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Three parts today:

| General Information about the lecture
2. Introduction to Numerical Methods
Floating point representation
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Numerisches Praktikum

Tentative schedule

e Feb. 27th: Lecture 1: Introduction, number representation in a computer
e Feb. 28th: Lecture 2: Interpolation, Extrapolation, Splines

e Mar. Ist: Lecture 3: Solving ordinary differential equations

e Mar. 2nd: Lecture 4: Numerical integration

e Mar. 3rd Lecture 5: Sort algorithms

e Mar. 6th.: Lecture 6: Finding roots, iterative Newton-Raphson method
e Mar. 7th: Lecture 7: Systems of linear equations

e Mar. 8th: Lecture 8: Statistical methods, data modeling

e Mar. 9th Lecture 9: Random numbers. Monte Carlo methods

e Mar. 10th Lecture 10:_Summary and concluding remarks



http://www.mpia-hd.mpg.de/~klahr/Lecture_01_2022.pdf
http://www.mpia-hd.mpg.de/~klahr/Lecture_02.pdf
http://www.mpia-hd.mpg.de/~klahr/Lecture_04.pdf
http://www.mpia-hd.mpg.de/~mordasini/UKNUM/Lecture_05.pdf
http://www.mpia-hd.mpg.de/~klahr/Lecture_06.pdf
http://www.mpia-hd.mpg.de/~klahr/Lecture_03.pdf
http://www.mpia-hd.mpg.de/~klahr/Lecture_07.pdf
http://www.mpia-hd.mpg.de/~klahr/Lecture_08.pdf
http://www.mpia-hd.mpg.de/~klahr/Lecture_09.pdf
http://www.mpia-hd.mpg.de/~klahr/Lecture_10.pdf

Numerisches Praktikum

Daily schedule:

9:15 - 9:45: Presentation of Exercises from Previous Lesson (Students)

9:45 - 11:15: Introduction to new Lesson (Lecturers)

11:15 - 11:30: Break

11:30 - 13:00: Tutorial (Students work with assistance of Lecturers and Tutor)

Afternoon: Independent Working Time for Students

Solution per Email to the corresponding
tutor: Johannes: jmeyer@mpia.de
Leon: huehn@uni-heidelberg.de



mailto:jmeyer@mpia.de
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You can work on the exercises during the tutorial time in
presence of lecturers.

We suggest to form groups of up to two students!

In the afternoon you can continue and complete the
assigned exercise work.

You can reach us via Email. The preferred channel for
qguestions would be SLACK.

Please write down the results, document

the important bits of the code in proper form (tables, lists,
etc). Do not print out the

entire code. The results can be handed in until the
following morning 9:15 a.m. by e-mail to

@mpia.de


mailto:@mpia.de

Criterion for Certificate
At least 60 % of possible number of points, and
presentation of results at least once.

Contact:
Hubert Klahr: klahr@mpia.de

Also: Please join the Slack Channel: https://
join.slack.com/t/luknum2023/shared_invite/
zt-19149nfyb-3QHifnHHArO85hsLJIPMEQ
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History.

* John-von Neumann (1903-1957)

Borh in Budapest; 1930:Univ. Princeton
Suggesting an electronic calculation device (1946)

Tastatur

Maus Zentraleinheit Drucker
Scanner Bildschirm

Diskette
Feslplatte
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History.
* Konrad Zuse (1910-1995) Berlin

“;— g Invented the free programmable computer
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Z1 in his parents flat: 1936
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History

http://www.rtd-net.de/Zuse.html

Zuse Z4: 1944 Berlin, 1950 Zurich
1954 Frankreich
1959 Deutsches Museum Munchen

Clock Speed: 0.03 MHz RAM: 256 byte

UKNum


http://www.rtd-net.de/Zuse.html

History

* The principles of electronic
computing devices:

Build by Zuse following the theory by von Neumann

Free programming

Binary representation
Memory

Floating Point Arithmetics
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History

« Seymour Cray (1925-1996)
()

CRAY1: Vektorregister (1976)
160 Mflop, 80 MHz, 8 MByte RAM
CRAY2: (1984)

1Gflop, 120MHz, 2GByte RAM
iPhone5: 500Mflop... ;)
iPhoneXS: Gflop!




The CRAY-2 Computer System




Cray 2 (1985) iPhone XS (2018) iPhone 13 2021

Price (2017 USD) > $30,000,000 ~$900 $999

Main Processors 4 1 A12X A15 Bionic chip
Memory (RAM) 256 Megaword 4 Gigabytes A15 Bionic chip

* megaword —> a ‘word’ varies but the Cray-2 used 64-bit words with
8 bit parity checks

Cray 2 (1985) iPhone XS (2018)
Storage (max) ~32 GBx* 512 GB
* Max storage required 32 disk drives of 1.2 GB each

Cray 2 (1985) iPhone XS(2018)
Peak Power Consumption 195,000 Watts < 1 Wattx

*It’s very hard to compare peak power given iPhone has so many other
functions, so let’s just go with < 1 W

Cray 2 (1985) iPhone XS(2018)
Peak Performance 1.9 GFLOP x ~1 GFLOPx GPU: 1,5 TFLOPS

*GFLOP = Billions of Floating Point operations per second




Cray 2 (1985) iPhone XS(2018)
Relationship to liquid Liquid cooledx Waterproof-ishxx

*Cooled with 3M Fluorinert - an electrically inert liquid

*k iPhone XS is rated IP68: designed to be waterproof when submerged
no deeper than 2 meters (roughly 6 feet) in water for 30 minutes or
less.

