The origin of the inner stellar halo anisotropy

Azadeh (Azi) Fattahi
ICC, Durham University

With
Vasily Belokurov, Alis Deason, Carlos Frenk
Outline

A.

Inner stellar halo anisotropy

Lessons from Auriga simulations

Belokurov+2018, AF+ in prep

B.

Aurigaia – Gaia mock catalogs based on Auriga simulations

Grand+ 2018 (AF, Cooper, Simpson, Cautun, Frenk)
Kinematics of the inner stellar halo
SDSS+Gaia DR1 (Belokurov+2018)

SDSS+Gaia DR1: 6D phase-space, [Fe/H] (Belokurov+2018)

$$\beta = 1 - \frac{\sigma^2_\theta + \sigma^2_\phi}{2\sigma^2_r} \sim 0.9$$
Kinematics of the inner stellar halo

SDSS-Gaia DR1 (Belokurov+2018)

[Fe/H] < -2.3 -2.2 -1.8 -1.5 -1.1

SDSS-Gaia DR1 (Belokurov+2018)

Galactocentric radial velocity [km/s]

Azimuthal velocity [km/s]

height
1-3 kpc
3-5 kpc
5-7 kpc
Kinematics of the inner stellar halo

Gaia DR2: RVS stars with good parallaxes

1 < |Z| < 4 kpc

-1.6 < [F/H] < 1.0
Kinematics of the inner stellar halo

SDSS-Gaia DR1 (Belokurov+2018)

Galactocentric radial velocity [km/s]

[Fe/H]

height
1-3 kpc
3-5 kpc
5-7 kpc

[Fe/H]
< -2.3
-2.2
-1.8
-1.5
-1.1

Galactocentric radial velocity [km/s]

Anisotropy

β
Auriga hydrodynamical simulations
(see Grand+2017 for details)

- Zoom-in hydrodynamical simulations of Milky Way-like halos
- Isolated halos with mass $\sim 10^{12}$
 - 30 halos at level 4
 - 6 halos at level 3
- Run with Arepo (Springel 2010)
 full hydrodynamics + MHD
Inner stellar halo in Auriga: examples

Increasing metallicity

Azimuthal velocity

Increasing height

Galactocentric radial velocity
Inner stellar halo in Auriga: examples

Increasing metallicity

Azimuthal velocity

Increasing height

Galactocentric radial velocity
Inner stellar halo in Auriga: examples

Increasing metallicity

Increasing height

Galactocentric radial velocity
Inner stellar halo in Auriga: examples

Increasing metallicity

Increasing height

Galactocentric radial velocity

Azimuthal velocity

halo 16
Lessons from Auriga: galaxies with highly radial stars

Increasing metallicity

Increasing height

Galactocentric radial velocity

Azimuthal velocity
Lessons from Auriga: galaxies with highly radial stars

Galactocentric radial velocity

Increasing metallicity

Increasing height

Azimuthal velocity
Lessons from Auriga: where do highly radial stars come from?

Fitting velocity ellipsoids:

Accretion history

Strong highly radial component
Weak/no radial component
Lessons from Auriga:
what happens to the galaxy disks?

Origin of thick and thin disk?!!
Take home messages

- Inner stellar halo has a significant highly radial component.
- This kinematic property is common amongst Auriga galaxies.
- The origin of this component is a big merger with an LMC mass subhalo \(\sim 6-10 \) Gyr ago.
- The merger has a big impact on the stellar disk and it can be the event that created thick disk.
Aurigaia: Auriga Gaia mock catalogs

Grand+2018

- Based on 6 Auriga level 3 halos
- The catalogues come in two versions
 - ICC model (phase-space sampling: Lowing et al. 2015)
 - HITS model (phase-space sampling: SNAPDRAGON)
- MW dust map
- http://auriga.h-its.org/gaiamock.html
Aurigaia: Auriga Gaia mock catalogs

