Numerical Methods

Numerisches Praktikum (UKNum) 2023/24

Hubert Klahr Max-Planck-Institut für Astronomie klahr@mpia.de

Supported by Dhruv Muley, Michael Cecil and Dominik Ostertag

Lösungen: @mpia.de

Numerical Methods

Numerisches Praktikum (UKNum) 2023/24

Three parts today:
2.
3.

General Information about the lecture Introduction to Numerical Methods Floating point representation

Numerisches Praktikum

Tentative schedule

- Feb. 19th: Lecture 1: Introduction, number representation in a computer
- Feb. 20th: Lecture 2: Interpolation, Extrapolation, Splines
- Feb. 21st: Lecture 3: Solving ordinary differential equations
- Feb. 22nd: Lecture 4: Numerical integration
- Feb. 23rd: Lecture 5: Finding roots, iterative Newton-Raphson method
- Feb. 26th.: Lecture 6: Sort algorithms
- Feb. 27th: Lecture 7: Systems of linear equations
- Feb. 28th: Lecture 8: Statistical methods, data modelling
- Feb. 29th: Lecture 9: Random numbers, Monte Carlo methods
- Mar. 1st: Lecture 10: Summary and concluding remarks

Numerisches Praktikum

Daily schedule:

- 9:15-9:45: Presentation of Exercises from Previous Lesson (Students)
- 9:45-11:15: Introduction to new Lesson (Lecturers)
- 11:15-11:30: Break
- 11:30-13:00: Tutorial (Students work with assistance of Lecturers and Tutor)
- Afternoon: Independent Working Time for Students

Solution per Email to the corresponding tutor:
 @mpia.de

You can work on the exercises during the tutorial time in presence of lecturers. In the afternoon you can continue and complete the assigned exercise work.
You can reach us via Email. The preferred channel for questions would be SLACK.

Please write down the results, document the important bits of the code in proper form (tables, lists, etc). Do not print out the
entire code. The results can be handed in until the following morning 9:15 a.m. by e-mail to
@mpia.de

Criterion for Certificate 60% of maximum number of points, and presentation of results at least once.

Maximally 2 students per group!
Contact:
Hubert Klahr: klahr@mpia.de

History

John von Neumann (1903-1957)

Born in Budapest, 1930 Univ. Princeton
Suggesting an electronic calculation device (1946)

History

- Konrad Zuse (1910-1995) Berlin

Invented the free programmable computer

Z1 in his parents flat: 1936
UKNum

History

0.03 Mfloos

http://www.rtd-net.de/Zuse.html
Zuse Z4: 1944 Berlin, 1950 Zürich 1954 Frankreich

1959 Deutsches Museum München

Clock Speed: 0.03 MHz

History

- The principles of electronic computing devices:

Build by Zuse following the theory by von Neumann
Free programming
Binary representation
Memory
Floating Point Arithmetics

- Seymour Cray (1925-1996)

History

CRAY1: Vektorregister (1976) 160 Mflop, 80 MHz, 8 MByte RAM CRAY2: (1984)
1Gflop, 120MHz, 2GByte RAM iPhone5: 500Mflop... ;) ¡PThoneXS: Gflop!

iPhone 132021
$\$ 999$

A15 Bionic chip

A15 Bionic chip

* megaword \rightarrow a 'word' varies but the Cray-2 used 64-bit words with 8 bit parity checks

Cray 2 (1985) iPhone)(S (2018)

Storage (max) ~32 GB* 512 GB

* Max storage required 32 disk drives of 1.2 GB each

Cray 2 (1985) iPhone XS(2018)

```
Peak Power Consumption 195,000 Watts < 1 Watt*
*It's very hard to compare peak power given iPhone has so many other
functions, so let's just go with < 1 W
```

$$
\text { Cray } 2 \text { (1985) } \quad \text { iPhone XS(2018) }
$$

Peak Performance 1.9 GFLOP * ~1 GFLOP*
*GFLOP $=$ Billions of Floating Point operations per second

Cray 2 (1985)

iPhone XS(2018)

Relationship to liquid Liquid cooled*
Waterproof-ish**
*Cooled with 3M Fluorinert - an electrically inert liquid ** iPhone XS is rated IP68: designed to be waterproof when submerged no deeper than 2 meters (roughly 6 feet) in water for 30 minutes or less.

	Cray 2 (1985)	iPhone $\mathrm{XS}(2018)$
Weight	5,500 lb ($2,494 \mathrm{Kg}$)	$128 \mathrm{~g}(0.31 \mathrm{~b}, 0.14 \mathrm{Kg})$
Volume	1.8 cubic meters	~ 0.007 cubic meters
Height	45 in (1.2 m)	5.8 in (0.16
Width	54 in (1.4 m)*	3.05 in (0.075
* the cray-2 was cylindrical in shape, so the 'width' is really its diameter		
ALSO, the iPhone also has 2 cameras, GPS, Celular, Wifi, Bluetooth, A DISPLAY with over 2.7 MM pixels, a battery that lasts a day. A compass. A 3-axis Gyrascope. Speakers. An Accelerometer. Ambient Light and proximity sensors. A Barometer. A Microphone. It can record $4 K$ video. It can take 8 MP photos while recording $4 k$ video. NFC. iBeacon.		

Geschichte

-Wen nutizi es?

Hitachi SR8000 LRZ München
6 Tflops, TByte Speicher

- Auto, Luft- und Raumfahrt
- Meteorologie, Klimaforschung, Wetter

NIC Jülich

- Theoretische Elementarteilchenphysik
-Astrophysik

Computer

2008: JUGENE: 294,912 cores; Linpack: 825.5 Teraflops 2013: JUQUEEN: 458,752 cores; Linpack: 5.0 Petaflops 2018: JUWELS: 122,448 cores; 10.4 (CPU) + 1.6 (GPU) Petaflop

Superrechner JUGENE/ JUQUEEN/JUW
IBM Blue Gene Am FZ Jülich

Eröffnet mit J. Rüttgers Junivero

Max Planck-Society: Hydra:

3424 compute nodes, 136,960 CPU-cores, 128 Tesla V100-32 GPUs, 240 Quadro RTX 5000 GPUs, 529 TB RAM DDR4, 7.9 TB HBM2,
11.4 PFlop/s peak DP, 2.64 PFlop/s peak SP

Max Planck-Society: Raven:

1592 CPU compute nodes, 114624 CPU cores, 421 TB DDR RAM, 8.8 PFlop/s theoretical peak performance (FP64), plus 192 GPU-accelerated compute nodes 768 GPUs, 30 TB HBM2,
14.6 PFlop/s theoretical peak performance (FP64).