Cray 2 (1985) iPhone XS(2018)

Weight 5,500 b (2,494Kg) 1289 (0.31b, 0.14Kg)

Volume 1.8 cubic meters ~0.007 cubic meters
Height 45 in (1.2 m) 5.8 in (0.16 m)
Width 54 in (1.4 m)x 3.05 in (0.075 m)

* the cray-2 was cylindrical in shape, so the ‘width’ is really its
diameter

ALSO, the iPhone also has 2 cameras, GPS, Celular, Wifi, Bluetooth,
A DISPLAY with over 2.7 MM pixels, a battery that lasts a day. A
compass. A 3-axis Gyroscope. Speakers. An Accelerometer. Ambient
Light and proximity sensors. A Barometer. A Microphone. It can
record 4K video. It can take 8MP photos while recording 4k video.
NFC. iBeacon.




About HLRS
Y

-~

Geschichte

b ..l Hitachi SR8000 LRZ Miinchen
s 6 Tflops, TByte Speicher HLRS Stuttgart

*« Auto, Luft- und Raumfanrt
* Meteorologie, Klimaforschung, Wetter NIC Jiilich
+ Theoretische Elementarteilchenphysik
* Astrophysik
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Computer

2008: JUGENE: 294,912 cores; Linpack: 825.5 Teraflops
2013: JUQUEEN: 458,752 cores; Linpack: 5.0 Petaflops
2018: JUWELS: 122,448 cores; 10.4 (CPU) + 1.6 (GPU) Petaflop

Superrechner
JUGENE/
JUQUEEN/JUWEI
IBM Blue Gene =
Am FZ Jilich

Eréffnet mit J. Riittgers Juni 2008



Max Planck-Society: Hydra:

3424 compute nodes, 136,960 CPU-cores, 128 Tesla V100-32 GPUs, 240
Quadro RTX 5000 GPUs, 529 TB RAM DDR4, 7.9 TB HBM2,

11.4 PFlop/s peak DP, 2.64 PFlop/s peak SP

Max Planck-Society: Raven:

1592 CPU compute nodes, 114624 CPU cores, 421 TB DDR RAM, 8.8 PFlop/s
theoretical peak performance (FP64), plus 192 GPU-accelerated compute nodes
/68 GPUs, 30 TB HBM2,

14.6 PFlop/s theoretical peak performance (FP64).
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2007...

GeForce 8800 GTX, 128 Stream Proc., 768 MB
GeForce 8800 GTS, 128 Stream Proc., 512 MB
GeForce 8800 GT, 112 Stream Proc., 512 MB

2008...

GeForce 9800 GTX, 128 Stream Proc., 512 MB
GeForce 9800 GX2, 256 Stream Proc., 1 GB
GeForce 9800 GT, 64 Stream Proc., 512 MB

http://www.nvidia.com

Graphic Cards
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Introduction to Scientific
Computing

L S

Major: All Engineering Majors

Authors: Autar Kaw, Luke Snyder

http://numericalmethods.eng.usf.edu

Numerical Methods for STEM undergraduates

http://numericalmethods.eng.usf.edu 19



How do we solve an engineering

$ prob_l_em?




T Mathematical Procedures

-r
I

T

= Nonlinear Equations
= Differentiation
= Simultaneous Linear Equations
= Curve Fitting
- Interpolation
- Regression
= Integration
= Ordinary Differential Equations
= Other Advanced Mathematical Procedures:
- Partial Differential Equations
» Optimization

51 - Fast Fourier Transform



T Nonlinear Equations

'Ioating Ball Problem

T

Nonlinear Equation for Floating Ball Problem

Root of equation,

f[=0

£(x)

0.2 0.25

f(x)=x"-0.165x> +3.993x10™

22



T

Differentiation

'Velocity vs. time rocket problem

Velocity vs. Time

3.5
3 .
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0 . . . . .
0 2 4 6 8 10 12

Time (in seconds)

23

What is the acceleration at t=10 seconds?



&Simultaneous Linear Eqf

Find the velocity profile from

Time,t Velocity,v
S m/s
- 106.9 v(t) =at” +bt +c
8 177.2 S<st=12
12 279.2

Three simultaneous linear equations:
25a+5b+c=1068
64a+8b+c=177.2
144a +12b+c =279.2

24



Interpolation

What is the velocity of the rocket at t=10 seconds?

T

Velocity vs Time data for Rocket Problem

300

Velocity (in m/s)
o
o

Time,t Velocity,v 100 -
S m/s
50 -
5 106.8
0 : : : : . :
8 177.2 0 2 4 6 8 10 12 14
12 279 2 Time (in seconds)

25



Integration

Finding the contraction in a metal
Coefficient of Thermal Expansion vs

Temperature COI’IStI‘UCtIOﬂ pa I‘t.
7 x10°°

6 =102

7 2
a=a,+al +a,T

=6.0217x107° +6.2782x107°T-1.2218x107"'T?

T fuia
AD =D dT
f

-300 -200 -100 0 100 room
Temperature

26



Ex: magnetohydrodynmical equations

dp
ot
dpv

ot
OpE

ot
0B
ot

+ V- (vp)=0

+ V-(pvv—BB)+ Vp, = —pg

+ V- (v(pE+p,)—B(v-B))=pg-v+T —A

+ V- (vB—-—Bv)=0

1 1 B
— Y qeq4
E 2\ +8+2p

+ 2
.. = 9)oim ="
I I 7

p=I(y—1)pe

g=-—-Vb ADP=4nGp

|deal MHD + self-gravity + ideal gas + heating & cooling



Log10 Density (g/cm?)

