Discovered in 2003, the eruptive variable V723 Carinae (previously named CarI-136) was found to suffer an outburst of more than four magnitudes in the K band prior to 2000 (Tapia et al. MNRAS 367, 513, 2006). It is located embedded in the northern part of the dark cloud associated with the the Trumpler 14/CarI photodissociation region ($d = 2.3$ kpc). In this poster, we present a K_s-band light-curve for this star spanning from 1993 to 2013 showing large erratic variations in timescales of years after it was first detected in 2000. The $H-K$ colour index has been measured in a few epochs and it is found to vary from 3.8 to 5.6, probably correlated to the 2.2 μm flux. Two-epoch Spitzer/IRAC archive photometry (2004 and 2008) suggests that the variability prevails also at longer wavelengths, up to 8 μm. We also present near-IR spectroscopy (1.6 to 2.5 μm) obtained in 2012 and 2013 with the Baade 6.5m telescope and the FIRE spectrometer at Las Campanas Observatory in its long-slit high-throughput mode. The slit included V723 Car and the CarI-125, a nearby embedded source, also classified as a Class I YSO and found associated with a compact radio HII region (op. cit.).

The spectrum of V723 Car (Fig. 6) shows in emission the CO overtone bandsheads, which seem to be variable. Most prominent is the 2.12 μm and other H_2 lines. The faint Brγ emission line is also seen in the 2013 spectra. Its SED has only been constructed (Fig. 6) from two ground-based H and K images in 2008 and 2009 combined with the archived photometry in the four IRAC bands (3.6 to 8 μm) in 2008. No information is available at longer wavelengths and, thus, no total luminosity can be estimated.

The observed properties of V723 Car are extremely similar to those recently reported for the Class I eruptive variable V2492 Cyg (Hillenbrand et al. AJ 145, 59, 2013; Kospal et al. A&A 551, A62, 2013). In common with this star, the origin of the outburst and the present properties of V 723 Car are far from understood.

This work uses data obtained with FIRE, FourStar and PANIC instruments on Magellan telescopes at Las Campanas Observatory. MT acknowledges DGAPA grant No. IN-101813. These results will be submitted to MNRAS.