Computer

2007...

GeForce 8800 GTX, 128 Stream Proc., 768 MB GeForce 8800 GTS, 128 Stream Proc., 512 MB GeForce 8800 GT, 112 Stream Proc., 512 MB
2008...

GeForce 9800 GTX, 128 Stream Proc., 512 MB GeForce 9800 GX2, 256 Stream Proc., 1 GB GeForce 9800 GT, 64 Stream Proc., 512 MB
http://www.nvidia.com

Graphic Cards

Introduction to Scientific Computing

Major: All Engineering Majors

Authors: Autar Kaw, Luke Snyder

http://numericalmethods.eng.usf.edu

Numerical Methods for STEM undergraduates

Mathematical Procedures

- Nonlinear Equations
- Differentiation
- Simultaneous Linear Equations
- Curve Fitting
- Interpolation
- Regression
- Integration
- Ordinary Differential Equations
- Other Advanced Mathematical Procedures:
- Partial Differential Equations
- Optimization
- Fast Fourier Transform

Nonlinear Equations

Floating Ball Problem

Tv- T

Differentiation

Velocity vs. time rocket problem

$$
a=\frac{d v}{d t}
$$

What is the acceleration at $t=10$ seconds?

T Simultaneous Linear Equations

Find the velocity profile from

Time,t	Velocity, \mathbf{v}
s	m / s
5	106.8
8	177.2
12	279.2

$$
\begin{array}{r}
v(t)=a t^{2}+b t+c \\
5 \leq t \leq 12
\end{array}
$$

Three simultaneous linear equations:

$$
\begin{aligned}
& 25 a+5 b+c=106.8 \\
& 64 a+8 b+c=177.2 \\
& 144 a+12 b+c=279.2
\end{aligned}
$$

What is the velocity of the rocket at $\mathrm{t}=10$ seconds?

25

Integration
 TV T T

Coefficient of Thermal Expansion vs
Temperature

Finding the contraction in a metal construction part.

$$
\begin{aligned}
& \text { á }=a_{0}+a_{1} T+a_{2} T^{2} \\
& =6.0217 \times 10^{-6}+6.2782 \times 10^{-9} \mathrm{~T}-1.2218 \times 10^{-11} \mathrm{~T}^{2} \\
& \Delta D=D \int_{T_{\text {room }}}^{T_{\text {fluid }}} \alpha d T
\end{aligned}
$$

Ex: magnetohydrodynmical equations

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\mathbf{v} \rho)=0 \\
& \frac{\partial \rho \mathbf{v}}{\partial t}+\nabla \cdot(\rho \mathbf{v v}-\mathbf{B B})+\nabla p_{*}=-\rho \mathbf{g} \\
& \frac{\partial \rho E}{\partial t}+\nabla \cdot\left(\mathbf{v}\left(\rho E+p_{*}\right)-\mathbf{B}(\mathbf{v} \cdot \mathbf{B})\right)=p \mathbf{g} \cdot \mathbf{v}+\Gamma-\mathrm{A} \\
& \frac{\partial \mathbf{B}}{\partial t}+\nabla \cdot(\mathbf{v B}-\mathbf{B} \mathbf{v})=0 \\
& E=\frac{1}{2} t^{2}+\varepsilon+\frac{1}{2} \frac{B^{2}}{\rho} \\
& \rho_{*}=p+\frac{B^{2}}{2} \\
& p=(\gamma-1) \rho \epsilon \\
& \mathbf{g}=-\nabla \Phi \quad \Delta \Phi=4 \pi G \rho
\end{aligned}
$$

Ideal MHD + self-gravity + ideal gas + heating \& cooling

Ex: magnetohydrodynmical equations

with random component: $\mathrm{B}_{\mathrm{x}}=3 \mu \mathrm{G}+\delta \mathrm{b}=3 \mu \mathrm{G}$

0.00 My

Garching, Feb 1st, 2011

The nature and role of Turbulence in Planet Formation:

Magnetorotational and Baroclinic Instability.

Hubert Klahr,

Max-Planck-Institut für Astronomie, Heidelberg
Wlad Lyra (AMNH), Peter Bodenheimer (Santa Cruz), Anders Johansen (Lund), Natalia Raettig, Helen Morrison, Mario Flock, Natalia Dzyurkevich, Karsten Dittrich, Til Birnstiel, Kees Dullemond, Chris Ormel (MPIA), Neal Turner (JPL), Jeffrey S. Oishi (Berkley), Mordecai-Mark Mac Low (AMNH), Andrew Youdin (CITA), Doug Lin (Santa Cruz)
"Birth places of Planets:"

Gas and dust disks around young stars

(a)

miracle
 miracle occurs
 000

... a

The planetary construction plant.

Synthetic Populations...

Application of recent results on the orbital migration of low mass planets in planetary population synthesis
C. Mordasini ${ }^{1}$, K.-M. Dittkrist ${ }^{1}$, Y. Alibert ${ }^{2}$, H. Klahe ${ }^{\text {, }}$, W. Benke ${ }^{\text {² }}$ and 'I'. Henning ${ }^{1}$
 cmal: merdasinifapie, de

...to explore the importance of metallicity, stellar

...and to test the

 individual modeling steps of planet formation by comp. To observations.