, = 15187 —5x10'®
ime = 2.9276e+13 s

number of blocks = A017
LR |aevels = B




Ex: magnetohydrodynmical equations

with random component: Bx = 3uG + ob = 3uG

0.00 Myr

Boxsize 1200 pc



Garching, Feb 1st, 2011

S 50 l" )—8\0

1 pym

5 AU ‘ t= 83yrs.
The nature and role R
of Turbulence in
Planet Formation:

Magnetorotational
and Baroclinic
Instability.

Hubert Klahr,

Max-Planck-Institut fiir Astronomie, Heidelberg

Wlad Lyra (AMNH), Peter Bodenheimer (Santa Cruz), Anders Johansen (Lund), Natalia Raettig,
Helen Morrison, Mario Flock, Natalia Dzyurkevich, Karsten Dittrich, Til Birnstiel, Kees Dullemond,
Chris Ormel (MPIA), Neal Turner (JPL), Jeffrey S. Oishi (Berkley), Mordecai-Mark Mac Low
(AMNH), Andrew Youdin (CITA), Doug Lin (Santa Cruz)




"Birth places of Planets:”
Gas and dust disks around young stars
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Hubert Klahr / SuW-Gra fik




Application of recent results on the orbital
migration of low mass planets in planetary
population synthesis

Synthetic Populations...

C. Mordasini!, K.-M. Dittkrist!, Y. Alibert?, H. Klahr!, W. Benz?
and T. Henning!

Max Planck Institute for Astronomy, Kénigstuhl 17, D-69117 Heidelberg, Germany
email: mordasini@mpia.de

/
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Johansen, Henning & Klahr 2006



Accretion Energy in rotating systems =>
Turbulent transport of angular momentum
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Hartmann et al. 1998, 2006

al pha = 0.01 WHY DO T TAURI DISKS ACCRETE?






Pluto Code: HLLD
Upwind CT, piecewise
linear reconstruction,

Runge Kutta 2nd order
J
ff

{
{
{
f
{ Total o evolution for all runs

600 800 1000 1200 1400
[Years]

384x192x768

Global 360 stratified!
At 20 grid cells per H!
1.8 Million CPU hours

Fig. 5.— 3D contour plot of turbulent rms velocity at 750 inner orbits for model BO.



MRI plus self-gravity for the dust, including particle feed back
on the gas: collaboration with Mac Low & Oichi AMNH

Ju B (IS

_@Sun o, ST

S @Sun -

2006 Pla 256 + 8 0p’reron processor
clusfer =1

2011: Theo 1008 Cores

2017 Isaac 4000
| 2022: VERA 776

Poisson equation solved via FFT in parallel mode: up to 2563 cells



Streaming instability
for radial drift:

radial

This is what laminar radial drift actually looks like!
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Rapid planetesimal formation

in turbulent circumstellar discs
Nature, vol. 448, p. 1022-1025

A. Johansen', J. Qishi*, M_-M. Mac Low?**, H. Klahr', Th. Henning', A. Youdin®
"Max-Planck-Institut fiir Astronomie, Heidelberg
? American Museum of Natural History. New York
JCITA, University of Toronto, Canada

http://www.mpia.de/homes/johansen/research en.php
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The List.

Rank

System

Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
DOE/SC/0Oak Ridge National Laboratory

United States

Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C
2.2GHz, Tofu interconnect D, Fujitsu

RIKEN Center for Computational Science

Japan

LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
EuroHPC/CSC

Finland

Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C
2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100
Infiniband, Atos

EuroHPC/CINECA

Italy

Summit - IBM Power System AC922, IBM POWER9 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR

'Y Ll =]

Cores

8,730,112

7,630,848

2,220,288

1,463,616

2,614,592

Rmax
(PFlop/s)

1,102.00

442.01

309.10

174.70

148.60

Rpeak
(PFlop/s)

1,685.65

537.21

428.70

255.75

200.79

Power
(kW)

21,100

29,899

6,016

5,610

10,096



FRONTIER

1.1

EXAFLOPS

FRONTIER CAN DO MORE
THAN 1 QUINTILLION
CALCULATIONS PER SECOND.

8000

POUNDS

EACH CABINET WEIGHS
THE EQUIVALENT OF
2 FULL-SIZE
PICKUP TRUCKS.

crAY

FIRST TO BREAK THE
EXASCALE BARRIER AND
FASTEST COMPUTER
IN THE WORLD

SECOND

IF EACH PERSON ON EARTH
COMPLETED ONE CALCULATION
PER SECOND, IT WOULD TAKE MORE
THAN 4 YEARS TO DO WHAT AN EXASCALE
COMPUTER CAN DO IN 1 SECOND.

6,000

GALLONS

OF WATER IS MOVED THROUGH
THE SYSTEM PER MINUTE BY
FOUR 350-HORSEPOWER PUMPS.
THESE POWERFUL PUMPS COULD FILL AN
OLYMPIC-SIZED SWIMMING POOL
IN ABOUT 30 MINUTES.
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SYSTEM HOLDS 33 TIMES THE
AMOUNT OF DATA HOUSED IN
THE LIBRARY OF CONGRESS.
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ABOUT 30,000 U.S. HOMES.
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l) JULICH

Forschungszentrum

12 JUWELS Booster Module - Bull Sequana XH2000 , AMD EPYC 449,280 4412 70.98 1,764
7402 24C 2.8GHz, NVIDIA A100, Mellanox HDR

InfiniBand/ParTec ParaStation ClusterSuite, Atos
Forschungszentrum Juelich (FZJ)
Germany

