
Mathematical Double Pendulum for Android

Thomas Müller
Visualisierungsinstitut der Universität Stuttgart (VISUS), SFB716
Allmandring 19, 70569 Stuttgart, Germany

E-mail: Thomas.Mueller@visus.uni-stuttgart.de

Abstract. The mathematical double pendulum is an interesting exercise in a beginners’
course of classical mechanics to determine equations of motion by means of the Euler-
Lagrangian formalism. While the gravitational force is naturally fixed, an Android device
offers the possibiliy to play around with a variable gravitational force direction depending
on how the user holds its device with respect to actual gravity. In this short manuscript,
the equations of motion for a variable gravitational force direction and velocity dependent
frictional terms are deduced. Furthermore, some implementation details for the simulation and
the visualization are presented.

Find the application in Google play store:

1. Introduction

The mathematical double pendulum consists of two masses m1 and m2. The first mass is fixed
with a massless rod of length l1 at the point 0, and the second mass is fixed with a massless
rod of length l2 at the first mass, see figure 1. If gravitation points in the negative y-direction,
then 1 and 2 are the rest positions of both masses.

x

y

b
0

b
1

b 1
′

ϕ1 l1

b
2

b
2′

ϕ2

l2

Figure 1. The mathematical double pendulum consists of two masses m1 and m2 and two
massless rods of lengths l1 and l2, respectively.

In the following, we will determine the equations of motion for the mathematical double
pendulum in two dimensions with friction and a variable direction of gravitation due to the
orientation of the Android device.

Mathematical Double Pendulum for Android 2

2. Equations of motion in canonical coordinates

The equations of motion for the mathematical double pendulum can be deduced by means of
the Euler-Lagrangian (EL) formalism with friction. Details to the EL formalism can be found
in the standard literature to classical mechanics [1, 2].

The Cartesian coordinates of both masses can be easily read from figure 1, parametrized
by the angles ϕ1 and ϕ2 measured from the negative y-axis,

x1 = l1 sinϕ1, y1 = l1 cosϕ1, (1)
x2 = l1 sinϕ1 + l2 sinϕ2, y2 = l1 cosϕ1 + l2 cosϕ2. (2)

The kinetic energy T of the total system follows from

T =
m1

2
(
ẋ2

1 + ẏ2
1
)
+

m2

2
(
ẋ2

2 + ẏ2
2
)

(3)

=
m1

2
l2
1 ϕ̇

2
1 +

m2

2
[
l2
1 ϕ̇

2
1 + l2

2 ϕ̇
2
2 +2l1l2ϕ̇1ϕ̇2 cos(ϕ1−ϕ2)

]
, (4)

where a dot means differentiation with respect to time, ẋ = dx/dt, and the derivatives of the
coordinates read

ẋ1 = l1ϕ̇1 cosϕ1, ẏ1 =−l1ϕ̇1 sinϕ1, (5)
ẋ2 = l1ϕ̇1 cosϕ1 + l2ϕ̇2 cosϕ2, ẏ2 =−l1ϕ̇1 sinϕ1− l2ϕ̇2 sinϕ2. (6)

The absolute values for the velocities are given by

v1 =
√

ẋ2
1 + ẏ2

1 = l1ϕ̇1, (7)

v2 =
√

ẋ2
2 + ẏ2

2 =
√

l2
1 ϕ̇2

1 + l2
2 ϕ̇2

2 +2l1l2ϕ̇1ϕ̇2 cos(ϕ1−ϕ2). (8)

The potential energy U depends on the direction of gravitation ~g = g(sinψ,cosψ)T , where
g is the absolute value of gravitation and ψ is the direction measured in the same way as the
angles ϕi. Hence,

U =−m1~g ·
(

x1
y1

)
−m2~g ·

(
x2
y2

)
(9)

=−(m1 +m2)gl1 cos(ϕ1−ψ)−m2gl2 cos(ϕ2−ψ). (10)

The equations of motion with friction follow from the Lagrangian function L = T −U
and the Euler-Lagrangian differential equations

0 =
d
dt

∂L
∂ ϕ̇ j
− ∂L

∂ϕ j
−R j for j = {1,2} . (11)

After a few lines of straightforward calculation, the Euler-Lagrangian equations yield