10 cm sized boulders:

$$
t=\quad 0.1
$$

horizontal
Johansen, Henning \& Klahr 2006

Accretion Energy in rotating systems => Turbulent transport of angular momentum

Hartmann et al. 1998, 2006
alpha $=0.01$

\square

Pluto Code: HLLD Upwind CT, piecewise linear reconstruction, Runge Kutta 2nd order

$384 \times 192 \times 768$

Fig. 5.- 3D contou plot of turbulent ams velocity at 750 inner orbits for model BO.

MRI plus self-gravity for the dust, including particle feed back on the gas: collaboration with Mac Low \& Oichi AMNH

Poisson equation solved via FFT in parallel mode: up to 256^{3} cells

Streaming instability for radial drift:

```
ve
r
\dagger
i
Ca
I
```

radial

This is what laminar radial drift actually looks like!

Johansen, Oichi, MacLow, Klahr, Henning \& Youdin, 2007, nature

Rapid planetesimal formation in turbulent circumstellar discs Nature, vol. 44B, j. 1022-1025

${ }^{1}$ Max-Flaick-Institut fur Assronomie. Heidelberg
${ }^{2}$ American Museum oi Na:ura. History, New York
${ }^{3}$ CITA, Lniversity): Torome, Calada

Binary Representation

Major: All Engineering Majors

Authors: Autar Kaw, Matthew Emmons

http://numericalmethods.eng.usf.edu

Numerical Methods for STEM undergraduates

How a Decimal Number is Represented

$257.76=2 \times 10^{2}+5 \times 10^{1}+7 \times 10^{0}+7 \times 10^{-1}+6 \times 10^{-2}$

T T
 TV- T
 Base 2

$(1011.0011)_{2}=\binom{\left(1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}\right)}{+\left(0 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}+1 \times 2^{-4}\right)} \frac{)}{\dot{\zeta}_{10}}$
$=11.1875$

Convert Base 10 Integer to binary representation

Table 1 Converting a base-10 integer to binary representation.

	Quotient	Remainder
$11 / 2$	5	$1=a_{0}$
$5 / 2$	2	$1=a_{1}$
$2 / 2$	1	$0=a_{2}$
$1 / 2$	0	$1=a_{3}$

Hence

$$
\begin{aligned}
(11)_{10} & =\left(a_{3} a_{2} a_{1} a_{0}\right)_{2} \\
& =(1011)_{2}
\end{aligned}
$$

Fractional Decimal Number to Binary

Table 2. Converting a base-10 fraction to binary representation.

	Number	Number after decimal	Number before decimal
0.1875×2	0.375	0.375	$0=a_{-1}$
0.375×2	0.75	0.75	$0=a_{-2}$
0.75×2	1.5	0.5	$1=a_{-3}$
0.5×2	1.0	0.0	$1=a_{-4}$

Hence

$$
\begin{aligned}
(0.1875)_{10} & =\left(a_{-1} a_{-2} a_{-3} a_{-4}\right)_{2} \\
& =(0.0011)_{2}
\end{aligned}
$$

Since

$$
(11)_{10}=(1011)_{2}
$$

and

$$
(0.1875)_{10}=(0.0011)_{2}
$$

we have

$$
(11.1875)_{10}=(1011.0011)_{2}
$$

All Fractional Decimal Numbers It Cannot be Represented Exactly

TV T

Table 3. Converting a base-10 fraction to approximate binary representation.

	Number	Number after decimal	Number before Decimal
0.3×2	0.6	0.6	$0=a_{-1}$
0.6×2	1.2	0.2	$1=a_{-2}$
0.2×2	0.4	0.4	$0=a_{-3}$
0.4×2	0.8	0.8	$0=a_{-4}$
0.8×2	1.6	0.6	$1=a_{-5}$

$(0.3)_{10} \approx\left(a_{-1} a_{-2} a_{-3} a_{-4} a_{-5}\right)_{2}=(0.01001)_{2}=0.28125$

Another Way to Look at Conversion

Convert $(11.1875)_{10}$ to base 2

$$
\begin{aligned}
(11)_{10} & =2^{3}+3 \\
& =2^{3}+2^{1}+1 \\
& =2^{3}+2^{1}+2^{0} \\
& =1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
& =(1011)_{2}
\end{aligned}
$$

TV T

$$
\begin{aligned}
(0.1875)_{10} & =2^{-3}+0.0625 \\
& =2^{-3}+2^{-4} \\
& =0 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}+1 \times 2^{-4} \\
& =(.0011)_{2} \\
(11.1875 &)_{10}=(1011.0011)_{2}
\end{aligned}
$$

Floating Point Representation

Major: All Engineering Majors

Authors: Autar Kaw, Matthew Emmons

http://numericalmethods.eng.usf.edu
 Numerical Methods for STEM undergraduates

Floating Decimal Point Scientific Form
256.78 is written as $+2.5678 \times 10^{2}$
0.003678 is written as $+3.678 \times 10^{-3}$
-256.78 is written as -2.5678×10^{2}

Example

The form is $\operatorname{sign} \times$ mantissa $\times 10^{\text {exponent }}$
or

$$
\sigma \times m \times 10^{e}
$$

Example: For

$$
\begin{aligned}
&-2.5678 \times 10^{2} \\
& \sigma=-1 \\
& m=2.5678 \\
& e=2
\end{aligned}
$$

Floating Point Format for Binary Numbers

$y=\sigma \times m \times 2^{e}$
$\sigma=\operatorname{sign}$ of number (0 for + ve, 1 for -ve)
$m=\operatorname{mantissa}\left[(1)_{2}<m<(10)_{2}\right]$
1 is not stored as it is always given to be 1 .
$e=$ integer exponent

Example

9 bit-hypothetical word
-the first bit is used for the sign of the number, -the second bit for the sign of the exponent, -the next four bits for the mantissa, and "the next three bits for the exponent

$$
\begin{aligned}
(54.75)_{10} & =(110110.11)_{2}=(1.1011011)_{2} \times 2^{5} \\
& \cong(1.1011)_{2} \times(101)_{2}
\end{aligned}
$$