29 SuperMUC-NG - ThinkSystem SD650, Xeon Platinum 8174 305,856 19.48 26.87
24C 3.1GHz, Intel Omni-Path, Lenovo
Leibniz Rechenzentrum
Germany

30 Hawk - Apollo 9000, AMD EPYC 7742 64C 2.25GHz, Mellanox 698,880 19.33 25.16 3,906
HDR Infiniband, HPE

HLRS - Hochstleistungsrechenzentrum Stuttgart
Germany
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MPCDF
E COMPUTING & DATA FACILITY

MAX PLANCK

High-performance computing
and data analytics application
support for the MPG

The MPCDF provides high-level support for the
development, optimization, analysis and
visualization of high-performance computing
(HPC) and data analytics (HPDA) applications to
Max-Planck Institutes with high-end computing
needs, e.g. in astrophysics, fusion research,
materials and bio sciences, polymer research,
and theoretical chemistry.

Raven-GPU - ThinkSystem SD650-N V2, Xeon Platinum 8360Y 96,768 8.62 16.03 377
36C 2.4GHz, NVIDIA A100, Mellanox HDR Infiniband, Lenovo

Max-Planck-Gesellschaft MPI/IPP

Germany

103

COBRA - Intel Compute Module HNS2600BP, Xeon Gold 6148 127,520 5.61 9.79 1,635
20C 2.4GHz, Intel Omni-Path, Intel

Max-Planck-Gesellschaft MPI/IPP

Germany

106

Raven - ThinkSystem SD650 V2, Xeon Platinum 8360Y 36C 114,624 0.42 8.80
2.4GHz, InfiniBand HDR 100, Lenovo

Max-Planck-Gesellschaft MPI/IPP

Germany



Project
VERA a
successor
for ISAAC

Providing the MPIA with
mid-size Super-Computing

ISAAC *2017 = (84) 83 Nodes
{3360} 3320 CPUs

VERA *20227? = 108 Nodes
7776 CPUs

Hubert Klahr April 21st, 2021




VERA (since 2022/04 i.e. ISAAC and THEO successors)

* login nodes vera[01-02] (500 GB RAM each)

e 72 execution nodes vera[001-072] (250 GB RAM each) p.vera
¢ 36 execution nodes vera[101-136] (500 GB RAM each) p.large
¢ 2 execution nodes vera[201-202] (2 TB RAM each) p.huge

3 execution nodes verag[001-003] (500 GB RAM and 4 Nvidia A100-41 p-gpu

o  ~7700 computing cores in total

o essentially a small version of Raven

o max time per job: 48hs (but 24h on p.huge and p.gpu)

o  2.0PB filesystem (for the GC, PSF, APEX separately, with quotas)

Also fco be About Utilization: 15-20 main
substituted 5.5 M Core-hours/ o users
>85-90%
every ~5 years month (monthly averaged)

Computing resources of MPIA - in house, at MPCDF, and beyond Annalisa Pillepich, 19.10.2022




MPCDF/MPG resources: High-Performance Computing for all MPls

Batch/non-interactive Computing Nodes
+ a few Interactive Nodes + GPU computing

(Super)computing resources available to MPIA people, as of 2021/04

MPG Supercomputer Raven (since 2020)
Based on Intel Xeon Cascadelake-AP processors (interim system 2020-2021): 516

compute nodes, 49,536 CPU-cores, 193 TB RAM, 3.5 PFlop/s theoretical peak (FP64),
100 Gb/s Interconnect (HDR 100, nonblocking fabric). The final system (to be deployed
in two stages, by May and July 2021) is based on Intel Xeon IcelLake-SP processors and

Nvidia A100 GPUs. ~50k cores

MPG Supercomputer Cobra (since 2018)
Based on Intel Xeon Skylake-SP processors and Nvidia GPUs (V100, RTX5000): 3424

compute nodes, 136,960 CPU-cores, 128 Tesla V100-32 GPUs, 240 Quadro RTX 5000
GPUs, 529 TB CPU RAM (DDR4), 7.9 TB GPU RAM HBM2, 11.4 PFlop/s peak (FP64) +

2.64 PFlop/s peak (FP32)
~130k cores

MPG HPC cluster Draco (2016-2021)

Based on Intel Xeon Haswell and Broadwell CPUs and Nvidia GPUs (GTX980): 30.688
CPU cores, 128 TB RAM, 1.12 PetaFlop/s peak (FP64), 212 GPUs.

~30k cores

Substituted
every ~5-6
years

Idle times:
3-6%

About
150M Core-hours /
month

About 25 MPls
as main users

MPIA share:
4-8% (monthly)

Annalisa Pillepich, Hubert Klahr, Andreas Kotowicz, et al.




Germany/EU resources

PRA PARTNERSHIP FOR ADVANCED
ok COMPUTING IN EUROPE

Hawk of HLRS

Copyigh: B Decion, HLRS

JUWELS of JSC

GCS

Gauss Centre for Supercomputing

mot
G e major

iy haswn\hapsakper mance of 73 petafiops.

SuperMUC-NG of LRZ

SuperMUC-NG, GCS@LRZ, Germany MARCONI, CINECA, Italy MareNostrum 4, BSC, Spain
ytes of disk storage. - m.

Piz Daint, ETH Zurich/CSCS, Switzerland

Overall, German researchers are extremely well positioned in terms of accessibility to HPC

(Super)computing resources available to MPIA people, as of 2021/04 Annalisa Pillepich, Hubert Klahr, Andreas Kotowicz, et al.







