Milky Way’s Anisotropy Profile with LAMOST/SDSS and Gaia

Sarah A. Bird
Shanghai Astronomical Observatory
In collaboration with Juntai Shen, Xiang Xiang Xue, Chao Liu, Chris Flynn, Chengqun Yang
Contents

1 Stellar Halo

2 LAMOST + SDSS + Gaia Halo Stars

3 Results

4 Conclusion
Velocity anisotropy β Binney 1980; Binney & Tremaine 2008

$$\beta = 1 - (\sigma_\theta^2 + \sigma_\phi^2)/(2\sigma_r^2)$$

- isotropic ($\beta = 0$)
- radial ($0 < \beta < 1$)
- tangential ($-\infty < \beta < 0$)

- estimate the mass of the Milky Way through the Jeans equation
- galaxy formation
 - orbits have long dynamical time scales
 - collisionless system
 - orbital shapes are relatively immune to adiabatic change of the gravitational potential
Mass uncertain by 20% due to uncertainties in β alone

- halo K giants
 - >4100 SDSS/SEGUE
 - >6900 LAMOST DR3

- assume $\beta = 0$, $M_{200} = 0.9 \pm 0.3 \times 10^{12} M_\odot$

- assume $\beta = 0.5$, $M_{200} = 0.7 \pm 0.3 \times 10^{12} M_\odot$
Velocity anisotropy β profile

β profile as seen by

- Simulations: slowly rising radially
- Solar neighborhood: $\beta > 0.5$
- Observations past 15 kpc: variety of differing results!!!

Why is β profile so difficult to measure past 15 kpc?

- poor statistics due to small sample sizes
- lack of measurements of tangential velocity dispersion

What is the solution?
Stellar Halo

2 LAMOST + SDSS + Gaia Halo Stars

3 Results

4 Conclusion
Galactic halo stars from LAMOST+SDSS+Gaia

Selection criteria:

- SDSS/SEGUE+LAMOST DR5+Gaia DR2
- K giants
 - defined by T_{eff} and $\log g$ \cite{Liu14}
 - photometric distances \cite{Xue14}
- Blue horizontal branch (BHB) \cite{Xue08}
 - Limits in color and Balmer line profile
 - photometric distances
- $|Z| > 5$ kpc
- $[\text{Fe/H}] < -1.3$ dex
- SDSS/SEGUE
 - >4100 K giants
 - >3700 BHBs
- LAMOST DR5: >8600 K giants
1. Stellar Halo
2. LAMOST + SDSS + Gaia Halo Stars
3. Results
4. Conclusion
Number histogram of LAMOST DR5 halo K giants

Galactocentric radius r_{gc} [kpc]

Number of stars

Milky Way Stellar Halo

Sarah A. Bird
Propagate observational errors to 3D velocities
- line-of-sight velocity
- distance
- proper motions in ra and dec

Monte Carlo sampling to estimate 3D median velocity errors
Velocity, metallicity, r_{gc} Figure: Bird+18 subm.

- evidence of velocity dependency on [Fe/H]
- signs of substructure
Velocity dispersion vs r_{gc} Figure: Bird+18 subm.

- $\sigma_r > \sigma_\theta, \sigma_\phi$ at all r_{gc}
- 3D velocity dispersion profiles dropping for $r_{gc} < 20$ kpc
- evidence of Sagittarius stream $r_{gc} > 20$ kpc
Anisotropy vs r_{gc}

- Highly radial within $r_{gc} < 20$ kpc
- Gently falls to lower radial values for $r_{gc} > 20$ kpc
Remove Sagittarius Figure: Bird+18 subm.

- Energy E vs total angular momentum L
- Define a Milky Way potential using the python package galpy Bovy 2015
- Select one substructure to remove and see effect on velocity anisotropy
After removal of Sagittarius stream:

- highly radial profile extends further to $r_{gc} < 30$ kpc
- gently falling section is smoothed of jagged features
Anisotropy and [Fe/H] dependency

- the most metal poor K giants
 - less radial orbits
 - constant β profile extending to $r_{gc} > 25$ kpc
- β can be used to locate substructure see e.g. Loebman+18

\[
\beta = 1 - \frac{\sigma_\phi^2}{(2\sigma_r^2)}
\]

Galactocentric radius r_{gc} [kpc]

β versus Galactocentric radius r_{gc} for different [Fe/H] values:
- $-1.5 \leq [\text{Fe/H}] < -1.3$
- $-1.8 \leq [\text{Fe/H}] < -1.5$
- $-2.5 < [\text{Fe/H}] < -1.8$
Anisotropy for LAMOST K giants and SDSS BHBs

\(\beta \) for LAMOST K giants compared with SDSS BHB’s in common metallicity bins:

- similar \(\beta \) profile
- similar \(\beta \) dependency on metallicity
- distance and metallicity determinations are in concordance

\[\beta = 1 - \frac{(\sigma_\theta^2 + \sigma_\phi^2)}{2\sigma_r^2} \]

<table>
<thead>
<tr>
<th>Metallicity Range</th>
<th>LAMOST K Giants</th>
<th>SDSS BHBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-1.5 \leq [Fe/H] < -1.3)</td>
<td>K giants</td>
<td>BHBs</td>
</tr>
<tr>
<td>(-2.5 \leq [Fe/H] < -1.8)</td>
<td>K giants</td>
<td>BHBs</td>
</tr>
</tbody>
</table>
Contents

1 Stellar Halo
2 LAMOST + SDSS + Gaia Halo Stars
3 Results
4 Conclusion
Key Conclusions and Discoveries

- LAMOST/SDSS + Gaia DR2 yield over 16000 halo K-giant and BHB stars
- Furthest stars exceed 100 kpc
- **First presentation of 3D velocity profiles for such a large and far-reaching halo star sample!**
- 3D velocity dispersion varies with radius
- \(\beta > 0 \): **radially dominated halo star orbits**
- \(\beta \) profile is constant up to distances exceeding \(r_{gc} = 20 \) kpc
- Removing Sagittarius causes \(\beta \) to remain flattened nearly to 30 kpc
- \(\beta \) dependence on \([Fe/H]\): systematic decrease of \(\beta \) for \([Fe/H] < -1.8\)
- K giants and BHB’s both share similar:
 - radially dominated stellar orbits for \(r_{gc} < 30 \) kpc
 - \(\beta \) dependence on \([Fe/H]\)
Next steps

- Compare observations to galaxies formed in cosmological simulations
- Check the influence of removing substructure for SDSS halo samples
- Integrate orbits for our sample
- Use Jeans equation to measure Galactic mass

Thanks!!!
email: sarahbird@shao.ac.cn
End of Presentation

Backup Slides
K giants are good distance indicators

halo K-giant photometric distances (from LAMOST/SDSS) largely have smaller errors than Gaia parallax distances
Anisotropy for SDSS/LAMOST K giants and BHBs

\(\beta \) for SDSS BHB’s and K Giants compared with LAMOST K Giants

- \(\beta \) profile for LAMOST and SDSS K giants is similar
- \(\beta \) profile for BHB’s is lower than for K giants: Why?
 - BHB’s peak at lower metallicity
 - \(\beta \) depends on metallicity
 - \(\beta \) binned by [Fe/H] is similar

\[
\beta = 1 - (\sigma_\theta^2 + \sigma_\phi^2)/(2\sigma_r^2)
\]

\(r_{gc} \) [kpc]