We have the representation as

TT
 Machine Epsilon

Defined as the measure of accuracy and found by difference between 1 and the next number that can be represented

Example

Ten bit word

-Sign of number
-Sign of exponent
-Next four bits for exponent
-Next four bits for mantissa

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}=(1)_{10} \\
& \xrightarrow[\substack{\text { Next } \\
\text { number }}]{\longrightarrow} \begin{array}{|l|l|l|l|l|l|l|l|l|l}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}=(1.0001)_{2}=(1.0625)_{10} \\
& \in_{\text {mach }}=1.0625-1=2^{-4}
\end{aligned}
$$

Relative Error and Machine Epsilon

The absolute relative true error in representing a number will be less then the machine epsilon
Example

$$
\begin{aligned}
(0.02832)_{10} & \cong(1.1100)_{2} \times 2^{-6} \\
& =(1.1100)_{2} \times 2^{-(0110)_{2}}
\end{aligned}
$$

10 bit word (sign, sign of exponent, 4 for exponent, 4 for mantissa)

IEEE-754 Format

TV-T
32 bits for single precision

Sign Biased
Mantissa
Exponent
Value $=(-1)^{s} \times(1 . m)_{2} \times 2^{e}$

Exponent for 32 Bit IEEE-754

8 bits would represent

$$
0 \leq e^{\prime} \leq 255
$$

Bias is 127; so subtract 127 from representation

$$
-127 \leq e \leq 128
$$

Actually
$-126 \leq e \leq 127$

IEEE-754 Format

The largest number by magnitude

$$
(1.1 \ldots \ldots . . .1)_{2} \times 2^{127}=3.40 \times 10^{+38}
$$

The smallest number by magnitude

$$
(1.00 \ldots \ldots 0)_{2} \times 2^{-126}=2.18 \times 10^{-38}
$$

Machine epsilon $=2^{-23}=1.19 \times 10^{-7}$

Sources of Error

Major: All Engineering Majors
 Authors: Autar Kaw, Luke Snyder

http://numericalmethods.eng.usf.edu
Numerical Methods for STEM undergraduates

T Two sources of numerical error
 1) Round off error
 2) Truncation error

Round off Error

- Caused by representing a number approximately

$$
\begin{gathered}
\frac{1}{3} \cong 0.333333 \\
\sqrt{2} \cong 1.4142 \ldots
\end{gathered}
$$

Problems created by round off...

- Ariane flight V88 was the failed maiden flight of the Arianespace Ariane 5 rocket, vehicle no. 501, on 4 June 1996. It carried the Cluster spacecraft, a constellation of four European Space Agency research satellites.
- inadequate protection against integer overflow led to an exception handled inappropriately

T T
 Tv- T

Ariane V first flight

- data conversion from a 64-bit floating point number to a 16-bit signed integer value to overflow...