An Implicit SPH Formulation for
Incompressible Linearly Elastic Solids

A. Peer, C. Gissler, S. Band, M. Teschner
University of Freiburg
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How a Decimal Number is

$ Represented

25776 =2x10* +5x10' +7x10° +7x10™' + 6x10~°




T&TT Base 2

(I1x2° +0x2° +1x2" +1x2%) \_
+(0x27 +0x 27 +1x27 +1x27) T,
=11.1875

(1011.0011), =[



Convert Base 10 Integer to binary
T&ﬂ representation

Table 1 Converting a base-10 integer to binary representation.

Quotient Remainder
11/2 5 I'=a,
5/2 2 I=a,
2/2 1 v=a,
1/2 0 1=dy
Hence

(1 1)10 = (a3a2a1a0)2
= (1011),



Integer N to be

/I npu t/ ''''''' 1 converted to binary
; format

Divide N by 2 to get
quotient Q & remainder R

A4

i=i+1,N=Q

a =R

No
IsQ=0?




Fractional Decimal Number

T to Binar
! 4
Table 2. Converting a base-10 fraction to binary representation.

Number | Nugiber after | Number before
0.1875%x2 0.375 0.375 O=a_
0.375x2 0.75 0.75 O=a._,

075)(2 1.5 0.5 1 =a_3
0.5%2 1.0 0.0 l=a_,
Hence

(0.1875),, = (a_,a_,a_;a_,),
= (0.0011),




/ Input (F),, / ......... -

1=-1

A 4

A\ 4

—i-1,§

No

Multiply F by 2 to get
number before decimal, S
and after decimal, T

n=i
(P = (8. . -a,),

STOP

Fraction F to be
converted to binary
format




&7 Decimal Number to Binary
(11.1875), =( 2.2 )

Since

(11),, = (1011),

and
(0.1875),, = (0.0011),

we have
(11.1875),, = (1011.0011),



All Fractional Decimal Numbers
T Cannot be Represented Exactly

Table 3. Converting a base-10 fraction to approximate binary representation.

T

Number Number

Number after before

decimal Decimal
0.3x2 0.6 0.6 O=a_
0.6x2 1.2 0.2 l=a_,
0.2x2 0.4 0.4 0=a,
04x%x2 0.8 0.8 O=a_,
0.8x2 1.6 0.6 l=a_,

(0.3),, =(a_a_,a_ja_,a_s), =(0.01001), = 0.28125



Another Way to Look at

T&ﬂ Conversion

Convert (11.1875), to base 2
(11), =2°+3
=2°+2"+1
=2 +2'4+2°
=1x2> +0x2° +1x2" +1x2°

= (1011),

10



T
T T

11

(0.1875), =27 +0.0625

=27 427

=0x27+0x27° +1x27 +1x2™"
= (.0011),

(11.1875), =(1011.0011),
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Floating Decimal Point —
T$ Scientific Form

-r
I

256.78 is written as + 2.5678 x10*
0.003678 is written as +3.678x107°
—256.78 is written as — 2.5678 x10°



T&TT Example

The form is

sign x mantissa x 10"

or
oxmx10°
Example: For

~-2.5678x10°
o =-1
m=2.5678
e=2



Floating Point Format for Binary

T&l Numbers

y=0xmx2°

O = sign of number (O for + ve, 1 for - Ve)
m = mantissa [(1)2 <m< (10)2]

1 is not stored as it is always given to be 1.

e = Integer exponent



Example

9 bit-hypothetical word

*the first bit is used for the sign of the number,
*the second bit for the sign of the exponent,
*the next four bits for the mantissa, and

*the next three bits for the exponent

(54.75), = (110110.11), = (1.1011011), x 2°

= (1.1011), x{101),

We have the representation as

}o ol1]o|1]1]1]0]1
T maItissa ex;gnent

Sign of the  Sign of the
number exponent




-r
I

T$I' Machine Epsilon

Defined as the measure of accuracy and found
by difference between 1 and the next number
that can be represented



Example

]
T

Ten bit word

=Sign of number

=Sign of exponent

*Next four bits for exponent

=Next four bits for mantissa

0

0

0

0

0

0

0

0

0

0

Next ——> 0
number

0

0

0

0

0

0

0

0

1

e =10625-1=27"

mach

- (1)0

=(1.0001), = (1.0625),,



Relative Error and Machine
T Epsilon

-

T

The absolute relative true error in representing
a number will be less then the machine epsilon

Example (0.02832), = (1.1100), x 2

= (1.1100), x 2711

10 bit word (sign, sign of exponent, 4 for exponent, 4 for mantissa)

Lo1o11011oo
’[‘\ Y ~ '

exponent mantissa

Sign of the

number Sign of the

exponent

(1.1100), x 2711 _ 0.0274375

0.02832 -0.0274375
0.02832

=0.034472 <27* =0.0625

& =

a




IEEE-/754 Format

32 bits for single precision

0/0{0(0|0|0|0O|0|O|O|0O|0O|O|O|0O(O(O|0O|0O|0O|0|O(O|0O|0O|0O|0O|O(O(0|0O]|0

\l/\r»uw)\l—»s-hwuuws—-HWL-pwxj
Y

Sign Biased Mantissa
Exponent

Value = (— 1)F X (1 m)2 x2°



T$T Exponent for 32 Bit IEEE-754

8 bits would represent
O<e <255

Bias is 127; so subtract 127 from representation

127 <e<128
Actually
-126<e<127

ololojo|ojo|o|1]| IS-126

1(1{1|1|1]1]|1|0]| j5127

0{0{0(0|0]0|0|0| for number zero

111 J1]1]1]1]1] for infinity, NaN, etc.

10



T$ IEEE-754 Format

The largest number by magnitude

(1.1........ 1), x2'%" =3.40%x10**

The smallest number by magnitude

(1.00 ...... ())2 27126 _ 97 18%x10738

Machine epsilon =27 =1.19x10™’

11
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T&t Two sources of numerical error

1) Round off error
2) Truncation error

82



T&T Round off Error

-r
I

= Caused by representing a number

approximately

1 = (0.333333

3
J2 =1.4142...

83



Problems created by

1 round off...

