A non-equilibrium ortho-to-para ratio of H$_2$O in the Orion PDR

Y. Choi1,2,*, F. F. S. van der Tak2,1, E. A. Bergin3, R. Plume4, and the HEXOS team

1Kapteyn Astronomical Institute, Groningen, The Netherlands
2SRON, Groningen, The Netherlands.
3Department of Astronomy, University of Michigan, Ann Arbor, USA
4Department of Physics and Astronomy, University of Calgary, Calgary, Canada
* y.choi@astro.rug.nl

The ortho-to-para ratio (OPR) of H$_2$O

- Two species of molecular hydrogen: para-H$_2$ (11) and ortho-H$_2$ (12)
- The OPR is expected to be ~3 at high temperature (>40 K).
- The OPR is lower than 1 at low temperature (<15 K).
- OPR ~ 2 - 3 in solar system comets and interstellar medium (Mumma & Charnley 2011; Lis et al. 2010; Flagey et al. 2013)
- OPR ~ 0.77 in the protoplanetary disk TW Hya (Hogerheijde et al. 2011)

The ortho-to-para ratio of H$_2$O is useful to study the formation mechanism of water.

Sources & Observations

We observed the ground-state lines of ortho- and para-H$_2$O in the Orion PDR (Photon-dominated region), at the Orion Bar and Orion S positions, as part of the HEXOS (Herschel/HIFI Observations of EXTRAOrdinary Sources, PI: E. A. Bergin) key program for the HiFi instrument onboard the Herschel Space Observatory.

Orion Bar
- Nearly edge-on morphology
- Clumpy structure
- Distance ~ 414 pc
- Temperature ~ 85 K
- Mean density ~ 105 cm$^{-3}$

Orion S
- A star formation region located 2' south of Orion KL.
- Younger and more quiescent.

Discussion

The OPR of water in the Orion PDR is much lower than interstellar value.
- Beam size effect?
 - Beam size effect?
- Gas-phase formation of water?
 - H$_2$O dissociative recombination is exothermic (OPR ~ 3).
- Water formation on grains, recent evaporation?
 - dust temperature is too low (<100 K).
- Effect of photodesorption?
 - recombinaton of H + OH -> H$_2$O (OPR ~ 3)
 - kick-out mechanism (low OPR)
 - ice thickness & ice temperature

This low OPR is inconsistent with gas phase formation and with thermal evaporation from dust grains. But it may be explained by photodesorption.

LTE Calculations

We assumed that
- the lines are optically thin (we do not see H$_2$O lines),
- the gas is not warm (<150 K, we do not see excited-state lines of H$_2^{16}$O).

Orion Bar
- For T_e = 50 - 100 K
 - N(o-H$_2$O) = 3.0x1010 cm$^{-2}$
 - N(p-H$_2$O) = 1.0x1011 cm$^{-2}$
 - OPR ~ 0.3

Orion S
- N(o-H$_2$O) = 2.0x1011 cm$^{-2}$
 - for T_e = 50 - 100 K
 - N(p-H$_2$O) = 2.0x1012 cm$^{-2}$
 - from absorption depth
 - OPR ~ 0.1

- The OPR in LTE condition ~ 0.1 - 0.3
- much lower than the OPR in TW Hya.

Non-LTE Calculations

We carried out non-LTE calculations of water using the RADEX code (van der Tak et al. 2007).

Orion Bar
- At T_{kin} = 20 K and n(H$_2$) = 104 cm$^{-3}$
 - OPR ~ 0.1
- At T_{kin} = 60 K and n(H$_2$) = 106 cm$^{-3}$
 - OPR ~ 0.1
- At T_{kin} = 100 K and n(H$_2$) = 108 cm$^{-3}$
 - OPR ~ 0.5

Orion S
- At T_{kin} = 60 K and n(H$_2$) = 108 cm$^{-3}$
 - OPR ~ 4
- At T_{kin} = 100 K and n(H$_2$) = 108 cm$^{-3}$
 - OPR ~ 0.3

- Non-LTE results for the Orion Bar (OPR ~ 0.1 - 0.5) are in good agreement with LTE calculations.
- The OPR in the Orion S (~ 0.3 - 4) depends on conditions.

References
- Arce et al. 2012, JORP, 126, 184106
- Hogerheijde et al. 2011, Sci, 333, 529
- Lis et al. 2010, A&A, 521, 205