Problems created by round off...

```
L_M_BV_32 :- TDB.T_ENTIER_32S ((1.0/C_M_LSB_BV)
```



```
elsi\overline{f}}\mp@subsup{\overline{L}}{~}{M}B\mp@subsup{V}{_}{\prime}3\mp@subsup{2}{}{-}<-32\overline{7}68 the
            P_M_DEFIV\}(%_ALG.E_BV) :=.1648000t
elve
# \'M_DERIVE (T_ALG.E_BV) := OC_ 16S_BN_16NS (TDB.T_ENTIER_16S(L_M
end If_DERIVE (T_XLG.E_BV) := UC_16S_BN_16NS (TDB.T_ENTIER_16S(L_M

501 P_M_DERIVE (T_ALG.E_BH) :- UC_16S_EN_16NS (TDB.T_BNTIER_16S G_M_INFO_DERIVE(T_ALG.E_BH)))

\section*{Why visibility matters-the Ariane 5 crash}
- Velocity was represented as a 64-bit float
- A conversion into a 16bit signed integer caused an overflow
- The current velocity of Ariane 5 was too high to be represented as a 16-bit integer
- Error handling was suppressed for performance reasons
*Source: http://moscovainria. fr/~levy/talks/10enslongo/ enslongo.pdf
-- Vertical velocity bias as measured by sensor
L_M_BV_32:=
TBD.T_ENTIER_32S ((1.0/C_M_LSB_BV) *
G_M_INFO_DERIVE(T_ALG.E_BV));
-- Check, if measured vertical velocity bias ban be
-- converted to a 16 bit int. If so, then convert
if L_M_BV_32 > 32767 then
P_M_DERIVE(T_ALG.E_BV) := 16\#7FFF\#;
elsif L_M_BV_32 <-32768 then
P_M_DERIVE(T_ALG.E_BV) := \(16 \# 8000 \#\);
else
P_M_DERIVE(T_ALG.E_BV) := UC_16S_EN_16NS(TDB.T_ENTIER_16S(L_M_BV_32));
end if;
-- Horizontal velocity bias as measured by sensor
-- is converted to a 16 bit int without checking
P_M_DERIVE(T_ALG.E_BH) :=
UC_16S_EN_16NS (TDB.T_ENTIER_16S ((1.0/C_M_LSB_BH) *
G_M_INFO_DERIVE(T_ALG.E_BH)I);

\section*{Truncation error}
- Error caused by truncating or approximating a mathematical procedure.

\section*{TT Example of Truncation Error}

Taking only a few terms of a Maclaurin series to approximate \(e^{x}\)
\[
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots
\]

If only 3 terms are used,
\[
\text { Truncation Error }=e^{x}-\left(1+x+\frac{x^{2}}{2!} \frac{)}{\dot{\dot{\prime}}}\right.
\]

\section*{Another Example of Truncation Error}

Using a finite \(\Delta x\) to approximate \(f^{\prime}(x)\)
\[
f^{\prime}(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}
\]


Figure 1. Approximate derivative using finite \(\Delta \mathrm{x}\)

\section*{Another Example of Truncation Error}

Using finite rectangles to approximate an integral.


\section*{\(T_{T}^{T}\) Example 1 -Maclaurin series}

Calculate the value of \(e^{1.2}\) with an absolute relative approximate error of less than \(1 \%\).
\[
e^{1.2}=1+1.2+\frac{1.2^{2}}{2!}+\frac{1.2^{3}}{3!}+\ldots \ldots \ldots . . . . . . . . .
\]
\begin{tabular}{|l|l|l|l|}
\hline \(\boldsymbol{n}\) & \(e^{\mathbf{1 . 2}}\) & \(E_{a}\) & \(\in_{a} \mid \mathbf{0} / \mathbf{0}\) \\
\hline 1 & 1 & - & - \\
\hline 2 & 2.2 & 1.2 & 54.545 \\
\hline 3 & 2.92 & 0.72 & 24.658 \\
\hline 4 & 3.208 & 0.288 & 8.9776 \\
\hline 5 & 3.2944 & 0.0864 & 2.6226 \\
\hline 6 & 3.3151 & 0.020736 & 0.62550 \\
\hline
\end{tabular}

6 terms are required. How many are required to get at,_least 1 significant digit correct in your answer?

\section*{\(T_{T}^{T}\) Example 2 -Differentiation}

Find \(f^{\prime}(3)\) for \(f(x)=x^{2}\) using \(f^{\prime}(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}\) and \(\Delta x=0.2\)
\[
\begin{aligned}
f^{\prime}(3) & =\frac{f(3+0.2)-f(3)}{0.2} \\
& =\frac{f(3.2)-f(3)}{0.2}=\frac{3.2^{2}-3^{2}}{0.2}=\frac{10.24-9}{0.2}=\frac{1.24}{0.2}=6.2
\end{aligned}
\]

The actual value is
\[
f^{\prime}(x)=2 x, \quad f^{\prime}(3)=2 \times 3=6
\]

Truncation error is then, \(6-6.2=-0.2\)
Can you find the truncation error with \(\Delta x=0.1\) tep://

\section*{Example 3 - Integration}

Use two rectangles of equal width to approximate the area under the curve for \(f(x)=x^{2}\) over the interval [3,9]


\section*{Integration example (cont.)}

Choosing a width of 3 , we have
\[
\begin{aligned}
\int_{3}^{9} x^{2} d x & =\left.\left(x^{2}\right)\right|_{x=3}(6-3)+\left.\left(x^{2}\right)\right|_{x=6}(9-6) \\
& =\left(3^{2}\right) 3+\left(6^{2}\right) 3 \\
& =27+108=135
\end{aligned}
\]

Actual value is given by
\[
\int_{3}^{9} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{3}^{9}=\left[\frac{9^{3}-3^{3}}{3}\right]=234
\]

Truncation error is then
\[
234-135=99
\]

Can you find the truncation error with 4 rectangles?

\section*{Measuring Errors}

\section*{Major: All Engineering Majors}

\section*{Authors: Autar Kaw, Luke Snyder}
http://numericalmethods.eng.usf.edu
Numerical Methods for STEM undergraduates

\section*{Why measure errors?}
1) To determine the accuracy of numerical results.
2) To develop stopping criteria for iterative algorithms.

\section*{True Error}
- Defined as the difference between the true value in a calculation and the approximate value found using a numerical method etc.

True Error = True Value - Approximate Value

\section*{Example-True Error}

The derivative, \(f^{\prime}(x)\) of a function \(f(x)\) can be approximated by the equation,
\[
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}
\]

If \(f(x)=7 e^{0.5 x}\) and \(h=0.3\)
a) Find the approximate value of \(f^{\prime}(2)\)
b) True value of \(f^{\prime}(2)\)
c) True error for part (a)

\section*{Example (cont.)}

\section*{Solution:}