= Ariane flight V88 was the failed maiden
flight of the Arianespace Ariane 5 rocket,
vehicle no. 501, on 4 June 1996. It carried
the Cluster spacecraft, a constellation of
four European Space Agency research
satellites.

= inadequate protection against integer
overflow led to an exception handled
inappropriately

' -

| BREL2A 12801

’

!

[ BERI2A 2R

’

[ io |

84


https://en.wikipedia.org/wiki/Arianespace
https://en.wikipedia.org/wiki/Ariane_5
https://en.wikipedia.org/wiki/European_Space_Agency
https://en.wikipedia.org/wiki/Integer_overflow
https://en.wikipedia.org/wiki/Integer_overflow
https://en.wikipedia.org/wiki/Exception_handling

Tﬁ Ariane V first flight

= data conversion from a 64-bit floating point humber to a 16-bit
signed integer value to overflow...

85


https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/Integer_(computer_science)#Short_integer
https://en.wikipedia.org/wiki/Signedness
https://en.wikipedia.org/wiki/Integer_(computer_science)
https://en.wikipedia.org/wiki/Arithmetic_overflow
https://www.youtube.com/watch?v=gp_D8r-2hwk

T$ Truncation error

-r
I

= Error caused by truncating or
approximating a mathematical
procedure.

86



T&ﬂ Example of Truncation Error

Taking only a few terms of a Maclaurin series to

approximate e”

2 3
X X

e =l Xt —F—F i,
21 3l

If only 3 terms are used,

2
X

Truncation Error =e" —| 1+ x+ 5:

87



Another Example of Truncation

.
T& Error

Using a finite Ax to approximate /()
oy o LD = 1)

T

Ax

Figure 1. Approximate derivative using finite Ax

88



Another Example of Truncation

.
T& Error

Using finite rectangles to approximate an
integral.

90 ~

2
y=Xx
60 - /

yd

30 A

0

0 1.5 3 4.5 6 7.5 9 10.5 12

89



& Example 1 —Maclaurin series

Calculate the value of €'~ with an absolute
relative approximate error of less than 1%.

2 3
e'? =1+1.2+1'2 +1'2 Foreeeeeeereeenn,
2! 3!
n 612 Ea Ea %
1 | - -
2 2.2 1.2 54.545
3 2.92 0.72 24.658
4 3.208 0.288 8.9776
5 3.2944 0.0864 2.6226
6 3.3151 0.020736 0.62550

6 terms are required. HOwW many are required to get
atoleast 1 significant digit correct in your answer?



T&t Example 2 —Differentiation

9

J(x+Ax) - f(x)

Find /'® for f(*)=x" using /'(x)~

Ax
and Ax =0.2
7'0) = f(3+0(-)22)—f(3)
_fBG2-f(3) _32°-3 1024-9 _124 _
02 02 02 02

The actual value is
f(x)=2x, f(3)=2x3=6

Truncation error is then, 6-6.2=-0.2

1 Can you find the truncation error with Ax =0.1



T$T Example 3 — Integration

-r
I

Use two rectangles of equal width to
approximate the area under the curve for
f(x) = x> over the interval [3,9]

y

90 ~

2 9
60 - o 2
/ fx dx
3

0

92



T$T Integration example (cont.)

-r
I

Choosing a width of 3, we have
}xzdx - (xz)\x=3 (6-3)+ (xz)\x=6(9 — 6)
3 = (3%)3+(6%)3
=27+108 =135
Actual value is given by

9 319 3 3 -
[xdx = || - > =3 | o34

3

Truncation error is the
234 -135=99

Ca9|31 you find the truncation error with 4 rectangles?



Measuring Errors
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T$T Why measure errors?

-r
I

1) To determine the accuracy of
numerical results.

2) To develop stopping criteria for
iterative algorithms.

95
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T$T True Error

= Defined as the difference between the true
value in a calculation and the approximate
value found using a numerical method etc.

True Error = True Value — Approximate Value

96
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T$T Example—True Error

The derivative, /'(x) of a function f(x) can be
approximated by the equation,

fv(x)zf(x+h2_f(x)

If f(x)= 7¢** and 7 =0.3
a) Find the approximate value of f'(2)
b) True value of f'(2)
c) True error for part (a)

97



T&TT Example (cont.)

Solution:

a) For x=2 and 7=0.3

@3- [
0.3

700523 _7,052)

B 0.3
©22.107-19.028

0.3

=10.263

98



T&ﬂ Example (cont.)

'Solution:
b) The exact value of f'(2) can be found by using

our knowledge of differential calculus.
f(x) = 7005%
f'(x)=7%0.5%xe""

— 3.580.5)6

So the true value of /'@ is
fv (2) — 3.560'5(2)
= 9.5140

True error is calculated as
E, = True Value — Approximate Value
~9.5140-10.263 = —0.722

99



T$T Relative True Error

-r
I

= Defined as the ratio between the true
error, and the true value.

