A crucial test in stellar halo physics:
star counting versus integrated photometry techniques

Raúl Infante-Sáinz,
Ignacio Trujillo, Javier Román, Cristina Martinez-Lombilla, Alejandro Borlaff, Nushkia Chamba

Stellar Halos across the Cosmos 2018
Heidelberg, House of Astronomy
Tuesday July 3, 2018.
Motivation

Star Counting with HST
\(D \leq 16 \) Mpc
(Zackrisson et al. 2012)

Are they in agreement?

Integrated photometry
\(D \gtrsim 150 \) Mpc
(Trujillo & Fliri 2016)
Ultra deep imaging with WHT

William Herschel Telescope (4 m)
La Palma
+
PAUCAM Camera

SDSS Filters

g ~ 4.8 h
r ~ 3.1 h
i ~ 4.4 h

RAW data

18 CCDs
4 Channels/CCD
FOV ~ 1 degree
NGC4565 color image

Limiting magnitudes

3-sigma 10”x10” arcsec2 boxes

g ~ 30.5 mag/arcsec2

r ~ 29.9 mag/arcsec2

i ~ 29.3 mag/arcsec2

1-sigma 30”x30” arcsec2 boxes

g ~ 32.9 mag/arcsec2

r ~ 32.3 mag/arcsec2

i ~ 31.7 mag/arcsec2
NGC4565 color image (g+r+i)

Scatter light field (stars g-mag < 16 mag)
Modeling NGC4565 (r-band)

Major axis profile: NGC 4565

Model conv. PSF
Bulge conv. PSF
bar conv. PSF
Disc conv. PSF
Halo conv. PSF
Deconvolved models
Observed galaxy

Observed
PSF-Deconvolved

Radburn-Smith et al. (2013)
We found a young (ages between 100 and 400 Myr) and metal poor structure ([M/H] between -1.71 and -0.4).

Radburn-Smith et al. (2013) found similar values: age < 600 Myr and [M/H] ~ -1.
For the halo region we found ages between 2.0 and 10.0 Gyr, and metallicities $[\text{M}/\text{H}]$ between -1.31 and -0.71.

Monachesi et al. (2016) obtained age ~ 10 Gyr and $[\text{M}/\text{H}] \sim -1.2$ using star counting techniques.
Conclusions

• With these preliminary results we can say that counting star and deep integrated photometry techniques are in agreement.

• This allows us to use integrated photometry where star counting technique is unfeasible.