a) For \(x=2\) and \(h=0.3\)
\[
\begin{aligned}
f^{\prime}(2) & \approx \frac{f(2+0.3)-f(2)}{0.3} \\
& =\frac{f(2.3)-f(2)}{0.3} \\
& =\frac{7 e^{0.5(2.3)}-7 e^{0.5(2)}}{0.3} \\
& =\frac{22.107-19.028}{0.3}=10.263
\end{aligned}
\]


\section*{Example (cont.)}
b) The exact value of \(f^{\prime}(2)\) can be found by using our knowledge of differential calculus.
\[
\begin{aligned}
f(x) & =7 e^{0.5 x} \\
f^{\prime}(x) & =7 \times 0.5 \times e^{0.5 x} \\
& =3.5 e^{0.5 x}
\end{aligned}
\]

So the true value of \(f^{\prime}(2)\) is
\[
\begin{aligned}
f^{\prime}(2) & =3.5 e^{0.5(2)} \\
& =9.5140
\end{aligned}
\]

True error is calculated as
\[
\begin{aligned}
E_{t} & =\text { True Value }- \text { Approximate Value } \\
& =9.5140-10.263=-0.722
\end{aligned}
\]

\section*{Relative True Error}
- Defined as the ratio between the true error, and the true value.

\section*{Example-Relative True Error}

Following from the previous example for true error, find the relative true error for \(f(x)=7 e^{0.5 x}\) at \(f^{\prime}(2)\)
with \(h=0.3\)
From the previous example,
\[
E_{t}=-0.722
\]

Relative True Error is defined as
\[
\begin{aligned}
\in_{t} & =\frac{\text { True Error }}{\text { True Value }} \\
& =\frac{-0.722}{9.5140}=-0.075888
\end{aligned}
\]
as a percentage,
\[
\in_{t}=-0.075888 \times 100 \%=-7.5888 \%
\]

- What can be done if true values are not known or are very difficult to obtain?
- Approximate error is defined as the difference between the present approximation and the previous approximation.
Approximate Error \(\left(E_{a}\right)=\) Present Approximation - Previous Approximation

\section*{\(T_{T}\) Example-Approximate Error}

For \(f(x)=7 e^{0.5 x}\) at \(x=2\) find the following,
a) \(f^{\prime}(2)\) using \(h=0.3\)
b) \(f^{\prime}(2)\) using \(h=0.15\)
c) approximate error for the value of \(f^{\prime}(2)\) for part b)

Solution:
a) For \(x=2\) and \(h=0.3\)
\[
\begin{aligned}
& f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h} \\
& f^{\prime}(2) \approx \frac{f(2+0.3)-f(2)}{0.3}
\end{aligned}
\]

\section*{Example (cont.)}

Solution: (cont.)
\[
\begin{aligned}
& =\frac{f(2.3)-f(2)}{0.3} \\
& =\frac{7 e^{0.5(2.3)}-7 e^{0.5(2)}}{0.3} \\
& =\frac{22.107-19.028}{0.3}=10.263
\end{aligned}
\]
b) For \(x=2\) and \(h=0.15\)
\[
\begin{aligned}
f^{\prime}(2) & \approx \frac{f(2+0.15)-f(2)}{0.15} \\
& =\frac{f(2.15)-f(2)}{0.15}
\end{aligned}
\]

\section*{Example (cont.)}

Solution: (cont.)
\[
\begin{aligned}
& =\frac{7 e^{0.5(2.15)}-7 e^{0.5(2)}}{0.15} \\
& =\frac{20.50-19.028}{0.15}=9.8800
\end{aligned}
\]
c) So the approximate error, \(E_{a}\) is
\[
\begin{aligned}
E_{a} & =\text { Present Approximation - Previous Approximation } \\
& =9.8800-10.263 \\
& =-0.38300
\end{aligned}
\]

\section*{Relative Approximate Error}
- Defined as the ratio between the approximate error and the present approximation.
Relative Approximate Error \(\left(\epsilon_{a}\right)=\frac{\text { Approximate Error }}{\text { Present Approximation }}\)

\section*{T Example—Relative Approximate Error}

For \(f(x)=7 e^{0.5 x}\) at \(x=2\), find the relative approximate error using values from \(h=0.3\) and \(h=0.15\)

\section*{Solution:}

From Example 3, the approximate value of \(f^{\prime}(2)=10.263\)
using \(h=0.3\) and \(f^{\prime}(2)=9.8800\) using \(h=0.15\)
\[
\begin{aligned}
E_{a} & =\text { Present Approximation - Previous Approximation } \\
& =9.8800-10.263 \\
& =-0.38300
\end{aligned}
\]

\section*{Example (cont.)}

Solution: (cont.)
\[
\begin{aligned}
\in_{a} & =\frac{\text { Approximate Error }}{\text { Present Approximation }} \\
& =\frac{-0.38300}{9.8800}=-0.038765
\end{aligned}
\]
as a percentage,
\[
\in_{a}=-0.038765 \times 100 \%=-3.8765 \%
\]

Absolute relative approximate errors may also need to be calculated,
\[
\left|\in_{a}\right|=|-0.038765|=0.038765 \text { or } 3.8765 \%
\]

\section*{How is Absolute Relative Error used as a stopping criterion?}

If \(\epsilon_{a} \mid \leq \in_{s}\) where \(\epsilon_{s}\) is a pre-specified tolerance, then no further iterations are necessary and the process is stopped.

If at least \(m\) significant digits are required to be correct in the final answer, then
\[
\mathcal{K}_{a} \leq 0.5 \times 10^{2-m}
\]

\section*{Table of Values}

For \(f(x)=7 e^{0.5 x}\) at \(x=2\) with varying step size, \(h\)
\begin{tabular}{|c|c|c|c|}
\hline\(h\) & \(f^{\prime}(2)\) & \(\epsilon_{a} \mid\) & \(m\) \\
\hline 0.3 & 10.263 & \(\mathrm{~N} / \mathrm{A}\) & 0 \\
\hline 0.15 & 9.8800 & \(0.038765 \%\) & 3 \\
\hline 0.10 & 9.7558 & \(0.012731 \%\) & 3 \\
\hline 0.01 & 9.5378 & \(0.024953 \%\) & 3 \\
\hline 0.001 & 9.5164 & \(0.002248 \%\) & 4 \\
\hline
\end{tabular}

\section*{Propagation of Errors}

Major: All Engineering Majors

Authors: Autar Kaw, Matthew Emmons

\section*{http://numericalmethods.eng.usf.edu \\ Numerical Methods for STEM undergraduates}

\section*{Propagation of Errors}

In numerical methods, the calculations are not made with exact numbers. How do these inaccuracies propagate through the calculations?

\section*{Example 1:}

Find the bounds for the propagation in adding two numbers. For example if one is calculating \(X+Y\) where
\[
\begin{aligned}