True Error

Relative True Error ( &) =
True Value

100



T&l Example—Relative True Error

Following from the previous example for true error,
find the relative true error for f(x)=7¢"" at f'(2)
with #=0.3
From the previous example,
E =-0.722

Relative True Error is defined as

True Error

t= True Value

_ 0722 ~0.075888
9.5140

as a percentage,
€ = -0.075888 x 100% = —7.5888%

101



T&T Approximate Error

-r
I

= \WWhat can be done if true values are not
known or are very difficult to obtain?

= Approximate error is defined as the
difference between the present
approximation and the previous
approximation.

Approximate Error (£,) = Present Approximation — Previous Approximation

102



T&E Example—Approximate Error

For 7 (x) =7¢"* at x=2 find the following,

a) /@using #=03

b) /(®) using ~=0.15

c) approximate error for the value of /'(2) for part b)
Solution:

a) For x=2 and #=0.3

f'(.X')z f(x+h2_f(x)
f(2+0.3)-f(2)
0.3

1)~

103



T&TT Example (cont.)

Solution: (cont.)

f(23)-f(2)
0.3

700523 _7,052)

0.3

22.107 -19.028
= 03 =10.263

b) For x=2 and /#=0.15
oy f(240.15) - £(2)
Ak 0.15
_S215-/(©2)
0.15

104



T Example (cont.)

-

T

Solution: (cont.)
780.5(2.15) _ 780.5(2)
) 0.15

_20.50-19.028
0.15

=9.8800

c) So the approximate error, E, is

E = Present Approximation — Previous Approximation
= 9.8800-10.263
= —0.38300

105



T&Z Relative Approximate Error

= Defined as the ratio between the
approximate error and the present
approximation.

Approximate Error

Relative Approximate Error (€,) =
Present Approximation

106



T&l Example—Relative Approximate Error

For /(x)=7¢""" at x=2, find the relative approximate
error using values from #=0.3 and #=0.15

Solution:
From Example 3, the approximate value of /(2)=10.263
using #=0.3 and f'(2)=9.8800 using/=0.15

E_ = Present Approximation — Previous Approximation

=9.8800 -10.263
= —0.38300

107



T Example (cont.)

-

Solution: (cont.)
Approximate Error

c, =
Present Approximation
_ 2038300 _ 4 038765
9.8800

as a percentage,
€ =-0.038765x100% = —3.8765%

Absolute relative approximate errors may also need to
be calculated,

E,| =|-0.038765 | = 0.038765 or 3.8765%

108



! stopping criterion?

-r
I

& How is Absolute Relative Error used as a
=

If €,|<€ where €, is a pre-specified tolerance, then
no further iterations are necessary and the process is
stopped.

If at least m significant digits are required to be

correct in the final answer, then
= |<0.5x10°"

109



T Table of Values

-

T

For f(x)=7¢"" at x=2with varying step size, #

h f'(2) E. m
0.3 10.263 N/A 0
0.15 9.8800 0.038765% 3
0.10 9.7558 0.012731% 3
0.01 9.5378 0.024953% 3
0.001 9.5164 0.002248% 4

110
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T$ Propagation of Errors

In numerical methods, the calculations are not
made with exact numbers. How do these
inaccuracies propagate through the calculations?



I Example 1:

" Find the bounds for the propagation in adding two numbers. For example
if one is calculating X +Y where
X =1.5+0.05
Y =3.4+0.04

Solution
Maximum possible value of X = 1.55and Y = 3.44

Maximum possible value of X +Y = 1.55 + 3.44 = 4.99

Minimum possible value of X = 1.45and Y = 3.36.

Minimum possible value of X + Y = 1.45 + 3.36 = 4.81

Hence
481 < X+ Y <£4.99,



T&T}ropagation of Errors In Formulas

If 1 is a function of several variables X, X,,X;......., X, X,
then the maximum possible value of the error in 1'is

afAX

S ax
ox

ox . "

+

+ ... +

+

afAX
2

of
AX, -
2

Af =
/ X,




T&E Example 2:

The strain in an axial member of a square cross-
section is given by

F
= WE
Given
F=72+09 N
h=4+0.1 mm
E=70+x1.5 GPa

Find the maximum possible error in the measured
strain.



Solution 79

T&E Example 2:

= 382 9
(4x107)°(70x107)
= 64.286x107°
= 64.286u

A E= aEAF + a—eAh +
oF oh

0E
Ji)




Example 2:

e__ ! Je__ 2 9E__ F
oF h’E oh  KE OE  h*E>
Thus | - -
AE = hZEAF + h3EAh + oy AE‘
_ | 0.9+ 2x72
(4x107°)*(70x10°) | [(4x107°)’(70x10%)
72 0
1.5x10
* (4x107°)*(70x10”) S
= 5.3955u
Hence

E= (64286 + 5.3955u)

x 0.

0001



T Example 3:

-

Subtraction of numbers that are nearly equal can create unwanted
inaccuracies. Using the formula for error propagation, show that this is true.

Solution

Let
Z=X-Y

Then

Az] = | Ax
0x

= () Ax] +|(=1)Ay]

= Ax‘+‘Ay

+[— Ay

So the relative change is
Az| _ [Ax]+[AY]

2| |x-y]




T&E Example 3:

For example if
x=2+0.001
vy =2.003+0.001

Az

Z

~ |0.001] +]0.001
12-2.003]

= 0.6667
= 66.67%



! Taylor Series Revisited

Major: All Engineering Majors

Authors: Autar Kaw, Luke Snyder

http://numericalmethods.eng.usf.edu

Numerical Methods for STEM undergraduates

http://numericalmethods.eng.usf.edu 120


http://numericalmethods.eng.usf.edu/

T&t What is a Taylor series?