Grand+2018
Aurigaia: Auriga Gaia mock catalogs

Grand+2018

<table>
<thead>
<tr>
<th>Catalogue field name</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccretedFlag</td>
<td>-</td>
<td>equal to either (-1, 0, 1) for (in-situ, accreted, in existing sub-halo)</td>
</tr>
<tr>
<td>Age</td>
<td>gigayears</td>
<td>the look back time at which the parent star particle is born</td>
</tr>
<tr>
<td>Effective Temperature</td>
<td>Kelvin</td>
<td>the true effective temperature of the synthetic star</td>
</tr>
<tr>
<td>Effective Temperature Error</td>
<td>Kelvin</td>
<td>the error in effective temperature of the synthetic star</td>
</tr>
<tr>
<td>Effective Temperature Obs</td>
<td>Kelvin</td>
<td>the observed effective temperature of the synthetic star</td>
</tr>
<tr>
<td>aExtinction31</td>
<td>magnitudes</td>
<td>V-band extinction value</td>
</tr>
<tr>
<td>GBmagnitude</td>
<td>magnitudes</td>
<td>true Gaia blue G_B-band luminosity</td>
</tr>
<tr>
<td>GBmagnitude Error</td>
<td>magnitudes</td>
<td>error in Gaia blue G_B-band luminosity</td>
</tr>
<tr>
<td>GBmagnitude Obs</td>
<td>magnitudes</td>
<td>observed Gaia blue G_B-band luminosity</td>
</tr>
<tr>
<td>Gmagnitude</td>
<td>magnitudes</td>
<td>true Gaia red G_R-band luminosity</td>
</tr>
<tr>
<td>Gmagnitude Error</td>
<td>magnitudes</td>
<td>error in Gaia red G_R-band luminosity</td>
</tr>
<tr>
<td>Gmagnitude Obs</td>
<td>magnitudes</td>
<td>observed Gaia red G_R-band luminosity</td>
</tr>
<tr>
<td>Gmagnitude Error</td>
<td>magnitudes</td>
<td>true Gaia white light G_B-band luminosity</td>
</tr>
<tr>
<td>Gravity Obs</td>
<td>magnitudes</td>
<td>error in Gaia white light G_B-band luminosity</td>
</tr>
<tr>
<td>GravPotential</td>
<td>km2 s$^{-2}$</td>
<td>gravitational potential of the parent star particle</td>
</tr>
<tr>
<td>HCoordinateErrors</td>
<td>(radians, radians, arcsec)</td>
<td>2D array of errors in (α, δ, π)</td>
</tr>
<tr>
<td>HCoordinates</td>
<td>(radians, radians, arcsec)</td>
<td>2D array of true (α, δ, π)</td>
</tr>
<tr>
<td>HCoordinates Obs</td>
<td>(radians, radians, arcsec)</td>
<td>2D array of observed (α, δ, π)</td>
</tr>
<tr>
<td>HVelocities</td>
<td>(arcsec yr$^{-1}$, arcsec yr$^{-1}$, km s$^{-1}$)</td>
<td>2D array of true (μ_α^\ast, μ_δ^\ast, v_r)</td>
</tr>
<tr>
<td>HVelocities Obs</td>
<td>(arcsec yr$^{-1}$, arcsec yr$^{-1}$, km s$^{-1}$)</td>
<td>2D array of observed (μ_α^\ast, μ_δ^\ast, v_r)</td>
</tr>
<tr>
<td>HVelocityErrors</td>
<td>(arcsec yr$^{-1}$, arcsec yr$^{-1}$, km s$^{-1}$)</td>
<td>2D array of errors in (μ_α^\ast, μ_δ^\ast, v_r)</td>
</tr>
<tr>
<td>Iband Magnitude</td>
<td>magnitudes</td>
<td>I-band absolute magnitude</td>
</tr>
<tr>
<td>Magnitudes</td>
<td>(magnitudes)\times8</td>
<td>2D array of apparent magnitudes in the (U, B, R, J, H, K, V, I) bands</td>
</tr>
<tr>
<td>Initial Mass</td>
<td>solar masses</td>
<td>mass of the star when it was born (before mass loss occurs)</td>
</tr>
<tr>
<td>Mass</td>
<td>solar masses</td>
<td>mass of the star</td>
</tr>
<tr>
<td>Metallicity</td>
<td>-</td>
<td>metallicity of the star</td>
</tr>
<tr>
<td>ParticleID</td>
<td>-</td>
<td>unique ID of the parent particle</td>
</tr>
<tr>
<td>Surface Gravity</td>
<td>log</td>
<td>logarithm of the true surface gravity of the star</td>
</tr>
<tr>
<td>Surface Gravity Error</td>
<td>log</td>
<td>logarithm of the error in surface gravity of the star</td>
</tr>
<tr>
<td>Surface Gravity Obs</td>
<td>log</td>
<td>logarithm of the observed surface gravity of the star</td>
</tr>
<tr>
<td>Vabs Magnitude</td>
<td>magnitudes</td>
<td>V-band absolute magnitude</td>
</tr>
</tbody>
</table>