& X=1.5 \pm 0.05 \\
& Y=3.4 \pm 0.04
\end{aligned}
\]

Solution
Maximum possible value of \(X=1.55\) and \(Y=3.44\)

Maximum possible value of \(X+Y=1.55+3.44=4.99\)

Minimum possible value of \(X=1.45\) and \(Y=3.36\).

Minimum possible value of \(X+Y=1.45+3.36=4.81\)
Hence
\[
4.81 \leq X+Y \leq 4.99
\]

\section*{\(T_{T}^{T}\) Propagation of Errors In Formulas}

If \(f\) is a function of several variables \(X_{1}, X_{2}, X_{3}, \ldots \ldots ., X_{n-1}, X_{n}\) then the maximum possible value of the error in \(f\) is
\[
\Delta f \approx\left|\frac{\partial f}{\partial X_{1}} \Delta X_{1}\right|+\left|\frac{\partial f}{\partial X_{2}} \Delta X_{2}\right|+\ldots \ldots .+\left|\frac{\partial f}{\partial X_{n-1}} \Delta X_{n-1}\right|+\left|\frac{\partial f}{\partial X_{n}} \Delta X_{n}\right|
\]

\section*{Example 2:}

The strain in an axial member of a square crosssection is given by
\[
\in=\frac{F}{h^{2} E}
\]

Given
\[
\begin{aligned}
& F=72 \pm 0.9 \mathrm{~N} \\
& h=4 \pm 0.1 \mathrm{~mm} \\
& E=70 \pm 1.5 \mathrm{GPa}
\end{aligned}
\]

Find the maximum possible error in the measured strain.

\section*{Example 2:}

Solution
72
\[
\begin{aligned}
E & =\frac{1}{\left(4 \times 10^{-3}\right)^{2}\left(70 \times 10^{9}\right)} \\
& =64.286 \times 10^{-6} \\
& =64.286 \mu
\end{aligned}
\]
\[
\Delta \in=\left|\frac{\partial \in}{\partial F} \Delta F\right|+\left|\frac{\partial \in}{\partial h} \Delta h\right|+\left|\frac{\partial \in}{\partial E} \Delta E\right|
\]

\section*{Example 2:}
\[
\frac{\partial \in}{\partial F}=\frac{1}{h^{2} E} \quad \frac{\partial \in}{\partial h}=-\frac{2 F}{h^{3} E} \quad \frac{\partial \in}{\partial E}=-\frac{F}{h^{2} E^{2}}
\]

Thus
\[
\begin{aligned}
\Delta E= & \left|\frac{1}{h^{2} E} \Delta F\right|+\left|\frac{2 F}{h^{3} E} \Delta h\right|+\left|\frac{F}{h^{2} E^{2}} \Delta E\right| \\
= & \left|\frac{1}{\left(4 \times 10^{-3}\right)^{2}\left(70 \times 10^{9}\right)} \times 0.9\right|+\left|\frac{2 \times 72}{\left(4 \times 10^{-3}\right)^{3}\left(70 \times 10^{9}\right)} \times 0.0001\right| \\
& +\left|\frac{72}{\left(4 \times 10^{-3}\right)^{2}\left(70 \times 10^{9}\right)^{2}} \times 1.5 \times 10^{9}\right| \\
= & 5.3955 \mu
\end{aligned}
\]

Hence
\[
\in=(64.286 \mu \pm 5.3955 \mu)
\]

\section*{Example 3:}

Subtraction of numbers that are nearly equal can create unwanted inaccuracies. Using the formula for error propagation, show that this is true.

\section*{Solution}

Let
\[
z=x-y
\]

Then
\[
\begin{aligned}
\text { en }|\Delta z| & =\left|\frac{\partial z}{\partial x} \Delta x\right|+\left|\frac{\partial z}{\partial y} \Delta y\right| \\
& =|(1) \Delta x|+|(-1) \Delta y| \\
& =|\Delta x|+|\Delta y|
\end{aligned}
\]

So the relative change is
\[
\left|\frac{\Delta z}{z}\right|=\frac{|\Delta x|+|\Delta y|}{|x-y|}
\]

\section*{Example 3:}

For example if
\[
\begin{aligned}
x & =2 \pm 0.001 \\
y & =2.003 \pm 0.001 \\
\left|\frac{\Delta z}{z}\right| & =\frac{|0.001|+|0.001|}{|2-2.003|} \\
& =0.6667 \\
& =66.67 \%
\end{aligned}
\]

\section*{Taylor Series Revisited}

Major: All Engineering Majors

Authors: Autar Kaw, Luke Snyder

\section*{http://numericalmethods.eng.usf.edu}

Numerical Methods for STEM undergraduates

\section*{What is a Taylor series?}

Some examples of Taylor series which you must have seen
\[
\begin{aligned}
& \cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
& \sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
\end{aligned}
\]

\section*{General Taylor Series}

The general form of the Taylor series is given by
\[
f(x+h)=f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2!} h^{2}+\frac{f^{\prime \prime \prime}(x)}{3!} h^{3}+\cdots
\]
provided that all derivatives of \(f(x)\) are continuous and exist in the interval \([\mathrm{x}, \mathrm{x}+\mathrm{h}]\)

What does this mean in plain English?
As Archimedes would have said, "Give me the value of the function at a single point, and the value of all (first, second, and so on) its derivatives at that single point, and I can give you the value of the function at any other point" (fine print excluded)

\section*{Example-Taylor Series}

Find the value of \(f(6)\) given that \(f(4)=125, f^{\prime}(4)=74\), \(f^{\prime \prime}(4)=30, f^{\prime \prime \prime}(4)=6\) and all other higher order derivatives of \(f(x)\) at \(x=4\) are zero.

Solution:
\[
\begin{aligned}
f(x+h) & =f(x)+f^{\prime}(x) h+f^{\prime \prime}(x) \frac{h^{2}}{2!}+f^{\prime \prime \prime}(x) \frac{h^{3}}{3!}+\cdots \\
x & =4 \\
h & =6-4=2
\end{aligned}
\]

\section*{Example (cont.)}

\section*{Solution: (cont.)}

Since the higher order derivatives are zero,
\[
\begin{aligned}
f(4+2) & =f(4)+f^{\prime}(4) 2+f^{\prime \prime}(4) \frac{2^{2}}{2!}+f^{\prime \prime \prime}(4) \frac{2^{3}}{3!} \\
f(6) & =125+74(2)+30\left(\frac{2^{2}}{2!} \frac{)}{\dot{j}}+6\left(\frac{2^{3}}{3!} \frac{)}{\dot{j}}\right.\right. \\
& =125+148+60+8 \\
& =341
\end{aligned}
\]

Note that to find \(f(6)\) exactly, we only need the value of the function and all its derivatives at some other point, in this case \(x=4\)

\section*{TT Derivation for Maclaurin Series for \(\mathrm{e}^{\mathrm{x}}\)}

Derive the Maclaurin series
