexity of protoplanetary disks?
Searching for complex molecules

Cyanides (-CN) play a role in the synthesis of amino acids

\[\text{CH}_3\text{CN}/\text{HCN} \approx 5 - 20\% \]

MWC 480
\[T_{\text{eff}} \approx 8000 \text{ K} \]

Credit: B. Saxton (NRAO/AUI/NSF)
How does this compare with comets?

% abundance relative to H_2O

Based on radio observations

Bockelee-Morvan & Biver 2017
Searching for complex molecules

TW Hya
$T_{\text{eff}} \sim 4000 \text{ K}$
CH$_3$CN in TW Hya

Obs. $N_T = 1.45^{+0.19}_{-0.15} \times 10^{12}$ cm$^{-2}$

Obs. $T_{rot} = 32.7^{+3.9}_{-3.4}$ K

Model $N_T = 1.49 \times 10^{12}$ cm$^{-2}$

Model $T_{rot} = 36.6$ K

CH$_3$CN in TW Hya

Chemical models fail to reproduce cometary CH$_3$CN abundance in the midplane: another indicator of inheritance?

CH$_3$CN in TW Hya

Searching for complex molecules

Methanol is an interstellar ice molecule and a feedstock for more complex molecules.

$\text{CH}_3\text{OH}/\text{H}_2\text{O} \sim 1\% - 5\%$

How does this compare with comets?

Based on radio observations, Bockelee-Morvan & Biver 2017

% abundance relative to H₂O

CH₃OH

JFC
HFC
DO
DN

Bockelee-Morvan & Biver 2017
Problem: CH$_3$OH ice fragments when photodesorbing

CH$_3$OH in TW Hya

HCOOH in TW Hya

$T_{\text{eff}} \sim 4000$ K

HCOOH/CH$_3$OH ~ 1

Comets $\sim 0.01 - 1$

Chemical complexity in protoplanetary disks

Next steps?
Next steps?

Cycle 2
Methanol
TW Hya

Next steps?

Cycle 4
Methanol
TW Hya

Next steps?

Compact CH$_3$OH emission (< 60 au): following the large dust grains?

Next steps?

Cycle 4 data: lines with low E_{up} only detected (< 38 K)

Can we observe molecular emission on planet-forming scales?
DSHARP: Disk Substructure at High Angular Resolution Project
Resolved molecular emission in the ringed disk around HD 97048

The data cannot be fit by a fixed abundance ratio between HCO$^+$/H13CO$^+$.

There is mounting evidence that gas-phase chemistry is strongly influenced by the dust evolution in the disk (see also Bergin et al. 2016).

Chemical evidence of planets?

Detection of SO in HD 100546: SO is a known shock tracer

Could this be a disk wind? Or an accreting protoplanet?
Need a “high” abundance of S to match the line flux: \(\sim 10^{-6} \) wrt \(\text{H}_2 \)

MAPS: Molecules with ALMA on Planet-forming Scales

Credit: J. Bergner, CfA

Aikawa, Bergin, Guzmán, Öberg, Walsh
Chemistry is useful!

Not only as a tracer of composition of ice and gas

... also as a sensitive tracers of physics, ...

..., and other molecules are available!

Happy to share chemical codes: c.walsh1@leeds.ac.uk