Stellar populations and Galactic archeology

The goal of this course: understand how to use stars to recostruct the evolutionary history of galaxies

Taxonomy of galaxies & their stellar content

Milky Way

- a large spiral galaxy age ~ 13 Gyr
- dust, gas, stars, SMBH
- decomposed into: halo disc bulge

Studying the Milky Way gives us:

- nucleosynthesis and GW sources
- physics of lowand high mass star formation
- stellar evolution and formation of planets
- galaxy assembly
- test of Big Bang cosmology

Studying the Milky Way gives us:

- nucleosynthesis and GW sources
- physics of lowand high mass star formation
- stellar evolution and formation of planets
- galaxy assembly
- test of Big Bang cosmology

are characterised by:

- age
- chemical composition
- stellar densities
 N stars / kpc³
- kinematics

are characterised by:

stellar structure models + asteroseismology

- chemical composition
- stellar densities
 N stars / kpc³
- kinematics

are characterised by:

- stellar densities
 N stars / kpc³
- kinematics

are characterised by:

• age

stellar structure models + asteroseismology

 chemical composition

stellar atmosphere models + spectroscopy

stellar densities
 N stars / kpc³

direct number count from all-sky imaging surveys

kinematics

are characterised by:

• age

stellar structure models + asteroseismology

 chemical composition

stellar atmosphere models + spectroscopy

stellar densities
 N stars / kpc³

direct number count from all-sky imaging

surveys

kinematics

astrometry surveys

Gaia G magnitude

Decomposition by kinematics

Carine Babusiaux, IPAG – Université Grenoble Alpes / GEPI – Observatoire de Paris, France

Decomposition by number density

Buser 2000

Decomposition by age and metallicity

<u>Definition</u> of metallicity in astronomy [Fe/H] = (Fe/H)_{Star} - (Fe/H)_{Sun}

Freeman & Bland-Hawthorn 2000

Decomposition by chemical abundances

Bergemann, Hansen, and Beers (2019, in press)

Decomposition by chemical abundances

Tolstoy et al (2009)

Decomposition by chemical abundances

Tolstoy et al (2009)

Sun and solar twins

Solar Chemical Composition

is a fundamental reference in astronomy

Solar-like stars ("twins")

- best candidates for the 2nd Earth
- Signatures of planet formation in their chemical abundances

Meléndez, Asplund, Gustafsson, Yong 2009, ApJ Letters

Key properties of the disk

- most <u>massive</u> stellar component
- most stars are on nearly <u>circular</u> orbits
- lots of dust
- stars of <u>all ages</u>; diversity of chemical compositions
- spiral arms, warp, global oscillations

Bergemann et al (2018)

Key properties of the bulge

- main stellar body: barred and X-shaped
- core: nuclear star clusters + super-massive black hole
- <u>inner region</u>: young stars, active star formation <u>outer region</u>: old stars with diverse chemical abundances

Key properties of the halo

- most mass in Dark Matter
- most stars are on highly-<u>eccentric</u> orbits
- <u>sub-structure</u>: stellar streams and overdensities
- host to the <u>old(est)</u> stars with ages of >10 Gyr

Belokurov et al (2006)

Extremely metal-poor stars

probably the oldest ...

best candidates for probing the physical state of <u>very</u> <u>early Universe</u> (few 100s Myr)

Cosmological simulations: oldest stars in the <u>bulge</u> and <u>halo</u> White & Springel (2000)

Keller et al. (2014)

Open Clusters

- 10^2 to few 10^3 stars
- irregularly shaped
- young, continue forming
- disk

Globular Clusters

- 10^4 to 10^5 stars
- spherically symmetric
- old, no longer forming
- halo / bulge

Open Clusters

Globular Clusters

Bergemann et al (2019) https://arxiv.org/abs/1903.03157

Key properties of dwarf Spheroidals

- first objects to form stars
- smallest DM dominated systems in the Universe
- early heating and gas loss
- abundances similar to the halo

How to give a good talk (c) H.-W. Rix

How to give a good talk

1) Spend 20 min conveying the most new / important / promising insights to be gained from the paper

2) Briefly set the stage and expose the scientific issue:What's the question, puzzle, observation to be understood?Why is it interesting?

3) What are the "punchline(s)" / key insight(s)?Is that based on new calculation / data / ideas / technology?

4) What are the broader <u>implications</u>? based on the authors written view, filtered by your judgement

- Think about your audience first: What do they already know?
- <u>The first & last slides are most important</u>: spell out your first 5 and last 5 sentences verbatim.
- Practice each talk 3 times all the way before you give it
- One transparency / 3 minutes
- Use figures extensively, but annotate them: Legible axes If there are several lines, label them
- Explain everything on the slide or don't put it on the slide
- If a slide has no bearing on your conclusion, omit it
- <u>Talk to the audience</u>
- Keep it simple but not simplistic