\[
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
\]

The Maclaurin series is simply the Taylor series about the point \(\mathrm{x}=0\)
\[
\begin{aligned}
& f(x+h)=f(x)+f^{\prime}(x) h+f^{\prime \prime}(x) \frac{h^{2}}{2!}+f^{\prime \prime \prime}(x) \frac{h^{3}}{3!}+f^{\prime \prime \prime \prime}(x) \frac{h^{4}}{4}+f^{\prime \prime \prime \prime \prime \prime}(x) \frac{h^{5}}{5}+\cdots \\
& f(0+h)=f(0)+f^{\prime}(0) h+f^{\prime \prime}(0) \frac{h^{h^{2}}}{2!}+f^{\prime \prime \prime}(0) \frac{h^{3}}{3!}+f^{\prime \prime \prime \prime}(0) \frac{h^{4}}{4}+f^{\prime \prime \prime \prime \prime}(0) \frac{h^{5}}{5}+\cdots
\end{aligned}
\]

\section*{T T \\ Tv- T \\ Derivation (cont.)}

Since \(f(x)=e^{x}, f^{\prime}(x)=e^{x}, f^{\prime \prime}(x)=e^{x}, \ldots, f^{n}(x)=e^{x}\) and
\(f^{n}(0)=e^{0}=1\)
the Maclaurin series is then
\[
\begin{aligned}
f(h) & =\left(e^{0}\right)+\left(e^{0}\right) h+\frac{\left(e^{0}\right)}{2!} h^{2}+\frac{\left(e^{0}\right)}{3!} h^{3} \ldots \\
& =1+h+\frac{1}{2!} h^{2}+\frac{1}{3!} h^{3} \ldots
\end{aligned}
\]

So,
\[
f(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
\]

\section*{Error in Taylor Series}

The Taylor polynomial of order \(n\) of a function \(f(x)\) with ( \(n+1\) ) continuous derivatives in the domain [ \(\mathrm{x}, \mathrm{x}+\mathrm{h}]\) is given by
\[
f(x+h)=f(x)+f^{\prime}(x) h+f^{\prime \prime}(x) \frac{h^{2}}{2!}+\cdots+f^{(n)}(x) \frac{h^{n}}{n!}+R_{n}(x)
\]
where the remainder is given by
\[
R_{n}(x)=\frac{(x-h)^{n+1}}{(n+1)!} f^{(n+1)}(c)
\]
where
\[
x<c<x+h
\]
that is, c is some point in the domain \([\mathrm{x}, \mathrm{x}+\mathrm{h}]\)

\section*{TT \\ Example—error in Taylor series}

The Taylor series for \(e^{x}\) at point \(x=0\) is given by
\[
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots
\]

It can be seen that as the number of terms used increases, the error bound decreases and hence a better estimate of the function can be found.

How many terms would it require to get an approximation of \(e^{1}\) within a magnitude of true error of less than \(10^{-6}\).

\section*{Example-(cont.)}

\section*{Solution:}

Using ( \(n+1\) ) terms of Taylor series gives error bound of
\[
\begin{aligned}
R_{n}(x) & =\frac{(x-h)^{n+1}}{(n+1)!} f^{(n+1)}(c) \quad x=0, h=1, f(x)=e^{x} \\
R_{n}(0) & =\frac{(0-1)^{n+1}}{(n+1)!} f^{(n+1)}(c) \\
& =\frac{(-1)^{n+1}}{(n+1)!} e^{c}
\end{aligned}
\]

Since
\[
\begin{aligned}
& x<c<x+h \\
& 0<c<0+1 \\
& 0<c<1
\end{aligned} \quad \frac{1}{(n+1)!}<\left\lvert\, R_{n}(0)<\frac{e}{(n+1)!}\right.
\]

\section*{Example-(cont.)}

\section*{Solution: (cont.)}

So if we want to find out how many terms it would require to get an approximation of \(e^{1}\) within a magnitude of true error of less than \(10^{-6}\),
\[
\begin{aligned}
& \frac{e}{(n+1)!}<10^{-6} \\
& (n+1)!>10^{6} e \\
& (n+1)!>10^{6} \times 3 \\
& n \geq 9
\end{aligned}
\]

So 9 terms or more are needed to get a true error less than \(10^{-6}\)
- Make yourself acquainted with your computer desktop (Unix environment). Use the Unix commands ls, df, ps, test the use of an editor of your choice to write small programs or texts (e.g. vi, emacs, joe, nano, ...).
- Check how you can produce plots, e.g. using the gnuplot program, matplotlib or any other software of your choice.

Your code should be in a programming language of your choice (support can only be offered for Python, Fortran or C, C++).
Ensure readable and organized code:
- using naming conventions for variables;
- placing whitespaces, indentations and tabs within code;
- adding comments throughout to aid in interpretation.
- Exercise 1, 6 points: Round-off Errors

Convert the decimal number \((-0.004831)_{10}\) into a binary format used for the hypothetical ten-bit word presented in the lecture. Compute the true error and the relative true error (absolute values) made by the ten-bit representation of \((-0.004831)_{10}\). (No programming necessary.)
- Exercise 2, 6 points: Truncation Errors

Calculate the value of \(e^{1.5}\) using the Taylor series of \(e^{x}\). Increase the number of terms used in the Taylor series until the relative approximate error (absolute value) is less than \(0.1 \%\). Document the results in a table, the code in a printout. Do this for at least two different machine precisions, e.g. Python: numpy.float32, numpy.float64, numpy.single, numpy.double or C++: float a; double d; for comparison.
- Exercise 3, 8 points: Machine \(\varepsilon\)

Solve the quadratic equation \(x^{2}+x+c=0\) directly using the quadrature \(x_{1}=\) \((-1+\sqrt{1-4 c}) / 2\), for \(0 \leq c \leq 1 / 4\). Prepare a computer program, which outputs \(x_{1}\) as a function of \(c\). What is the smallest \(c\) which produces a correct solution for \(x 1 \neq 0\) ? Hint \(c_{\text {init }}=0.25\) then \(c_{\text {new }} \leftarrow c_{\text {old }} \times 0.5\). Does \(\times 0.9\) make a difference? Relate this to the machine \(\varepsilon\) for single precision. How can you obtain a more reliable result even numerically for small \(c\) by rewriting the quadrature expression? Please print this for two different machine precisions as well.

\section*{- Questions?}```