0 = ϕ̈1 +
g
l1

sin(ϕ1−ψ)+
m2l2

(m1 +m2)l1

[
cos(ϕ1−ϕ2)ϕ̈2 + sin(ϕ1−ϕ2)ϕ̇

2
2
]
−R1, (12)

0 = ϕ̈2 +
g
l2

sin(ϕ2−ψ)+
l1
l2

[
cos(ϕ1−ϕ2)ϕ̈1− sin(ϕ1−ϕ2)ϕ̇

2
1
]
−R2. (13)

In Cartesian coordinates, the frictional term ~Fi for the particle i can be written as

~Fi =−hi(vi)
~vi

vi
, i = 1, . . . ,N, (14)

where hi(vi) is a function of the velocity vi. In the canonical coordinates ϕ j used here, the
frictional terms of equations (12) and (13) read

R j =−
N

∑
i=1

hi(vi)
∂vi

∂ ϕ̇ j
. (15)

Mathematical Double Pendulum for Android 3

Here, N = 2, and with v2
i = ẋ2

i + ẏ2
i , these terms are given by

−R1 = h1(v1)l1 +h2(v2)
1
v2

[
l2
1 ϕ̇1 + l1l2ϕ̇2 cos(ϕ1−ϕ2)

]
, (16)

−R2 = h2(v2)
1
v2

[
l2
2 ϕ̇2 + l1l2ϕ̇1 cos(ϕ1−ϕ2)

]
. (17)

Equations (12) and (13) are not yet usable for standard numerical integration techniques,
because the second derivatives are still coupled. But by replacing ϕ̈2 of (13) into (12), and
vice versa, the equations of motion read,

ϕ̈1 =
1

1−µ cos2(ϕ1−ϕ2)

{
− g

l1
sin(ϕ1−ψ) (18)

− µl2
l1

[
cos(ϕ1−ϕ2)

[
− g

l2
sin(ϕ2−ψ)+

l1
l2

sin(ϕ1−ϕ2)ϕ̇
2
1 −R2

]
+ sin(ϕ1−ϕ2)ϕ̇

2
2

]
+R1

}
,

and

ϕ̈2 =
1

1−µ cos2(ϕ1−ϕ2)

{
− g

l2
sin(ϕ2−ψ) (19)

+
l1
l2

[
cos(ϕ1−ϕ2)

[g
l1

sin(ϕ1−ψ)+
µl2
l1

sin(ϕ1−ϕ2)ϕ̇
2
2 −R1

]
+ sin(ϕ1−ϕ2)ϕ̇

2
1

]
+R2

}
.

The mass relation µ = m2/(m1 +m2) is always less than 1 for finite masses.

3. Implementation details

Android apps are based on the Java [3] programming language with additional functionally
for Android devices. An introduction to Android development and the API can be found
at [4]. In the following, all parameters are given in SI units.

3.1. Pendulum simulation

The equations of motion (EOMs), (19) and (20), of the double pendulum with friction and
variable gravitational direction can be solved using the standard fourth-order Runge-Kutta
integrator [5]. As the EOMs are independent of time, the Runge-Kutta formulas read

k1 = hf(yn) , (20)

k2 = hf
(

yn +
1
2

k1

)
, (21)

k3 = hf
(

yn +
1
2

k2

)
, (22)

k4 = hf(yn +k3) , (23)

yn+1 = yn +
1
6
(k1 +2k2 +2k3 +k4) , (24)

where yn is the four-dimensional vector consisting of ϕ1, ϕ2, ϕ̇1, and ϕ̇2 at the current
time step n. The function f follows from transforming the second-order ordinary differential
equation into a first-order ODE. Thus, f = (ϕ̇1, ϕ̇2, ϕ̈1, ϕ̈2).

To solve the second order ODE, the initial positions ϕi(t = 0) and the initial velocities
ϕ̇i(t = 0) have to be known. Here, the velocities are always set to zero and the initial positions
can be set using the touch screen. As the simulation is driven by a 5 ms timer, the time step
for the Runge-Kutta integration should be h = 0.005 for an approximate realtime animation.