Some examples of Taylor series which you must have

seen
2 4 6
coﬂx)=1—x P
21 41 6
: x> x x
sin(x)=x——+———+---
357

2 3
X X

e =l+x+—+—+---
2! 3

121



T General Taylor Series

-r
I

The general form of the Taylor series is given by

P n)= 76 e L0 LD

provided that all derlvatlves of f(x) are continuous and
exist in the interval [x,x+h]

What does this mean in plain English?

As Archimedes would have said, “Give me the value of the function
at a single point, and the value of all (first, second, and so on) its
derivatives at that single point, and I can give you the value of the
function at any other point” (fine print excluded)

122
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T$T Example—Taylor Series

Find the value of 7(6) given that f(4)=125, 1'(4)=74,
f'(@)=30, r"(@)=6 and all other higher order derivatives

of /(x)at x=4 are zero.

Solution:

Flern)= £} /G f”(x)%+ 1Y
x=4 ' '
h=6-4=2

123



T&Z Example (cont.)

Solution: (cont.)
Since the higher order derivatives are zero,

1a+2)= 7@ S @R+ @5+ 10

2 3
£(6)=125+74(2)+ 30 2—\z+6 2—\3
27 | 317
=125+148 + 60 + 8
= 341

Note that to find f(6) exactly, we only need the value
of the function and all its derivatives at some other
point, in this case x=4

124



T&l Derivation for Maclaurin Series for ex

Derive the Maclaurin series

2 3
X X

e =l+x+—+—+---
21 3

The Maclaurin series is simply the Taylor series about
the point x=0

fle+h)=fG)+ £+ £ (XF+f”’(
fO+n)=70)+ £'O)+ f"(og! + /(0

AN AN &
Fpe s e
00l o

5

125



T&TT Derivation (cont.)

Since f(x)=e", f'(x)=e", f'(x)=¢",.., f"(x)=¢" and
fr(0)=e" =1

the Maclaurin series is then
Fh) = (") + (") + (82(;) W+ (83(;) ...

=1+h+ih2 +lh3...
2! 3!

2 3

So,
X X

f(x)=1+x+7!+§+...

126



T Error in Taylor Series

-
he Taylor polynomial of order n of a function f(x)
with (n+1) continuous derivatives in the domain
[X,x+h] is given by

T R T R L & &
where the remainder is given by

R ()= E1L e

where

x<c<x+h

that is, c is some point in the domain [x,x+h]

127



T&l Example—error in Taylor series

The Taylor series for e at point x =0 is given by

5
)CZ X3 .X4 X

e =l+x+—+—+—+—+--
20 31 4 5

It can be seen that as the number of terms used
increases, the error bound decreases and hence a
better estimate of the function can be found.

How many terms would it require to get an
approximation of el within a magnitude of
true error of less than 106

128



T&TT Example—(cont.)

Solution:
Using (z+1) terms of Taylor series gives error bound of

R (x)= (x( hy)l Fee)  x=0h=1f(x)=¢"

R,(0)= ((z ly)lf( "c)

e

(n +1)
Since

xX<c<x+h
O<c<0+1 1 <‘R O)< €
0<c<l (n+1)! (n+1)!

129
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Example—(cont.)

130

Solution: (cont.)

So if we want to find out how many terms it would
require to get an approximation of ¢ within a
magnitude of true error of less than 10,

e
(n+1)!

<10°°

(n+1)!1>10°%
(n+1)!>10°x3

n=9

So 9 terms or more are needed to get a true error
less than 107



Numerical Practical Training, UKNum
WS 2022/2023 (Block Course Feb. 27th - Mar. 10th, 2023)
Exercise 1 (Feb. 27th)Prof. Dr. Hubert Klahr
Numerical Representation of Numbers
Return by 9:15 a.m. Feb. 28th
by Mail to: huehn@uni-heidelberg.de

Free Training

e Make yourself acquainted with your computer desktop (Unix environment). Use the
Unix commands 1s, df, ps, test the use of an editor of your choice to write small
programs or texts (e.g. vi, emacs, joe, nano, )

e Train to write small pieces of program code in a programming language of your
choice (support can only be offered for Python, Fortran or C, C++). Follow the
steps from code writing, compilation, executable file, program execution.

e Check how you can produce plots, e.g. using the gnuplot program or any other
software of your choice.

131



Assignment for the Afternoon / Homework

e Exercise 1, 6 points: Round-off Errors
Convert the decimal number (—0.004831);¢ into a binary format used for the hypo-
thetical ten-bit word presented in the lecture. Compute the true error and the relati-
ve true error (absolute values) made by the ten-bit representation of (—0.004831)1.

e Exercise 2, 6 points: Truncation Errors
Calculate the value of e!-® using the Taylor series of e®. Increase the number of terms
used in the Taylor series until the relative approximate error (absolute value) is less
than 0.1 %. Document the results in a table, the code in a printout.

e Exercise 3, 8 points: Machine ¢

Solve the quadratic equation z? + z + ¢ = 0 directly using the quadrature z; =
(=14 +/1—4c)/2, for 0 < ¢ < 1/4. Prepare a computer program, which outputs
x1 as a function of c. What is the smallest ¢ which produces a correct solution for
x1 # 07 Hint ¢;,,;; = 0.25 then ¢,epy ¢ Co1g X 0.5. Does x0.9 make a difference? Relate
this to the machine € for single precision. How can you obtain a more reliable result
even numerically for small ¢ by rewriting the quadrature expression? Please print
this as well.

_®=Questions?