Mathematical Double Pendulum for Android 4

3.2. Visualization

The visualization of the double pendulum is based on the open graphics library for embedded
systems (OpenGL ES 2.0) [6]. The graphics pipeline for object rendering consisting of a
vertex and a fragment shader, see figure 2.

����
����
����

����
����
����

geometry

processing
rasterization

per fragment
operations

fragments pixelsvertices primitives

Vertex Shader Fragment Shader

fr
a
m

e
 b

u
ff
e
r

a
p
p
lic

a
ti
o
n

Figure 2. A minimal OpenGL rendering pipeline consists of a vertex and a fragment shader.

Here, the vertex shader is mainly used for orthographic projection and for scaling the
arrow representing the gravitational force direction. It also generates the texture coordinates
for the background and sets the pixel size of the pendulum bobs. The rest of the visualization
is done in the fragment shader.

The background of the simulation domain is a checkerboard texture defined either with
respect to Cartesian (gridType==0) or with respect to polar coordinates. Using the texture
coordinates texCoords defined in the vertex shader, the resulting gray value follows from
val,

float val = 0.0;

if (gridType==0) {

val = 0.1 + 0.1*sign(sin(2.0*3.14159*texCoords.x)*sin(2.0*3.14159*texCoords.y));

} else {

float r = length(texCoords);

float phi = atan(texCoords.y,texCoords.x);

val = 0.1 + 0.1*sign(sin(2.0*3.14159*r)*sin(12.0*phi));

}

The vertices for the arrow representing the gravitational force direction are scaled within the
vertex shader, where off defines an offset and wh scales the input position aPosition of a
vertex. These parameters are necessary, because the input positions for the top of the arrow
are (−1,0), (1,0), (0.1), and the positions of the leg read (−1,0), (1,0), (−1,1), (1,1).
Additionally, any vertex is rotated by the angle phi to point into the direction of actual gravity.

vec2 vert = aPosition.xy*wh + off;

vert = mat2(cos(phi),-sin(phi),sin(phi),cos(phi)) * vert;

gl_Position = uMVPMatrix * vec4(vert, 0.0, 1.0);

The shading for the pendulum bobs is realized within the fragment shader. As a bob is
represented by a single point, its texture coordinates tc follow from the point coordinates
gl_PointCoord which are determined within the fragment shader. Those parts that lie
outside the radius 1 with respect to texture coordinates are discarded. A spherical appearance
can be achieved by determing a fictitious normal direction n and calculating the dot product
to the z-direction.

vec2 tc = 2.0*(gl_PointCoord - vec2(0.5));

if (length(tc)>1.0) {

discard;

}

vec3 n = normalize(vec3(tc.x,tc.y,sqrt(1.0-length(tc))));

gl_FragColor = vec4(vec3(n.z)*0.5+0.5,1);

Mathematical Double Pendulum for Android 5

4. The App

Some screenshots of the DoublePendulum App are shown in figure 3. When starting the App,
the pendulum is in its rest position where ϕ1 = ϕ2 = 0. The gravitation is fixed and points
downwards. The pendulum parameters are m1 = m2 = 1 kg, l1 = 1 m, l2 = 0.8 m, and there is
no friction (damping).

Figure 3. Screenshots of DoublePendulum with either Cartesian or polar grid as background.
The blue arrow in the central image shows the direction and strength of gravitation.

To start the application, move the pendulum bobs using the touch screen and press the
“play” button. For better control over the initial conditions, the initial angles ϕi(t = 0) can be
defined in the preference settings. Then, every time the “reset” button is pressed, these initial
angles are used.

Acknowledgments

This work was partially funded by Deutsche Forschungsgemeinschaft (DFG) as part of the
Collaborative Research Centre SFB 716.

References

[1] Friedhelm Kuypers. Klassische Mechanik. VCH, 1993.
[2] Herbert Goldstein. Classical Mechanics. Addison-Wesley, 2001.
[3] The Java (SE) development kit can be downloaded from

http://www.oracle.com/technetwork/java/javase/downloads/index.html.
[4] The developer site of android can be found at http://developer.android.com/index.html.
[5] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C. Cambridge

University Press, 1994.
[6] Details to the Open Graphics Library (OpenGL) and the OpenGL Shading Language can be found at

http://www.opengl.org.

